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ABSTRACT. We comider a general relativistic version of the classical brachis­
tochrone problem, whose sollllions are causal curves, parameteri7Ald by a constant 
multiple of their proper time and with 4-acceleration perpendicular to a given ob­
server field, that extmni7.e the arrival ti1M measured by an observer at the final 
endpoint. 'Ibis kind of brachistochronc presents cbaractcristics different from the 
travel ti1,u brachistochronu, that were studied in [8, 9, 10). In this paper we for­
mulate the variational problem in a general context; moreover., in the case of a 
statioDacy metric, we prove two variational principles and we detennine the second 
order differeona1 equation satisfied by the arrival time brachistochrone. Using these 
wriati.onal principles and techniques from Critical Point Theory we establish some 
results concmaing the cxisteDCe and the multiplicity of travel time bracbistochrones 
with a given energy between an C\'eJlt and an observer. 
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1. INTRODUCTION AND STATEMENT OP THE MAIN RESULTS 

The classical brachistochrone1 problem dates back to the end of the seventeenth 
century, when Johann Bernoulli challenged his contemporaries to solve the following 
problem. 

If in a vertical plane two points A and B are given, then it is required 
to specify the orbit AM B of the movable point M, along which it, 
starting from A, and under the influence of its own weight, arrives 
at B in the shortest possible time. Acta Enulitorum, June 1696 

This problem attracted the attention of many important mathematicians of the 
time, including Newton, Leibniz, L'H6pital, and Johann's brother, Jackob Bernoulli. 
The papers written on the subject may be considered the fundaments of a new field 
in mathematics, the Calculus of Variations. A beautiful historical exposition of the 
brachistochrone problem may be found in Reference [25), where the authors' thesis 
is that the brachistochrone problem also marks the birth of Optimal Control. 

Still now the classical brachistochrone problem is very popular, and its impor­
tance is witnessed by the fact that there is hardly any book on Calculus of Variations 
that does not use this problem as a takeoff point. The well known solution to the 
brachistochrone-problem is a cycloid, which is the curve described by a point Pon 
a circle that rolls without slipping. 

The cycloid curve was introduced by Galileo, who was actually the first scientist 
to fonnulate the brachistochrone problem several decades before Bernoulli, in his 
Discorsi e dimostraz.ioni matematiche intomo a due nuove scienze, of 1638. Curi­
ously enough, Galileo did not find the correct answer to the problem; apparently, he 
simply noticed that an arc of a circle joining A and B would give a faster travel time 
than the straight segment. 

Huygens had discovered another remarkable property of the cycloid: it is the only 
curve such that a body, falling under its own weight, is guided by this curve so as 
to oscillate with a period that is independent of the initial point where the body is 
released. For this reason, Huygens called this curve the tautochrone.2 

The classical brachistochrone problem has several generalizations. e.g .• the homo­
geneous gravitational field could be replaced with an arbitrary Newtonian potential, 
and instead of releasing the particle from rest one could prescribe an arbitrary value 
for the initial speed, leaving the initial direction of the velocity undetermined. 

In modem terminology, the Newtonian brachistochrone problem can be stated 
as follows. Given a manifold Mo endowed with a Riemannian metric 90, to be 
interpreted as the configuration space, and a smooth function V : Mo --. B, 
representing the gravitational potential, a brachistochrone of energy E > 0 between 

'from the peck: f3poxurr~bortest., XJlOll(K=bme. 

2rrom the gRCk. TOVT~=equal 01' same, and XJ>OI'~. 
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two points xo and x1 of Mo is a curve x : [O, T:i:] - M joining x0 and x 1 that 
extremizes the travel time Tx in the space of all unit speed curves y joining x0 and 
x1 and satisfying the conservation of energy law: 

(1.1) ~ g(x,x} + V(x} = E. 

