Filtros : "Global attractor" Limpar

Filtros



Refine with date range


  • Unidade: ICMC

    Subjects: DIMENSÃO INFINITA, ATRATORES, SEMIGRUPOS NÃO LINEARES, SISTEMAS DINÂMICOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAKAESSU JUNIOR, Carlos Roberto. Shadowing and hyperbolicity for infinite dimensional dynamical systems. 2025. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2025. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22072025-103719/. Acesso em: 05 jan. 2026.
    • APA

      Takaessu Junior, C. R. (2025). Shadowing and hyperbolicity for infinite dimensional dynamical systems (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22072025-103719/
    • NLM

      Takaessu Junior CR. Shadowing and hyperbolicity for infinite dimensional dynamical systems [Internet]. 2025 ;[citado 2026 jan. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22072025-103719/
    • Vancouver

      Takaessu Junior CR. Shadowing and hyperbolicity for infinite dimensional dynamical systems [Internet]. 2025 ;[citado 2026 jan. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22072025-103719/
  • Unidade: IME

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LORENZI, Bianca Paolini. Continuidade de atratores para uma família de perturbações altamente oscilatórias do quadrado. 2023. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082023-203143/. Acesso em: 05 jan. 2026.
    • APA

      Lorenzi, B. P. (2023). Continuidade de atratores para uma família de perturbações altamente oscilatórias do quadrado (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082023-203143/
    • NLM

      Lorenzi BP. Continuidade de atratores para uma família de perturbações altamente oscilatórias do quadrado [Internet]. 2023 ;[citado 2026 jan. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082023-203143/
    • Vancouver

      Lorenzi BP. Continuidade de atratores para uma família de perturbações altamente oscilatórias do quadrado [Internet]. 2023 ;[citado 2026 jan. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082023-203143/
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, ELASTICIDADE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOCANEGRA-RODRÍGUEZ, Lito Edinson et al. Longtime dynamics of a semilinear Lamé System. Journal of Dynamics and Differential Equations, v. 35, n. 2, p. 1435-1456, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-09955-7. Acesso em: 05 jan. 2026.
    • APA

      Bocanegra-Rodríguez, L. E., Silva, M. A. J. da, Ma, T. F., & Seminario-Huertas, P. N. (2023). Longtime dynamics of a semilinear Lamé System. Journal of Dynamics and Differential Equations, 35( 2), 1435-1456. doi:10.1007/s10884-021-09955-7
    • NLM

      Bocanegra-Rodríguez LE, Silva MAJ da, Ma TF, Seminario-Huertas PN. Longtime dynamics of a semilinear Lamé System [Internet]. Journal of Dynamics and Differential Equations. 2023 ; 35( 2): 1435-1456.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1007/s10884-021-09955-7
    • Vancouver

      Bocanegra-Rodríguez LE, Silva MAJ da, Ma TF, Seminario-Huertas PN. Longtime dynamics of a semilinear Lamé System [Internet]. Journal of Dynamics and Differential Equations. 2023 ; 35( 2): 1435-1456.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1007/s10884-021-09955-7
  • Unidade: ICMC

    Subjects: ANÁLISE ESPECTRAL, OPERADORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, ATRATORES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOURA, Rafael de Oliveira. Stability and hyperbolicity of equilibria for a nonlocal quasilinear Chafee-Infante equation. 2022. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27052022-102622/. Acesso em: 05 jan. 2026.
    • APA

      Moura, R. de O. (2022). Stability and hyperbolicity of equilibria for a nonlocal quasilinear Chafee-Infante equation (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27052022-102622/
    • NLM

      Moura R de O. Stability and hyperbolicity of equilibria for a nonlocal quasilinear Chafee-Infante equation [Internet]. 2022 ;[citado 2026 jan. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27052022-102622/
    • Vancouver

      Moura R de O. Stability and hyperbolicity of equilibria for a nonlocal quasilinear Chafee-Infante equation [Internet]. 2022 ;[citado 2026 jan. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27052022-102622/
  • Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, FRACTAIS, ESPAÇOS DE BANACH, EQUAÇÕES DE NAVIER-STOKES, OPERADORES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUNHA, Arthur Cavalcante. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings. 2021. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/. Acesso em: 05 jan. 2026.
    • APA

      Cunha, A. C. (2021). Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
    • NLM

      Cunha AC. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings [Internet]. 2021 ;[citado 2026 jan. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
    • Vancouver

      Cunha AC. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings [Internet]. 2021 ;[citado 2026 jan. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
  • Source: Journal of Differential Equations. Unidades: FFCLRP, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SEMIGRUPOS DE OPERADORES LINEARES, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e FERNANDES, Denis e WU, Jianhong. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, v. No 2021, p. 753-806, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.09.014. Acesso em: 05 jan. 2026.
    • APA

      Hernandez, E., Fernandes, D., & Wu, J. (2021). Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, No 2021, 753-806. doi:10.1016/j.jde.2021.09.014
    • NLM

