Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles (2018)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.1007/s00526-018-1394-y
- Subjects: GEODÉSIA; GEOMETRIA DIFERENCIAL
- Language: Inglês
- Imprenta:
- Source:
- Título: Calculus of Variations and Partial Differential Equations
- ISSN: 0944-2669
- Volume/Número/Paginação/Ano: v. 57, n. 5, p. 1-26, 2018
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
GIAMBÓ, Roberto e GIANNONI, Fábio e PICCIONE, Paolo. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles. Calculus of Variations and Partial Differential Equations, v. 57, n. 5, p. 1-26, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00526-018-1394-y. Acesso em: 10 jan. 2026. -
APA
Giambó, R., Giannoni, F., & Piccione, P. (2018). Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles. Calculus of Variations and Partial Differential Equations, 57( 5), 1-26. doi:10.1007/s00526-018-1394-y -
NLM
Giambó R, Giannoni F, Piccione P. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles [Internet]. Calculus of Variations and Partial Differential Equations. 2018 ; 57( 5): 1-26.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1007/s00526-018-1394-y -
Vancouver
Giambó R, Giannoni F, Piccione P. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles [Internet]. Calculus of Variations and Partial Differential Equations. 2018 ; 57( 5): 1-26.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1007/s00526-018-1394-y - Multiple brake orbits in m-dimensional disks
- On the normal exponential map in singular conformal metrics
- Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Maslov index and Morse theory for the relativistic Lorentz force equation
- On the number of solutions for the two-point boundary value problem on Riemannian manifolds
- Maximally-warped metrics with harmonic curvature
- On the Lie group structure of pseudo-Finsler isometries
Informações sobre o DOI: 10.1007/s00526-018-1394-y (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2897314.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