(throughout this paper we will consider the motion of particles with unit mass) A 
well known variational principle states that a curve x joining x 0 and x 1 is a brachis­
tochrone of fixed energy E if and only if x is a geodesic with respect to the confonnal 
Riemannian metric q, E • go, with conformal factor q, E = ( E - v)- 1 • 

The first relativistic versions of the brachistochrone problem appear in [11) and 
[13). V. Perlick (see [20)) has determined the brachistochrone equation in a reg­
ular stationary Lorentzian manifold, i.e., in a time-independent split gravitational 
field according to general relativity, and Giannoni, Piccione and Verderesi in [10) 
have generalized Perlick's result to the case of a possibly non regular stationary 
Lorentzian manifold by reformulating the brachistochrone problem in the context of 
sub-Riemannian geometry. The variational principle proven in [10) was then used in 
[8] to prove some results concerning the existence and the multiplicity of relativistic 
brachistochrones with respect to the travel time, having fixed energy, between a fixed 
event and a fixed observer of a stationary spacetime. 

The general relativistic brachistochrone problems can be formulated on Lorentz­
ian manifolds in the following way. 

Let (M,g) be a 4-climensional Lorentzian manifold, i.e., an arbitrary spacetime 
in the sense of general relativity and fix a timelike smooth vector field Y on M. 
The integral curves of Y can be interpreted as the worldlines of observers. Please 
note that we do not require Y to be normalized, i.e., in general the worldlines of our 
observers are not parameterized by proper time. The reason is that in the stationary 
case, i.e., if (M, g) admits a timelike Killing vector field, it is convenient to choose 
this Killing vector field for Y and not a renormaliz.ed version of i~ that may fail to 
be Killing. 

To formulate the brachistochrone problem with respect to our arbitrarily chosen 
observer field Y, we fix a point pin M, a (maximal) integral curve "Y : El. 1--+ M 
of Y and a real number k > 0. The trial paths for our variational problem are all 
timelikc smooth curves u : [O, l] 1--+ M which are nowhere tangent to Y and satisfy 
the following conditions. 



(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 
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u(O) = p; 

u(l) E -y(.R); 

g(u(O), Y(u(O))) = -k ( - g(u(O),u(0))) 112
; 

g(Vau,u) = O; 

g(Vau, Y) = o. 
Here V denotes the Levi-Civita connection of the Lorentzian metric g. 

If we interpret each integral curve of Y as a "point in space", (1.2) and (1.3) mean 
that all trial paths connect the same two given points in space, where the starting 
time is fixed whereas the anival time is not Condition (1.4) says that all trial paths 
start with the same speed with respect to the observer field Y. By condition (1.5), 
the quantity To defined by - 7;,. 2 = g( u, u) is a constant for each trial path u (but 
takes different values for different trial paths). This implies that the curve parameter 
s along u is related to proper time T by an affine transformation, T = Tos + const. 
As a consequence, the 4-velocity along each trial path is given by To - 1u, whereas 
the 4--acceleration is given by Ta - 2v ;,.&. Hence, conditions (1.5) and (1.6) require 
the 4-acceleration to be perpendicular to the plane spanned by u and Y. In other 
words, with respect to the observer field Y there are only forces perpendicular to the 
direction of motion. Such forces can be interpreted as constraint forces supplied by a 
frictionless slide which is at rest with respect to the observer field Y. The quantity T,, 
will be called the trovel time of the curve u; the set of trial paths for our variational 
problem will be denoted with the symbol Bt,,.,(k). 

The two brachistochrone problems can now be formulated in the following way. 
The trovel time brachistochrones of energy k between p and -y arc those curves in 

Bt,,.,(k) for which the travel time is stationary. 
The arrival time brachi.stochrones of energy k between p and 'Y are defined to be 

the stationary points in Bt,,.,( k) for the arrival time functional, given by 

T(u) = -y-1(u(l)). 

In other words, T(u) is the value of the time of the receiver at the arrival event; this 
is the proper time if and only if Y is normalized along 'Y. In order for T to be well 
defined, we need to assume that 'Y does not have self-intersections, i.e .. that 'Y is 
injective. Observe that if one reparameterizes smoothly the curve 'Y, then clearly the 
values of the arrival time functional .,- are affected by this change; nevertheless, the 
stationary points of T do not depend on the parametcri:r.ation of 7 . . 