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
    • Vancouver

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
  • Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO, EQUAÇÕES DIFERENCIAIS, ATRATORES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Denis Fernandes da. Boa colocação e comportamento assintótico de soluções de equações diferenciais abstratas com retardo dependendo do estado. 2021. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24062021-115059/. Acesso em: 05 jan. 2026.
    • APA

      Silva, D. F. da. (2021). Boa colocação e comportamento assintótico de soluções de equações diferenciais abstratas com retardo dependendo do estado (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24062021-115059/
    • NLM

      Silva DF da. Boa colocação e comportamento assintótico de soluções de equações diferenciais abstratas com retardo dependendo do estado [Internet]. 2021 ;[citado 2026 jan. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24062021-115059/
    • Vancouver

      Silva DF da. Boa colocação e comportamento assintótico de soluções de equações diferenciais abstratas com retardo dependendo do estado [Internet]. 2021 ;[citado 2026 jan. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24062021-115059/
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, v. 32, n. 1, p. 359-390, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-018-9720-9. Acesso em: 05 jan. 2026.
    • APA

      Lappicy, P. (2020). Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, 32( 1), 359-390. doi:10.1007/s10884-018-9720-9
    • NLM

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
    • Vancouver

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS NÃO LINEARES, MECÂNICA DOS SÓLIDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAVARES, Eduardo Henrique Gomes e SILVA, Marcio A. Jorge e NARCISO, Vando. Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, v. 32, n. 3, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09766-x. Acesso em: 05 jan. 2026.
    • APA

      Tavares, E. H. G., Silva, M. A. J., & Narciso, V. (2020). Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, 32( 3), Se 2020. doi:10.1007/s10884-019-09766-x
    • NLM

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1007/s10884-019-09766-x
    • Vancouver

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1007/s10884-019-09766-x
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENG, B et al. Dynamics of laminated Timoshenko beams. Journal of Dynamics and Differential Equations, v. 30, n. 4, p. 1489-1507, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-017-9604-4. Acesso em: 05 jan. 2026.
    • APA

      Feng, B., Ma, T. F., Monteiro, R. N., & Raposo, C. A. (2018). Dynamics of laminated Timoshenko beams. Journal of Dynamics and Differential Equations, 30( 4), 1489-1507. doi:10.1007/s10884-017-9604-4
    • NLM

      Feng B, Ma TF, Monteiro RN, Raposo CA. Dynamics of laminated Timoshenko beams [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1489-1507.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1007/s10884-017-9604-4
    • Vancouver

      Feng B, Ma TF, Monteiro RN, Raposo CA. Dynamics of laminated Timoshenko beams [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1489-1507.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1007/s10884-017-9604-4
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES INTEGRAIS, INTEGRAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Attractors for impulsive non-autonomous dynamical systems and their relations. Journal of Differential Equations, v. 262, n. 6, p. 3524-3550, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2016.11.036. Acesso em: 05 jan. 2026.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2017). Attractors for impulsive non-autonomous dynamical systems and their relations. Journal of Differential Equations, 262( 6), 3524-3550. doi:10.1016/j.jde.2016.11.036
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Attractors for impulsive non-autonomous dynamical systems and their relations [Internet]. Journal of Differential Equations. 2017 ; 262( 6): 3524-3550.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.jde.2016.11.036
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Attractors for impulsive non-autonomous dynamical systems and their relations [Internet]. Journal of Differential Equations. 2017 ; 262( 6): 3524-3550.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.jde.2016.11.036
  • Source: Annali di Matematica Pura ed Applicata. Unidade: IME

    Assunto: EQUAÇÕES DE EVOLUÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Pricila S. et al. Continuity of attractors for a family of C1 perturbations of the square. Annali di Matematica Pura ed Applicata, v. 196, n. 4, p. 1365-1398-1398, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10231-016-0620-5. Acesso em: 05 jan. 2026.
    • APA

      Barbosa, P. S., Pereira, A. L., Pereira, M. C., & Marcone C. Pereira,. (2017). Continuity of attractors for a family of C1 perturbations of the square. Annali di Matematica Pura ed Applicata, 196( 4), 1365-1398-1398. doi:10.1007/s10231-016-0620-5
    • NLM

      Barbosa PS, Pereira AL, Pereira MC, Marcone C. Pereira. Continuity of attractors for a family of C1 perturbations of the square [Internet]. Annali di Matematica Pura ed Applicata. 2017 ; 196( 4): 1365-1398-1398.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1007/s10231-016-0620-5
    • Vancouver

      Barbosa PS, Pereira AL, Pereira MC, Marcone C. Pereira. Continuity of attractors for a family of C1 perturbations of the square [Internet]. Annali di Matematica Pura ed Applicata. 2017 ; 196( 4): 1365-1398-1398.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1007/s10231-016-0620-5
  • Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTEIRO, Rodrigo Nunes. Long-time dynamics of two classes of beam and plate equations. 2016. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2016. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30092016-144225/. Acesso em: 05 jan. 2026.
    • APA

