Filtros : "Constraint qualifications" Limpar

Filtros



Refine with date range


  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO NÃO LINEAR, PESQUISA OPERACIONAL

    Disponível em 2026-06-17Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. A minimal face constant rank constraint qualification for reducible conic programming. Mathematical Programming, p. 1-27, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10107-025-02237-w. Acesso em: 25 jan. 2026.
    • APA

      Andreani, R., Haeser, G., Mito, L., & Ramírez, H. (2025). A minimal face constant rank constraint qualification for reducible conic programming. Mathematical Programming, 1-27. doi:10.1007/s10107-025-02237-w
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez H. A minimal face constant rank constraint qualification for reducible conic programming [Internet]. Mathematical Programming. 2025 ; 1-27.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10107-025-02237-w
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez H. A minimal face constant rank constraint qualification for reducible conic programming [Internet]. Mathematical Programming. 2025 ; 1-27.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10107-025-02237-w
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, ANÁLISE NUMÉRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Global convergence of a second-order augmented lagrangian method under an error bound condition. Journal of Optimization Theory and Applications, v. 206, n. artigo 54, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10957-025-02731-3. Acesso em: 25 jan. 2026.
    • APA

      Andreani, R., Haeser, G., Prado, R. W., Schuverdt, M. L., & Secchin, L. D. (2025). Global convergence of a second-order augmented lagrangian method under an error bound condition. Journal of Optimization Theory and Applications, 206( artigo 54), 1-30. doi:10.1007/s10957-025-02731-3
    • NLM

      Andreani R, Haeser G, Prado RW, Schuverdt ML, Secchin LD. Global convergence of a second-order augmented lagrangian method under an error bound condition [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206( artigo 54): 1-30.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10957-025-02731-3
    • Vancouver

      Andreani R, Haeser G, Prado RW, Schuverdt ML, Secchin LD. Global convergence of a second-order augmented lagrangian method under an error bound condition [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206( artigo 54): 1-30.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10957-025-02731-3
  • Unidade: IME

    Subjects: ANÁLISE CONVEXA, ÁLGEBRAS DE JORDAN

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Ariel Serranoni Soares da. Nonlinear symmetric cone programming: a geometric perspective. 2024. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012025-103838/. Acesso em: 25 jan. 2026.
    • APA

      Silva, A. S. S. da. (2024). Nonlinear symmetric cone programming: a geometric perspective (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012025-103838/
    • NLM

      Silva ASS da. Nonlinear symmetric cone programming: a geometric perspective [Internet]. 2024 ;[citado 2026 jan. 25 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012025-103838/
    • Vancouver

      Silva ASS da. Nonlinear symmetric cone programming: a geometric perspective [Internet]. 2024 ;[citado 2026 jan. 25 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012025-103838/
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Weak notions of nondegeneracy in nonlinear semidefinite programming. Mathematical Programming, v. 205, n. 1-2, p. 1-32, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10107-023-01970-4. Acesso em: 25 jan. 2026.
    • APA

      Andreani, R., Haeser, G., Mito, L. M., & Ramírez, H. (2024). Weak notions of nondegeneracy in nonlinear semidefinite programming. Mathematical Programming, 205( 1-2), 1-32. doi:10.1007/s10107-023-01970-4
    • NLM

      Andreani R, Haeser G, Mito LM, Ramírez H. Weak notions of nondegeneracy in nonlinear semidefinite programming [Internet]. Mathematical Programming. 2024 ; 205( 1-2): 1-32.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10107-023-01970-4
    • Vancouver

      Andreani R, Haeser G, Mito LM, Ramírez H. Weak notions of nondegeneracy in nonlinear semidefinite programming [Internet]. Mathematical Programming. 2024 ; 205( 1-2): 1-32.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10107-023-01970-4
  • Source: Set-Valued and Variational Analysis. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO GLOBAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Sequential constant rank constraint qualifications for nonlinear semidefinite programming with algorithmic applications. Set-Valued and Variational Analysis, v. 31, n. artigo 3, p. 1-27, 2023Tradução . . Disponível em: https://doi.org/10.1007/s11228-023-00666-3. Acesso em: 25 jan. 2026.
    • APA