The arrival time functional was introduced by Kovner in [14], and its properties 
were further investigated for the study of causal geodesics in Lorentzian manifold by 
other authors (see e.g. [5, 191). 
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In physical terms, the two brachistochrone problems differ by the way of mea­
suring time: in the first case the time is measured by a watch traveling along the 
trajectory of the mass, in the second case the time is measured by the observer that 
receives the mass at the end of its trajectory. 

For a physical interpretation of our brachistochrone problem, the timelike vector 
field Y should be related to some observable quantities, i.e., Y should be co-moving 
with some bodies. For instance, if we are in the solar system and Y is comoving 
with the planets, the solutions to our brachistochrone problem will give worldlines 
of particles that minimize the arrival time time among all curves that have a fixed 
specific energy in the rest system of the planets. If Y is at rest with respect to the sun 
and to the distant stars, then the brachistochrones will be the world.lines of massive 
objects that minimiz.e the arrival time among all curves that have fixed energy in a 
reference system oriented at distant stars. 

It is also possible to return to the original interpretation of of the brachistochrone 
problem and think of the body guided by a frictionless slide, in which case Y is 
determined by being the rest system of the slide. 

If (M, g) is a stationary spacetime and Y is a Killing vector field, i.e., the flow of 
Y preserves the metric g, then the condition (1.6) means that the product g(iT, Y} is 
constant along a. The value of this constant can be easily computed using condition 
(1.4), that gives g(iT, Y) = -kT,,. Hence, in the stationary case, the conditions (1.4) 
and (1.6) can be resumed in the condition: 

(1.7) g(o-, Y) = -kT,,. 

The condition (1.7) is the relativistic counterpart of the energy conservation law in 
the Newtonian case. Although physically meaningful, the mathematical approach to 
the general relativistic brachistochrone problem in the non stationary case presents 
difficulties of higher order than in the stationary case. For instance, it is not even 
clear whether the non stationary brachistochrones are solutions to a second order 
differential equation; in Reference [21 ), the authors used a Lagrange multiplier tech­
nique to derive a system of differential equations for the travel time brachistochrones 
and for the Lagrangian multipliers. Unfortunately, it does not seem to be possible to 
eliminate the Lagrangian multipliers from the system without introducing integrals, 
unless in the stationary case. Thus, it looks as if the brachistocbrones in the non­
stationary case are not determined by a second-order differential equation, but rather 
by an integro-differential equation. 

The travel time brachistochrones in stationary manifolds have already been stud­
ied from a variational point of view, and the main results may be found in Refer­
ences [6, 8, 9, 10). This kind of brachistocbrones are characterized by the second 
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order differential equation: 

. 2k'¼ g('v'i;.Y, Y) (k. rr Y) _ o 
(1.8) V c;-o-+ g(Y, Y) V c;-Y + 2k g(Y, Y) (k2 + g(Y, Y)) o- - ~" - . 

In this paper we want to develop a similar theory for the arrival time brachis­
tochrones, in particular we determine the differential equation that characterizes the 
arrival time brachistochrones, and we give conditions that guarantee the existence 
and the multiplicity of brachistochrones of given energy between an event and an 
observer of a stationary Lorentzian manifold. 

Let's assume from now on that (M,g) is a stationary Lorentzian manifold. and 
that Y is a given timelike Killing vector field on .M. For all q E .M, we will 
denote by(·,·) the Lorentzian inner product in the tangent spaces T9M induced 
by the metric g. As it is natural to expect, in order to obtain existence results for 
brachistochrones, one needs to assume the completeness of .M with respect to some 
Riemannian structure which is related to our variational setup. To this purpose, we 
introduce an auxiliary Ricmannian structure on .M, denoted by 9a, defined by means 
of the timelike field Y as follows: 

.., (v, Y)2 
(1.9) 9a(v,v) = (v,v)(JI> = (v,v)-2 (Y,Y), 

for all tangent vector v E TM. The positive definiteness of 9a is proven easily using 
the wrong-way Schwartz's inequality satisfied by the Lorentzian inner products. It is 
easy to see that Y is Killing also in the metric ga; moreover, the restriction of g and 
9n on the orthocomplement of Y coincide. 

