Filtros : "Itália" "Giannoni, Fábio" Removido: "Irlanda" Limpar

Filtros



Refine with date range


  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: GEODÉSIA, GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fábio e PICCIONE, Paolo. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles. Calculus of Variations and Partial Differential Equations, v. 57, n. 5, p. 1-26, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00526-018-1394-y. Acesso em: 19 nov. 2024.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2018). Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles. Calculus of Variations and Partial Differential Equations, 57( 5), 1-26. doi:10.1007/s00526-018-1394-y
    • NLM

      Giambó R, Giannoni F, Piccione P. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles [Internet]. Calculus of Variations and Partial Differential Equations. 2018 ; 57( 5): 1-26.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00526-018-1394-y
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles [Internet]. Calculus of Variations and Partial Differential Equations. 2018 ; 57( 5): 1-26.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00526-018-1394-y
  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: RELATIVIDADE (GEOMETRIA DIFERENCIAL), GEODÉSIA, GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fábio e PICCIONE, Paolo. A finite dimensional approach to light rays in general relativity. Nonlinear Analysis, v. 168, p. 198-221, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.na.2017.11.014. Acesso em: 19 nov. 2024.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2018). A finite dimensional approach to light rays in general relativity. Nonlinear Analysis, 168, 198-221. doi:10.1016/j.na.2017.11.014
    • NLM

      Giambó R, Giannoni F, Piccione P. A finite dimensional approach to light rays in general relativity [Internet]. Nonlinear Analysis. 2018 ; 168 198-221.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.na.2017.11.014
    • Vancouver

      Giambó R, Giannoni F, Piccione P. A finite dimensional approach to light rays in general relativity [Internet]. Nonlinear Analysis. 2018 ; 168 198-221.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.na.2017.11.014
  • Source: Advances in Differential Equations. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fábio e PICCIONE, Paolo. Orthogonal geodesic chords, brake orbits and homoclinic orbits in Riemannian manifolds. Advances in Differential Equations, v. 10, n. 8, p. 931-960, 2005Tradução . . Disponível em: https://projecteuclid.org/journals/advances-in-differential-equations/volume-10/issue-8/Orthogonal-geodesic-chords-brake-orbits-and-homoclinic-orbits-in-Riemannian/ade/1355867824.full. Acesso em: 19 nov. 2024.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2005). Orthogonal geodesic chords, brake orbits and homoclinic orbits in Riemannian manifolds. Advances in Differential Equations, 10( 8), 931-960. Recuperado de https://projecteuclid.org/journals/advances-in-differential-equations/volume-10/issue-8/Orthogonal-geodesic-chords-brake-orbits-and-homoclinic-orbits-in-Riemannian/ade/1355867824.full
    • NLM

      Giambó R, Giannoni F, Piccione P. Orthogonal geodesic chords, brake orbits and homoclinic orbits in Riemannian manifolds [Internet]. Advances in Differential Equations. 2005 ; 10( 8): 931-960.[citado 2024 nov. 19 ] Available from: https://projecteuclid.org/journals/advances-in-differential-equations/volume-10/issue-8/Orthogonal-geodesic-chords-brake-orbits-and-homoclinic-orbits-in-Riemannian/ade/1355867824.full
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Orthogonal geodesic chords, brake orbits and homoclinic orbits in Riemannian manifolds [Internet]. Advances in Differential Equations. 2005 ; 10( 8): 931-960.[citado 2024 nov. 19 ] Available from: https://projecteuclid.org/journals/advances-in-differential-equations/volume-10/issue-8/Orthogonal-geodesic-chords-brake-orbits-and-homoclinic-orbits-in-Riemannian/ade/1355867824.full
  • Source: Mathematics of Control Signals and Systems. Unidade: IME

    Subjects: CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fábio e PICCIONE, Paolo. Optimal control on Riemannian manifolds by interpolation. Mathematics of Control Signals and Systems, v. 16, n. 4, p. 278-296, 2004Tradução . . Disponível em: https://doi.org/10.1007/s00498-003-0139-3. Acesso em: 19 nov. 2024.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2004). Optimal control on Riemannian manifolds by interpolation. Mathematics of Control Signals and Systems, 16( 4), 278-296. doi:10.1007/s00498-003-0139-3
    • NLM

