Almost isometries of non-reversible metrics with applications to stationary spacetimes (2015)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.1016/j.geomphys.2014.12.001
- Subjects: GEOMETRIA GLOBAL; GEOMETRIA DIFERENCIAL; GEOMETRIA DE GEODÉSICAS
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Geometry and Physics
- ISSN: 0393-0440
- Volume/Número/Paginação/Ano: v. 89, p. 38-49, 2015
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
- Licença: publisher-specific-oa
-
ABNT
JAVALOYES, Miguel Ángel e LICHTENFELZ, Leandro Augusto e PICCIONE, Paolo. Almost isometries of non-reversible metrics with applications to stationary spacetimes. Journal of Geometry and Physics, v. 89, p. 38-49, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2014.12.001. Acesso em: 10 jan. 2026. -
APA
Javaloyes, M. Á., Lichtenfelz, L. A., & Piccione, P. (2015). Almost isometries of non-reversible metrics with applications to stationary spacetimes. Journal of Geometry and Physics, 89, 38-49. doi:10.1016/j.geomphys.2014.12.001 -
NLM
Javaloyes MÁ, Lichtenfelz LA, Piccione P. Almost isometries of non-reversible metrics with applications to stationary spacetimes [Internet]. Journal of Geometry and Physics. 2015 ; 89 38-49.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1016/j.geomphys.2014.12.001 -
Vancouver
Javaloyes MÁ, Lichtenfelz LA, Piccione P. Almost isometries of non-reversible metrics with applications to stationary spacetimes [Internet]. Journal of Geometry and Physics. 2015 ; 89 38-49.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1016/j.geomphys.2014.12.001 - Multiple brake orbits in m-dimensional disks
- On the normal exponential map in singular conformal metrics
- Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Maslov index and Morse theory for the relativistic Lorentz force equation
- On the number of solutions for the two-point boundary value problem on Riemannian manifolds
- Maximally-warped metrics with harmonic curvature
- On the Lie group structure of pseudo-Finsler isometries
Informações sobre o DOI: 10.1016/j.geomphys.2014.12.001 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