For all k E JR:+", we consider the open subset U1,. ~ .M defined by: 

(1.10) U1,. = { q e .M: (Y(q), Y(q)) + k2 > O }-

Since Y is Killing, then the quantity (Y, Y) is constant along each flow line of Y; it 
follows that U1,. is Y-invariant, i.e., U1c is invariant by the flow ofY. 

We have the following existence result for the arrival time brachistochrones: 
Theorem 1.1. Let (M,g) be a stationary Lorentr.ian manifold, Y be a timelilce 
Killing v~ctor juld on M and k E .n.+ be a fixed positive constant. Let p be a fixed 
point in U1,. and"( : R 1-+ U1,. be a maximal integral line ofY, which is assumed to 
be injective. 

Suppose that the /of/owing hypotheses an satisfied: 
(1) -k2 is a regular value for the function (Y, Y) on M; 
(2) Y is bounded away from 0, i.e., there exists a positive constant 11 > 0 such 

that: 

(1.11) 0 < 11 $ -(Y(q), Y(q)), Vq E U1c; 
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(3) the closure U 1e = U1e U 0U1e is complete with respect to the Riemannian 
metric gR; 

(4) p ¢ -y(JR). 

Then, there exists at least one arrival time brachistochrone of energy k between p 
and-y. 

If the topology of U1e is non trivial, then we can prove the existence of arrival time 
brachistochrones of arbitrary large arrival time: 

Theorem 1.2. Under the hypotheses of Theorem 1.1, if U 1e is not contractible, then 
there exists a sequence of arrival time brachistochrones { u n }ne.N in Bt,-r ( k) such 
that: 

(1.12) 

Theorem 1.2 is the analogue of Serre's Theorem (Ref. [23)) concerning the mul­
tiplicity of geodesics joining two fixed points in a complete, non contractible Rie­
mannian manifold. 

We outline briefly the structure of the paper. 
In Section 2 we give the basic definition and properties of our functional setup. 

and we prove the existence of an infinite dimensional differentiable structure for the 
brachistochrone variational problem. 

In Section 3 we prove the regularity of the solutions of our variational problem, 
and we give a characterization of the arrival time brachistochrone in terms of a sec­
ond order nonlinear differential equation. 

In Section 4. we introduce a sort deformation map which plays the role of a spatial 
projection ( observe that we do not assume any topological space-time splitting on the 
Lorentzian manifold ( M, g) ), which is used to prove a first variational principle for 
brachistocbrones. Such principle relates the arrival time brachistochrones of a given 
energy k to the local minimi:rers of a Lipschitz functional, denoted by 7l:, defined on 
the set of curves that are horizontal with respect to the orthogonal distribution of Y. 
The functional 7l: lacks smoothness. Moreover, it is invariant by reparameteri7.ation. 
which means that the set of its critical points, i.e., minimizers for a set of curves 
joining events and integral curves ofY sufficiently close, is acted upon by the infinite 
dimensional group of diffeomorphism of the interval (0, 1). Then it is quite hard to 
study with global variational techniques. 

Under this point of view, it appears an evident analogy with the problem of light­
like geodesics in stationary manifolds. In reference (4). under the assumption of 
space-time splitting for the stationary metric g, the authors prove a Fermat princi­
ple for lightlike geodesics, which reduces the null geodesic problem to the study of 
critical points of a smooth functional defined on the set of spatial curves. Such func­
tional, which is not invariant by reparameterization, can be obtained from the arrival 



THE ARRIVAL TIME BRACHISTOCHRONES IN GENERAL RELATIVITY 8 

time functional by interchanging the position of a square root and an integral sign 
of a suitable Riemannian metric (see formulas (4.5) and (5.2)). 