      Giambó R, Giannoni F, Piccione P. Optimal control on Riemannian manifolds by interpolation [Internet]. Mathematics of Control Signals and Systems. 2004 ; 16( 4): 278-296.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00498-003-0139-3
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Optimal control on Riemannian manifolds by interpolation [Internet]. Mathematics of Control Signals and Systems. 2004 ; 16( 4): 278-296.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00498-003-0139-3
  • Source: Classical and Quantum Gravity. Unidade: IME

    Assunto: RELATIVIDADE (FÍSICA)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto et al. Naked singularities formation in perfect fluid collapse. Classical and Quantum Gravity, v. 20, n. 22, p. 4943-4948, 2003Tradução . . Disponível em: https://doi.org/10.1088/0264-9381/20/22/017. Acesso em: 19 nov. 2024.
    • APA

      Giambó, R., Giambó, R., Giannoni, F., Giulio, M., & Piccione, P. (2003). Naked singularities formation in perfect fluid collapse. Classical and Quantum Gravity, 20( 22), 4943-4948. doi:10.1088/0264-9381/20/22/017
    • NLM

      Giambó R, Giambó R, Giannoni F, Giulio M, Piccione P. Naked singularities formation in perfect fluid collapse [Internet]. Classical and Quantum Gravity. 2003 ; 20( 22): 4943-4948.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1088/0264-9381/20/22/017
    • Vancouver

      Giambó R, Giambó R, Giannoni F, Giulio M, Piccione P. Naked singularities formation in perfect fluid collapse [Internet]. Classical and Quantum Gravity. 2003 ; 20( 22): 4943-4948.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1088/0264-9381/20/22/017
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: GEOMETRIA SEMI-RIEMANNIANA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto et al. Morse theory for normal geodesics in sub-Riemannian manifolds with codimension one distributions. Topological Methods in Nonlinear Analysis, v. 21, n. 2, p. 273-291, 2003Tradução . . Disponível em: https://doi.org/10.12775/tmna.2003.016. Acesso em: 19 nov. 2024.
    • APA

      Giambó, R., Giannoni, F., Piccione, P., & Tausk, D. V. (2003). Morse theory for normal geodesics in sub-Riemannian manifolds with codimension one distributions. Topological Methods in Nonlinear Analysis, 21( 2), 273-291. doi:10.12775/tmna.2003.016
    • NLM

      Giambó R, Giannoni F, Piccione P, Tausk DV. Morse theory for normal geodesics in sub-Riemannian manifolds with codimension one distributions [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 21( 2): 273-291.[citado 2024 nov. 19 ] Available from: https://doi.org/10.12775/tmna.2003.016
    • Vancouver

      Giambó R, Giannoni F, Piccione P, Tausk DV. Morse theory for normal geodesics in sub-Riemannian manifolds with codimension one distributions [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 21( 2): 273-291.[citado 2024 nov. 19 ] Available from: https://doi.org/10.12775/tmna.2003.016
  • Source: Siam Journal on control and Optimization. Unidade: IME

    Assunto: GEOMETRIA SUB-RIEMANNIANA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fábio e PICCIONE, Paolo. Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods. Siam Journal on control and Optimization, v. 40, n. 6, p. 1840-1857, 2002Tradução . . Disponível em: https://doi.org/10.1137/S0363012900367242. Acesso em: 19 nov. 2024.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2002). Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods. Siam Journal on control and Optimization, 40( 6), 1840-1857. doi:10.1137/S0363012900367242
    • NLM

      Giambó R, Giannoni F, Piccione P. Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods [Internet]. Siam Journal on control and Optimization. 2002 ; 40( 6): 1840-1857.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1137/S0363012900367242
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods [Internet]. Siam Journal on control and Optimization. 2002 ; 40( 6): 1840-1857.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1137/S0363012900367242
  • Source: Discrete and Continuous Dynamical Systems. Series A. Unidade: IME

    Assunto: ANÁLISE GLOBAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio e PICCIONE, Paolo e TAUSK, Daniel Victor. Morse theory for the travel time brachistochrones in stationary spacetimes. Discrete and Continuous Dynamical Systems. Series A, v. 8, n. 3, p. 697-724, 2002Tradução . . Disponível em: https://doi.org/10.3934/dcds.2002.8.697. Acesso em: 19 nov. 2024.
    • APA

