Maximally-warped metrics with harmonic curvature (2020)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- Subjects: GEOMETRIA DIFERENCIAL; GEOMETRIA RIEMANNIANA; VARIEDADES RIEMANNIANAS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: AMS
- Publisher place: Providence
- Date published: 2020
- Source:
- Título: Geometry of submanifolds
-
ABNT
DERDZINSKI, Andrzej e PICCIONE, Paolo. Maximally-warped metrics with harmonic curvature. Geometry of submanifolds. Tradução . Providence: AMS, 2020. . . Acesso em: 09 jan. 2026. -
APA
Derdzinski, A., & Piccione, P. (2020). Maximally-warped metrics with harmonic curvature. In Geometry of submanifolds. Providence: AMS. -
NLM
Derdzinski A, Piccione P. Maximally-warped metrics with harmonic curvature. In: Geometry of submanifolds. Providence: AMS; 2020. [citado 2026 jan. 09 ] -
Vancouver
Derdzinski A, Piccione P. Maximally-warped metrics with harmonic curvature. In: Geometry of submanifolds. Providence: AMS; 2020. [citado 2026 jan. 09 ] - Multiple brake orbits in m-dimensional disks
- On the normal exponential map in singular conformal metrics
- Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Maslov index and Morse theory for the relativistic Lorentz force equation
- On the number of solutions for the two-point boundary value problem on Riemannian manifolds
- On the Lie group structure of pseudo-Finsler isometries
- On a product formula for the Conley-Zelmder index of symplectic paths and its applications
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