In order to overcome the problems of the lack of regularity for TJc and its parame­
terimtion invariance, using the same artifice employed in reference [4], in Section 5 
we prove a second variational problem for arrival time brachistochrone of a given en­
ergy k with the introduction of a smooth functional, denoted by G,., defined on the 
set of horizontal curves, and which is not invariant by reparameterization. We prove 
the existence of a bijection between the set of critical points of G,. and the set of 
critical points of TJc that are parameterized in such a way that a suitable conservation 
law is satisfied. Thanks to this principle, we reduce the proof of Theorems 1.1 and 
1.2 the the proof of analogous results of existence and multiplicity of critical points 
of the smooth functional G,.. The situation here is very different from the travel time 
brachistochrones, where the problem was reduced to the search of geodesics in a 
convex subset of a suitable Riemannian metric (see [8, 101). 

To prove the existence of critical points for G1c, we use well known techniques 
from Critical Point Theory. Under the assumptions of Theorem 1.1, the functional 
G,. does not satisfy the Palais-Smale compactness condition, because of the presence 
of the boundmy 8U1r. To deal with this problem, we use a penalization technique 
which was introduced to study unidimensional variational problems in manifolds 
with convex boundary. In Section 6 we present this technique with the introduction 
of a family G1.,e of smooth functional, parameterized by a positive constant e, which 
approximate the functional G1r. as e - 0, that are bounded from below and that sat­
isfy the Palais--Smale condition. In Section 7 we prove some a priori estimates on 
the critical points of the penalized functionals G1.,e, and we prove Theorem Li. Fi­
nally, in Section 8, we obtain a Ljustemik-Schnirelman theory for the critical points 
of G1c by a limit process that involves the estimates proved in Section 7, and that will 
yield the proof of Theorem 1.2. 
In Appendix A we discuss the abstract theory in the particular case of the Schwarz­

schild metric. Here. it appears a remarkable difference between the travel time and 
the arrival time brachistochrones. Namely, thanks to a suitable convexity property. 
the hypothesis of Theorem 1.1 are satisfied in the Schwarzschild spacetime. so that 
every event p and every observer 'Y can be joined by a travel time brachistochrone 
of energy k, for any positive value of k. On the contrary, due the presence of the 
events horizon, there are pairs (p, 'Y} that cannot be joined by any travel time brachis­
tochrone (see (20]). 

For the basic geometric notions used in this paper we refer to standard textbooks 
of semi-Riemannian geometry, like for instance (1, 17]; the classical books [l, 12, 
17, 22) provide excellent references for the background physical knowledge assumed 
in this paper. 
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2. THE FuNCTIONAL FRAMEWORK 

Throughout this paper we will denote by (M, g) a stationary Lorentzian mani­
fold, with g a Lorentzian metric tensor on M, and Y is a smooth timelike Killing 
vector field on M. 

Moreover, we will assume throughout the paper that the hypotheses l, 2, 3 and 
4 of Theorem 1.1 are satisfied by (M,g), Y, k, p and -y. The role of each single 
hypothesis in the proof of our results will be pointed out at every occurrence. 

The symbol ( ·, ·) wiU denote the bilinear form induced by g on the tangent spaces 
of M; the usual nabla symbol V will denote the covariant derivative relative to the 
Levi-Civita connection of g. Given a smooth function </> on M, for q E M we 
denote by V </>( q) the gradient of</> at q with respect tog, which is the vector in TqM 
defined by (V</>(q), •) = dq,(q)( • ]; the Hessian H~(q) of¢ at q is the symmetric 
bilinear form on TqM given by H~(q}(v1,112] = (Vv1 V¢, v2), forv1,1'2 E TqM. 

The Killing property of Y, which is crucial in most of the results presented in this 
paper, will be used systematically in our computations through the following two 
facts: 

(1) the quantity (Y, Y) is constant along each flow line of Y, 
(2) (VvY,w) = -(V-,Y,v) for all pair of vectors v and w; in particular, for 

all v E TM, itis (V11Y,v) = 0. 

Observe the i;cc::ond condition above is in fact equivalent to the Killing property of 
Y (see [17, Proposition 9.25]). Moreover, since the open set U• is invariant by the 
flow ofY and Tl• is 9a-complete, it follows that Y is complete in U1c, i.e., the flow 
lines of Y in U 1c are defined over the whole real line. 