      Andreani, R., Haeser, G., Mito, L., & Ramírez, H. (2023). Sequential constant rank constraint qualifications for nonlinear semidefinite programming with algorithmic applications. Set-Valued and Variational Analysis, 31( artigo 3), 1-27. doi:10.1007/s11228-023-00666-3
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez H. Sequential constant rank constraint qualifications for nonlinear semidefinite programming with algorithmic applications [Internet]. Set-Valued and Variational Analysis. 2023 ; 31( artigo 3): 1-27.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s11228-023-00666-3
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez H. Sequential constant rank constraint qualifications for nonlinear semidefinite programming with algorithmic applications [Internet]. Set-Valued and Variational Analysis. 2023 ; 31( artigo 3): 1-27.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s11228-023-00666-3
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition. Mathematical Programming, v. 202, p. 473-513, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10107-023-01942-8. Acesso em: 25 jan. 2026.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramírez, H., & Silveira, T. P. da. (2023). First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition. Mathematical Programming, 202, 473-513. doi:10.1007/s10107-023-01942-8
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez H, Silveira TP da. First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition [Internet]. Mathematical Programming. 2023 ; 202 473-513.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10107-023-01942-8
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez H, Silveira TP da. First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition [Internet]. Mathematical Programming. 2023 ; 202 473-513.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10107-023-01942-8
  • Unidade: IME

    Subjects: ALGORITMOS, OTIMIZAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MITO, Leonardo. Topics in nonlinear conic optimization and applications. 2022. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-30032022-212754/. Acesso em: 25 jan. 2026.
    • APA

      Mito, L. (2022). Topics in nonlinear conic optimization and applications (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45132/tde-30032022-212754/
    • NLM

      Mito L. Topics in nonlinear conic optimization and applications [Internet]. 2022 ;[citado 2026 jan. 25 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-30032022-212754/
    • Vancouver

      Mito L. Topics in nonlinear conic optimization and applications [Internet]. 2022 ;[citado 2026 jan. 25 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-30032022-212754/
  • Source: Optimization Letters. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming. Optimization Letters, v. 16, n. 2, p. 589-610, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11590-021-01737-w. Acesso em: 25 jan. 2026.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramírez, H., Santos, D. O., & Silveira, ‪T. P. da. (2022). Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming. Optimization Letters, 16( 2), 589-610. doi:10.1007/s11590-021-01737-w
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez H, Santos DO, Silveira ‪TP da. Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming [Internet]. Optimization Letters. 2022 ; 16( 2): 589-610.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s11590-021-01737-w
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez H, Santos DO, Silveira ‪TP da. Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming [Internet]. Optimization Letters. 2022 ; 16( 2): 589-610.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s11590-021-01737-w
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming. Journal of Optimization Theory and Applications, v. 195, p. 42-78, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10957-022-02056-5. Acesso em: 25 jan. 2026.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramírez, C. H., & Silveira, T. P. da. (2022). Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming. Journal of Optimization Theory and Applications, 195, 42-78. doi:10.1007/s10957-022-02056-5
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez CH, Silveira TP da. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming [Internet]. Journal of Optimization Theory and Applications. 2022 ; 195 42-78.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10957-022-02056-5
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez CH, Silveira TP da. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming [Internet]. Journal of Optimization Theory and Applications. 2022 ; 195 42-78.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10957-022-02056-5
  • Source: Operations Research Letters. Unidade: IME

    Assunto: OTIMIZAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, Alberto. On constraint qualifications for second-order optimality conditions depending on a single Lagrange multiplier. Operations Research Letters, v. 49, n. 6, p. 883-889, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.orl.2021.09.008. Acesso em: 25 jan. 2026.
    • APA

      Haeser, G., & Ramos, A. (2021). On constraint qualifications for second-order optimality conditions depending on a single Lagrange multiplier. Operations Research Letters, 49( 6), 883-889. doi:10.1016/j.orl.2021.09.008
    • NLM

      Haeser G, Ramos A. On constraint qualifications for second-order optimality conditions depending on a single Lagrange multiplier [Internet]. Operations Research Letters. 2021 ; 49( 6): 883-889.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.orl.2021.09.008
    • Vancouver