      Giannoni, F., Piccione, P., & Tausk, D. V. (2002). Morse theory for the travel time brachistochrones in stationary spacetimes. Discrete and Continuous Dynamical Systems. Series A, 8( 3), 697-724. doi:10.3934/dcds.2002.8.697
    • NLM

      Giannoni F, Piccione P, Tausk DV. Morse theory for the travel time brachistochrones in stationary spacetimes [Internet]. Discrete and Continuous Dynamical Systems. Series A. 2002 ; 8( 3): 697-724.[citado 2024 nov. 19 ] Available from: https://doi.org/10.3934/dcds.2002.8.697
    • Vancouver

      Giannoni F, Piccione P, Tausk DV. Morse theory for the travel time brachistochrones in stationary spacetimes [Internet]. Discrete and Continuous Dynamical Systems. Series A. 2002 ; 8( 3): 697-724.[citado 2024 nov. 19 ] Available from: https://doi.org/10.3934/dcds.2002.8.697
  • Source: Asian Journal of Mathematics. Unidade: IME

    Assunto: ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio et al. A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry. Asian Journal of Mathematics, v. 5, n. 3, p. 441-472, 2001Tradução . . Disponível em: https://doi.org/10.4310/ajm.2001.v5.n3.a3. Acesso em: 19 nov. 2024.
    • APA

      Giannoni, F., Masiello, A., Piccione, P., & Tausk, D. V. (2001). A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry. Asian Journal of Mathematics, 5( 3), 441-472. doi:10.4310/ajm.2001.v5.n3.a3
    • NLM

      Giannoni F, Masiello A, Piccione P, Tausk DV. A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry [Internet]. Asian Journal of Mathematics. 2001 ; 5( 3): 441-472.[citado 2024 nov. 19 ] Available from: https://doi.org/10.4310/ajm.2001.v5.n3.a3
    • Vancouver

      Giannoni F, Masiello A, Piccione P, Tausk DV. A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry [Internet]. Asian Journal of Mathematics. 2001 ; 5( 3): 441-472.[citado 2024 nov. 19 ] Available from: https://doi.org/10.4310/ajm.2001.v5.n3.a3
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA SEMI-RIEMANNIANA, GEOMETRIA GLOBAL, GEOMETRIA DE GEODÉSICAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio e PICCIONE, Paolo e SEMPALMIERI, Rosella. On the geodesical connectedness for a class of semi-Riemannian manifolds. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf. Acesso em: 19 nov. 2024. , 2000
    • APA

      Giannoni, F., Piccione, P., & Sempalmieri, R. (2000). On the geodesical connectedness for a class of semi-Riemannian manifolds. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf
    • NLM

      Giannoni F, Piccione P, Sempalmieri R. On the geodesical connectedness for a class of semi-Riemannian manifolds [Internet]. 2000 ;[citado 2024 nov. 19 ] Available from: https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf
    • Vancouver

      Giannoni F, Piccione P, Sempalmieri R. On the geodesical connectedness for a class of semi-Riemannian manifolds [Internet]. 2000 ;[citado 2024 nov. 19 ] Available from: https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, ANÁLISE GLOBAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio e PICCIONE, Paolo. The arrival time brachistochrones in general relativity. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf. Acesso em: 19 nov. 2024. , 2000
    • APA

      Giannoni, F., & Piccione, P. (2000). The arrival time brachistochrones in general relativity. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf
    • NLM

      Giannoni F, Piccione P. The arrival time brachistochrones in general relativity [Internet]. 2000 ;[citado 2024 nov. 19 ] Available from: https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf
    • Vancouver

      Giannoni F, Piccione P. The arrival time brachistochrones in general relativity [Internet]. 2000 ;[citado 2024 nov. 19 ] Available from: https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA SUB-RIEMANNIANA

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fábio e PICCIONE, Paolo. Existence multiplicity and regularity for sub-Riemannian geodesics by variational methods. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/f142b0be-a3b7-48d0-968a-43d54d86ca7a/1105977.pdf. Acesso em: 19 nov. 2024. , 2000
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2000). Existence multiplicity and regularity for sub-Riemannian geodesics by variational methods. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/f142b0be-a3b7-48d0-968a-43d54d86ca7a/1105977.pdf
    • NLM

