The arrival time brachistochrones in general relativity (2000)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- Subjects: GEOMETRIA DIFERENCIAL; ANÁLISE GLOBAL
- Language: Inglês
- Imprenta:
-
ABNT
GIANNONI, Fábio e PICCIONE, Paolo. The arrival time brachistochrones in general relativity. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf. Acesso em: 09 jan. 2026. , 2000 -
APA
Giannoni, F., & Piccione, P. (2000). The arrival time brachistochrones in general relativity. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf -
NLM
Giannoni F, Piccione P. The arrival time brachistochrones in general relativity [Internet]. 2000 ;[citado 2026 jan. 09 ] Available from: https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf -
Vancouver
Giannoni F, Piccione P. The arrival time brachistochrones in general relativity [Internet]. 2000 ;[citado 2026 jan. 09 ] Available from: https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf - Multiple brake orbits in m-dimensional disks
- On the normal exponential map in singular conformal metrics
- Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Maslov index and Morse theory for the relativistic Lorentz force equation
- On the number of solutions for the two-point boundary value problem on Riemannian manifolds
- Maximally-warped metrics with harmonic curvature
- On the Lie group structure of pseudo-Finsler isometries
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 1095415.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