      Monteiro, R. N. (2016). Long-time dynamics of two classes of beam and plate equations (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30092016-144225/
    • NLM

      Monteiro RN. Long-time dynamics of two classes of beam and plate equations [Internet]. 2016 ;[citado 2026 jan. 05 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30092016-144225/
    • Vancouver

      Monteiro RN. Long-time dynamics of two classes of beam and plate equations [Internet]. 2016 ;[citado 2026 jan. 05 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30092016-144225/
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus C e CARVALHO, Alexandre Nolasco de. Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 563-602, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.059. Acesso em: 05 jan. 2026.
    • APA

      Bortolan, M. C., & Carvalho, A. N. de. (2015). Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, 46( 2), 563-602. doi:10.12775/tmna.2015.059
    • NLM

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2026 jan. 05 ] Available from: https://doi.org/10.12775/tmna.2015.059
    • Vancouver

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2026 jan. 05 ] Available from: https://doi.org/10.12775/tmna.2015.059
  • Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, EQUAÇÕES DIFERENCIAIS NÃO LINEARES, SISTEMAS DINÂMICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Alisson Rafael Aguiar. Dinâmica assintótica de um sistema de placas termoelásticas do tipo hiperbólico. 2013. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2013. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25102013-154517/. Acesso em: 05 jan. 2026.
    • APA

      Barbosa, A. R. A. (2013). Dinâmica assintótica de um sistema de placas termoelásticas do tipo hiperbólico (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25102013-154517/
    • NLM

      Barbosa ARA. Dinâmica assintótica de um sistema de placas termoelásticas do tipo hiperbólico [Internet]. 2013 ;[citado 2026 jan. 05 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25102013-154517/
    • Vancouver

      Barbosa ARA. Dinâmica assintótica de um sistema de placas termoelásticas do tipo hiperbólico [Internet]. 2013 ;[citado 2026 jan. 05 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25102013-154517/
  • Unidade: ICMC

    Subjects: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS QUASE LINEARES, ESPAÇOS DE SOBOLEV

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAUJO, Rawlilson de Oliveira. Estabilidade assintótica de uma classe de equações quasilineares viscoelásticas com história. 2013. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2013. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06112013-165332/. Acesso em: 05 jan. 2026.
    • APA

      Araujo, R. de O. (2013). Estabilidade assintótica de uma classe de equações quasilineares viscoelásticas com história (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06112013-165332/
    • NLM

      Araujo R de O. Estabilidade assintótica de uma classe de equações quasilineares viscoelásticas com história [Internet]. 2013 ;[citado 2026 jan. 05 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06112013-165332/
    • Vancouver

      Araujo R de O. Estabilidade assintótica de uma classe de equações quasilineares viscoelásticas com história [Internet]. 2013 ;[citado 2026 jan. 05 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06112013-165332/
  • Source: Discrete and Continuous Dynamical Systems. Series A. Unidade: IME

    Subjects: EQUAÇÕES NÃO LINEARES, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Antônio Luiz e SILVA, Severino Horácio da. Continuity of global attractors for a class of non local evolution equations. Discrete and Continuous Dynamical Systems. Series A, v. 26, n. 3, p. 1073-1100, 2010Tradução . . Disponível em: https://doi.org/10.3934/dcds.2010.26.1073. Acesso em: 05 jan. 2026.
    • APA

      Pereira, A. L., & Silva, S. H. da. (2010). Continuity of global attractors for a class of non local evolution equations. Discrete and Continuous Dynamical Systems. Series A, 26( 3), 1073-1100. doi:10.3934/dcds.2010.26.1073
    • NLM

      Pereira AL, Silva SH da. Continuity of global attractors for a class of non local evolution equations [Internet]. Discrete and Continuous Dynamical Systems. Series A. 2010 ; 26( 3): 1073-1100.[citado 2026 jan. 05 ] Available from: https://doi.org/10.3934/dcds.2010.26.1073
    • Vancouver

      Pereira AL, Silva SH da. Continuity of global attractors for a class of non local evolution equations [Internet]. Discrete and Continuous Dynamical Systems. Series A. 2010 ; 26( 3): 1073-1100.[citado 2026 jan. 05 ] Available from: https://doi.org/10.3934/dcds.2010.26.1073
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS LINEARES NÃO HOMOGÊNEAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Antônio Luiz. Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain. Journal of Differential Equations, v. 226, n. 1, p. 352-372, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2006.03.016. Acesso em: 05 jan. 2026.
    • APA

      Pereira, A. L. (2006). Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain. Journal of Differential Equations, 226( 1), 352-372. doi:10.1016/j.jde.2006.03.016
    • NLM

      Pereira AL. Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain [Internet]. Journal of Differential Equations. 2006 ; 226( 1): 352-372.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.jde.2006.03.016
    • Vancouver

      Pereira AL. Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain [Internet]. Journal of Differential Equations. 2006 ; 226( 1): 352-372.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.jde.2006.03.016

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026