      Giambó R, Giannoni F, Piccione P. Existence multiplicity and regularity for sub-Riemannian geodesics by variational methods [Internet]. 2000 ;[citado 2024 nov. 19 ] Available from: https://repositorio.usp.br/directbitstream/f142b0be-a3b7-48d0-968a-43d54d86ca7a/1105977.pdf
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Existence multiplicity and regularity for sub-Riemannian geodesics by variational methods [Internet]. 2000 ;[citado 2024 nov. 19 ] Available from: https://repositorio.usp.br/directbitstream/f142b0be-a3b7-48d0-968a-43d54d86ca7a/1105977.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA DE GEODÉSICAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio e PICCIONE, Paolo e TAUSK, Daniel Victor. Morse theory for the travel time brachistochrones in stationary spacetimes. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/d7bacc0e-5e93-4561-b671-efc08d44f34e/1095519.pdf. Acesso em: 19 nov. 2024. , 2000
    • APA

      Giannoni, F., Piccione, P., & Tausk, D. V. (2000). Morse theory for the travel time brachistochrones in stationary spacetimes. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/d7bacc0e-5e93-4561-b671-efc08d44f34e/1095519.pdf
    • NLM

      Giannoni F, Piccione P, Tausk DV. Morse theory for the travel time brachistochrones in stationary spacetimes [Internet]. 2000 ;[citado 2024 nov. 19 ] Available from: https://repositorio.usp.br/directbitstream/d7bacc0e-5e93-4561-b671-efc08d44f34e/1095519.pdf
    • Vancouver

      Giannoni F, Piccione P, Tausk DV. Morse theory for the travel time brachistochrones in stationary spacetimes [Internet]. 2000 ;[citado 2024 nov. 19 ] Available from: https://repositorio.usp.br/directbitstream/d7bacc0e-5e93-4561-b671-efc08d44f34e/1095519.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA SIMPLÉTICA, GRUPOS DE LIE, GEOMETRIA DE GEODÉSICAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio et al. A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/1c513aa0-fa31-47ee-a538-c5ca2356a7c1/1105922.pdf. Acesso em: 19 nov. 2024. , 2000
    • APA

      Giannoni, F., Masiello, A., Piccione, P., & Tausk, D. V. (2000). A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/1c513aa0-fa31-47ee-a538-c5ca2356a7c1/1105922.pdf
    • NLM

      Giannoni F, Masiello A, Piccione P, Tausk DV. A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry [Internet]. 2000 ;[citado 2024 nov. 19 ] Available from: https://repositorio.usp.br/directbitstream/1c513aa0-fa31-47ee-a538-c5ca2356a7c1/1105922.pdf
    • Vancouver

      Giannoni F, Masiello A, Piccione P, Tausk DV. A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry [Internet]. 2000 ;[citado 2024 nov. 19 ] Available from: https://repositorio.usp.br/directbitstream/1c513aa0-fa31-47ee-a538-c5ca2356a7c1/1105922.pdf
  • Unidade: IME

    Assunto: RELATIVIDADE (GEOMETRIA DIFERENCIAL)

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio e MASIELLO, Antônio e PICCIONE, Paolo. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/c244782c-04f6-401e-aa53-761d3d412a46/975511.pdf. Acesso em: 19 nov. 2024. , 1997
    • APA

      Giannoni, F., Masiello, A., & Piccione, P. (1997). A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/c244782c-04f6-401e-aa53-761d3d412a46/975511.pdf
    • NLM

      Giannoni F, Masiello A, Piccione P. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results [Internet]. 1997 ;[citado 2024 nov. 19 ] Available from: https://repositorio.usp.br/directbitstream/c244782c-04f6-401e-aa53-761d3d412a46/975511.pdf
    • Vancouver

      Giannoni F, Masiello A, Piccione P. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results [Internet]. 1997 ;[citado 2024 nov. 19 ] Available from: https://repositorio.usp.br/directbitstream/c244782c-04f6-401e-aa53-761d3d412a46/975511.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024