We set: 

m=dim(M); 

the physical interesting case is m = 4. 
Given any two smooth manifolds M 1 and M 2 , possibly with boundary, and an 

integer n E N, we denote by C'"(M1, M2) the set of all maps of class C'" be­
tween M 1 and M 2 • As customary, for 1 ~ q ~ +oo, L9 {[0, 1], JR) will denote the 
space of Lebesgue q-integrable real functions; for n E Jll, Hn([O, 1],.R) will de­
note the Sobolev space of functions of class cn-1 and having weak n-th derivative 
in L2([0, 1], JR). 

For all q ~ 1, we define the spaces Lq([O, l], TM) of q-integrablc TM-valued 
functions: 
(2.1) 

Lq([O, 1), TM) = { (: (0, 1} ......._.TM measurable: fo1 

({(t), ((t)}! dt < +oo }· 
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The set £00([0, 1), TM) is defined similarly: 

£00 ([0,1),TM) = {(: [0,1) ..-TM measurable: ((,()ia> E L00 ([0, 1),JR) }· 

Let 1r : TM -..+ M be the canonical projection. Given any curve c, : J ~ 
B 1--+ A, a vector field along O' is a map ( : J -..+ TM such that 11' o ( = o-. Let 
A be any open set of M; for all j E Ev and all 1 ~ q ~ +oo we define the Sobolev 
space Wi,9([0, 1), A) as: 

(2.2) 

Wi•9((0, 1), A) = { u E ci-1((0, 1), A) : vi-1
0- is absolutely continuous and 

vtu E L9 ([0, 1), A)}; 

we set: 

(2.3) 

It is not too difficult to prove that the definition of the spaces Wi•9{(0, 1), A) does 
not indeed depend on the choice of the Riemannian metric !ho that appears in for­
mula (2.1). As a matter of fact. w;,t([O, 1], A) can be defined intrinsically for any 
differentiable manifold A using local charts (see [181) or, equivalently, using aux­
iliary structures on A, like for instance a Riemannian metric. The definition of the 
spaces Wi•9 ([0, 1), TM) is given similarly. 

If A is a smooth submanifold of M, in particular if A is an open subset, then 
H 1{[0, 1], A) has the structure of an infinite dimensional Hilbertian manifold. mod­
eled on the Sobolev space H 1([0, l),B"'); for u E H 1([0, l], A). the tangent space 
TO'H1([0, l], A) can be identified with the Hilbert space: 

(2.4) TO'H1([0, 1],A) = { ( E H 1{[0, 1], TM): ( vector field along u }. 

The inner product in TO'H1((0, l], A) is given by: 

(2.5) ((,(}. = fo1 

(((,()(It,+(~(, ~()<a>) dt. 

Note that, if we require ((0) = 0 in TO'H1 ([O, l], A), then the inner product (2.5) is 
equivalent to: 

(2.6) ((, ()o = /
1 

(~(, ~() dt. Jo (It) 

Recalling the definition of the open set U1c given in (1.10), where k is a fixed 
positive constant, we now choose an event p E U1c and 'Y : B 1--+ U1c a maximal 
integral line of Y whose image does not contain p. We introduce the space: 

(2.7) n~~ = { w E H 1([0, 1), U1c) : w{O) = P, w(l) E -y(.R) }; 
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it is well known (see [18]) that n~~ is a smooth submanifold of H 1([0, l}, Uk), 
For w E ni~~. the tangent space T,.,!l~~~ is identified with the Hilbert subspace 

ofTwll1((0, l],Uk) given by: 

(2.8) T111!l~~ = { ( E T111H1([0, l], Uk) : ((0) = 0, ((1) E JR· Y(w(l)) }· 

Given any absolutely continuous curve w: [a, b] i------+ M with tiJ E L1((0, l], TM), 
and any continuous vector field V along w, the covariant integral of V along w is an 
absolutely continuous vector field V along w, denoted by: 

(2.9) V(t) = I' V 

which is (uniquely) determined by the conditions: 

(2.10) V(a)=O and VwY.=Va.e.on[a,b]. 

In local coordinates, the covariant integral of V along w is obtained as the solution 
of a first order liner differential equation that involves the Christoff el symbols of the 
metric g, which are smooth functions, evaluated at the points of w. It is easy to see 
that, if w is a curve of class H 1 and V is continuous, then V is a vector field of class Hl. . . 

