Morse theory for geodesics in singular conformal metrics (2014)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.4310/CAG.2014.v22.n5.a1
- Subjects: ANÁLISE GLOBAL; TEORIA DE MORSE; GEOMETRIA DE GEODÉSICAS
- Language: Inglês
- Imprenta:
- Publisher place: Sommerville
- Date published: 2014
- Source:
- Título: Communications in Analysis and Geometry
- ISSN: 1019-8385
- Volume/Número/Paginação/Ano: v. 22, n. 5, p. 779-809, 2014
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Morse theory for geodesics in singular conformal metrics. Communications in Analysis and Geometry, v. 22, n. 5, p. 779-809, 2014Tradução . . Disponível em: https://doi.org/10.4310/CAG.2014.v22.n5.a1. Acesso em: 28 jan. 2026. -
APA
Giambó, R., Giannoni, F., & Piccione, P. (2014). Morse theory for geodesics in singular conformal metrics. Communications in Analysis and Geometry, 22( 5), 779-809. doi:10.4310/CAG.2014.v22.n5.a1 -
NLM
Giambó R, Giannoni F, Piccione P. Morse theory for geodesics in singular conformal metrics [Internet]. Communications in Analysis and Geometry. 2014 ; 22( 5): 779-809.[citado 2026 jan. 28 ] Available from: https://doi.org/10.4310/CAG.2014.v22.n5.a1 -
Vancouver
Giambó R, Giannoni F, Piccione P. Morse theory for geodesics in singular conformal metrics [Internet]. Communications in Analysis and Geometry. 2014 ; 22( 5): 779-809.[citado 2026 jan. 28 ] Available from: https://doi.org/10.4310/CAG.2014.v22.n5.a1 - Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Bifurcation of Constant Mean Curvature Tori in Euclidean Spheres
- Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index
- A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results
- A variational theory for hight rays on Lorentz manifolds
- Shortening null geodesics in Lorentzian manifolds: applications to closed light rays
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods
- Naked singularities formation in perfect fluid collapse
Informações sobre o DOI: 10.4310/CAG.2014.v22.n5.a1 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
