Filtros : "Atrator global" Limpar

Filtros



Refine with date range


  • Unidade: ICMC

    Subjects: DIMENSÃO INFINITA, ATRATORES, SEMIGRUPOS NÃO LINEARES, SISTEMAS DINÂMICOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAKAESSU JUNIOR, Carlos Roberto. Shadowing and hyperbolicity for infinite dimensional dynamical systems. 2025. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2025. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22072025-103719/. Acesso em: 18 fev. 2026.
    • APA

      Takaessu Junior, C. R. (2025). Shadowing and hyperbolicity for infinite dimensional dynamical systems (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22072025-103719/
    • NLM

      Takaessu Junior CR. Shadowing and hyperbolicity for infinite dimensional dynamical systems [Internet]. 2025 ;[citado 2026 fev. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22072025-103719/
    • Vancouver

      Takaessu Junior CR. Shadowing and hyperbolicity for infinite dimensional dynamical systems [Internet]. 2025 ;[citado 2026 fev. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22072025-103719/
  • Unidade: IME

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LORENZI, Bianca Paolini. Continuidade de atratores para uma família de perturbações altamente oscilatórias do quadrado. 2023. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082023-203143/. Acesso em: 18 fev. 2026.
    • APA

      Lorenzi, B. P. (2023). Continuidade de atratores para uma família de perturbações altamente oscilatórias do quadrado (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082023-203143/
    • NLM

      Lorenzi BP. Continuidade de atratores para uma família de perturbações altamente oscilatórias do quadrado [Internet]. 2023 ;[citado 2026 fev. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082023-203143/
    • Vancouver

      Lorenzi BP. Continuidade de atratores para uma família de perturbações altamente oscilatórias do quadrado [Internet]. 2023 ;[citado 2026 fev. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082023-203143/
  • Unidade: ICMC

    Subjects: ANÁLISE ESPECTRAL, OPERADORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, ATRATORES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOURA, Rafael de Oliveira. Stability and hyperbolicity of equilibria for a nonlocal quasilinear Chafee-Infante equation. 2022. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27052022-102622/. Acesso em: 18 fev. 2026.
    • APA

      Moura, R. de O. (2022). Stability and hyperbolicity of equilibria for a nonlocal quasilinear Chafee-Infante equation (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27052022-102622/
    • NLM

      Moura R de O. Stability and hyperbolicity of equilibria for a nonlocal quasilinear Chafee-Infante equation [Internet]. 2022 ;[citado 2026 fev. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27052022-102622/
    • Vancouver

      Moura R de O. Stability and hyperbolicity of equilibria for a nonlocal quasilinear Chafee-Infante equation [Internet]. 2022 ;[citado 2026 fev. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27052022-102622/
  • Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO, EQUAÇÕES DIFERENCIAIS, ATRATORES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Denis Fernandes da. Boa colocação e comportamento assintótico de soluções de equações diferenciais abstratas com retardo dependendo do estado. 2021. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24062021-115059/. Acesso em: 18 fev. 2026.
    • APA

      Silva, D. F. da. (2021). Boa colocação e comportamento assintótico de soluções de equações diferenciais abstratas com retardo dependendo do estado (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24062021-115059/
    • NLM

      Silva DF da. Boa colocação e comportamento assintótico de soluções de equações diferenciais abstratas com retardo dependendo do estado [Internet]. 2021 ;[citado 2026 fev. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24062021-115059/
    • Vancouver

      Silva DF da. Boa colocação e comportamento assintótico de soluções de equações diferenciais abstratas com retardo dependendo do estado [Internet]. 2021 ;[citado 2026 fev. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24062021-115059/
  • Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, FRACTAIS, ESPAÇOS DE BANACH, EQUAÇÕES DE NAVIER-STOKES, OPERADORES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUNHA, Arthur Cavalcante. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings. 2021. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/. Acesso em: 18 fev. 2026.
    • APA

      Cunha, A. C. (2021). Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
    • NLM

      Cunha AC. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings [Internet]. 2021 ;[citado 2026 fev. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
    • Vancouver

      Cunha AC. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings [Internet]. 2021 ;[citado 2026 fev. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
  • Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTEIRO, Rodrigo Nunes. Long-time dynamics of two classes of beam and plate equations. 2016. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2016. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30092016-144225/. Acesso em: 18 fev. 2026.
    • APA

      Monteiro, R. N. (2016). Long-time dynamics of two classes of beam and plate equations (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30092016-144225/
    • NLM

      Monteiro RN. Long-time dynamics of two classes of beam and plate equations [Internet]. 2016 ;[citado 2026 fev. 18 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30092016-144225/
    • Vancouver

      Monteiro RN. Long-time dynamics of two classes of beam and plate equations [Internet]. 2016 ;[citado 2026 fev. 18 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30092016-144225/
  • Unidade: ICMC

    Subjects: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS QUASE LINEARES, ESPAÇOS DE SOBOLEV

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAUJO, Rawlilson de Oliveira. Estabilidade assintótica de uma classe de equações quasilineares viscoelásticas com história. 2013. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2013. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06112013-165332/. Acesso em: 18 fev. 2026.
    • APA

      Araujo, R. de O. (2013). Estabilidade assintótica de uma classe de equações quasilineares viscoelásticas com história (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06112013-165332/
    • NLM

      Araujo R de O. Estabilidade assintótica de uma classe de equações quasilineares viscoelásticas com história [Internet]. 2013 ;[citado 2026 fev. 18 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06112013-165332/
    • Vancouver

      Araujo R de O. Estabilidade assintótica de uma classe de equações quasilineares viscoelásticas com história [Internet]. 2013 ;[citado 2026 fev. 18 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06112013-165332/
  • Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, EQUAÇÕES DIFERENCIAIS NÃO LINEARES, SISTEMAS DINÂMICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Alisson Rafael Aguiar. Dinâmica assintótica de um sistema de placas termoelásticas do tipo hiperbólico. 2013. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2013. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25102013-154517/. Acesso em: 18 fev. 2026.
    • APA

      Barbosa, A. R. A. (2013). Dinâmica assintótica de um sistema de placas termoelásticas do tipo hiperbólico (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25102013-154517/
    • NLM

      Barbosa ARA. Dinâmica assintótica de um sistema de placas termoelásticas do tipo hiperbólico [Internet]. 2013 ;[citado 2026 fev. 18 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25102013-154517/
    • Vancouver

      Barbosa ARA. Dinâmica assintótica de um sistema de placas termoelásticas do tipo hiperbólico [Internet]. 2013 ;[citado 2026 fev. 18 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25102013-154517/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026