      Haeser G, Ramos A. On constraint qualifications for second-order optimality conditions depending on a single Lagrange multiplier [Internet]. Operations Research Letters. 2021 ; 49( 6): 883-889.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.orl.2021.09.008
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, A. New constraint qualifications with second-order properties in nonlinear optimization. Journal of Optimization Theory and Applications, v. 184, p. 494-506, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-019-01603-x. Acesso em: 25 jan. 2026.
    • APA

      Haeser, G., & Ramos, A. (2020). New constraint qualifications with second-order properties in nonlinear optimization. Journal of Optimization Theory and Applications, 184, 494-506. doi:10.1007/s10957-019-01603-x
    • NLM

      Haeser G, Ramos A. New constraint qualifications with second-order properties in nonlinear optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 184 494-506.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10957-019-01603-x
    • Vancouver

      Haeser G, Ramos A. New constraint qualifications with second-order properties in nonlinear optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 184 494-506.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10957-019-01603-x
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, Alberto. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. Journal of Optimization Theory and Applications, v. 187, n. 2, p. 469-487, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-020-01749-z. Acesso em: 25 jan. 2026.
    • APA

      Haeser, G., & Ramos, A. (2020). Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. Journal of Optimization Theory and Applications, 187( 2), 469-487. doi:10.1007/s10957-020-01749-z
    • NLM

      Haeser G, Ramos A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 187( 2): 469-487.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10957-020-01749-z
    • Vancouver

      Haeser G, Ramos A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 187( 2): 469-487.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10957-020-01749-z
  • Unidade: IME

    Assunto: MATEMATICA APLICADA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROJAS, Frank Navarro. Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados. 2018. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2018. Disponível em: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-27032018-114413/. Acesso em: 25 jan. 2026.
    • APA

      Rojas, F. N. (2018). Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45132/tde-27032018-114413/
    • NLM

      Rojas FN. Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados [Internet]. 2018 ;[citado 2026 jan. 25 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-27032018-114413/
    • Vancouver

      Rojas FN. Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados [Internet]. 2018 ;[citado 2026 jan. 25 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-27032018-114413/
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEHLING, Roger et al. On a conjecture in second-order optimality conditions. Journal of Optimization Theory and Applications, v. 176, n. 3, p. 625-633, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10957-018-1229-1. Acesso em: 25 jan. 2026.
    • APA

      Behling, R., Haeser, G., Ramos, A., & Viana, D. S. (2018). On a conjecture in second-order optimality conditions. Journal of Optimization Theory and Applications, 176( 3), 625-633. doi:10.1007/s10957-018-1229-1
    • NLM

      Behling R, Haeser G, Ramos A, Viana DS. On a conjecture in second-order optimality conditions [Internet]. Journal of Optimization Theory and Applications. 2018 ; 176( 3): 625-633.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10957-018-1229-1
    • Vancouver

      Behling R, Haeser G, Ramos A, Viana DS. On a conjecture in second-order optimality conditions [Internet]. Journal of Optimization Theory and Applications. 2018 ; 176( 3): 625-633.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10957-018-1229-1
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. A relaxed constant positive linear dependence constraint qualification and applications. Mathematical Programming, v. 135, n. 1-2, p. 255-273, 2011Tradução . . Disponível em: https://doi.org/10.1007/s10107-011-0456-0. Acesso em: 25 jan. 2026.
    • APA

      Andreani, R., Haeser, G., Schuverdt, M. L., & Silva, P. J. S. (2011). A relaxed constant positive linear dependence constraint qualification and applications. Mathematical Programming, 135( 1-2), 255-273. doi:10.1007/s10107-011-0456-0
    • NLM

      Andreani R, Haeser G, Schuverdt ML, Silva PJS. A relaxed constant positive linear dependence constraint qualification and applications [Internet]. Mathematical Programming. 2011 ; 135( 1-2): 255-273.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10107-011-0456-0
    • Vancouver

      Andreani R, Haeser G, Schuverdt ML, Silva PJS. A relaxed constant positive linear dependence constraint qualification and applications [Internet]. Mathematical Programming. 2011 ; 135( 1-2): 255-273.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10107-011-0456-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026