We consider the arrival time functional T on n~~~. given by: 

(2.11) r(w) = -y-1 (w(l}). 
Observe that T is well defined because ; is assumed to be injective, by the causality 
of M. The value of the functional T at a given curve may be interpreted physically 
as the time measured by an observer at the final endpoint of the trajectory of w. 

We have the following easy regularity result for r: 

Lemma 2.1. The functional Tis smooth on 0~~~- For w E 01~~ and ( E T,.,0~~. 
the Gateaw: derivative dr(w)[(] is given by: 

(((1),Y(w(l))) 
(2.12) dr(w)[(] = (Y(w(l)), Y(w(l))). 

Proof. Let w e n~.~ and ( E T,.,n~.~ be fixed. Lets i------+ w. be a smooth variation 
of w with variational vector field (, i.e., s i------+ w • is a smooth map from } - e, e [ to 
n~~. withe> 0, with Wo =wand f.l.=0w• =(.It is: 

(2.13) -y(r(w.,)) = w.,(1), Vs E] - e,e [. 

Differentiating (2.13) with respect to sand evaluating at s = 0, since i'(r(w)) = 
Y(w(l)), we get: 

(2.14) dT(w)[(} · Y(w(l)) = ((1). 



THE ARRIVAL TIME BRACHJSTOCHRONES IN _GENERAL RELATIVlTY 12 

Formula (2.12) follows easily from (2.14), keeping in mind that (Y, Y) i- 0. Ob­
serve that (2.12) defines a smooth function in(, because the evaluation at the point 
1 is smooth. It follows that T is smooth and we are done. D 

We now introduce formally the space of candidates for our variational problem, 
which is defined by: 
(2.15) 

~~;(k) = { u En~~ : 3'7u > o such that (o-, Y} = -k'Tu and (o-, u) = -~ 2 
}· 

Observe that o- is only defined as an L2-function; therefore, (o-, Y) = -k'Icr and 
( o-, o-) = -'Ia 2 are to be interpreted as almost everywhere identities. In order to 
avoid bothering the reader, in the rest of the paper we will omit to emphasize such 
remarks and we will tacitly mean almost everywhere equalities whenever necessary. 

Due to the presence of the double constraint. it is not clear whether si~~(k) is a 
smooth submanifold of ni~~- Nevertheless, we can prove that B~~~(k) admits a dense 
open subset. denoted by ~~(k), which has the structure of a smooth submanifold 
of0~1

.~. 

Proposition 2.2. There uists ·an open dense subset ~~(k) of si:;(k) that has 

the struc~ of a 0 1 submanifold of O~~ The set ...ti~~(k) contains all the curves 
a E si:~(k) that an of class 01; moreover, if u E s~:;(k} is a curve of class C1, 

then the tangent space Ta...ti~~(k) is given by: 

(216) 

Ta~~(k) = { ( E TaO~~~: there exists Cc E JR such that (V,;.(,u) =~kc,, 

and (V v(, Y) - ((, VaY) =Cc}· 
Proof. We will show that, given a curve u E si:;{k) of class 0 1 , then there is an 
open neighborhood of u in si:;(k) which bas the desired structure. 

Let k E ,Hi" be a fixed constant; we consider the following map: 

(217) :F: O~~~ .-- L2([0, 1], JR) x L2([0, 1], E) 

given by: 

Observe that 1 + ~ < 0 in U le• 
\Y,YJ 
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Let C denote the subspace of £2([0, lj, JR.) given by all the functions which are 
constant almost everywhere, and let c- denote the open submanifold of C consisting 
of negative functions. It is easy to see that B1~~(k) = F-1(C- x {O}). 

It is not difficult to prove that :Fis a map of class 0 1 and that, for <1 E Bi~~(k) 
and VE Te1n1:~. the Gateaux derivative d:F(<1)[VJ is given by: 

d:F(u)[V] = 

(<v,v, Y)-(V, V,Y), 

(2.19) [(a, Y)((V,V, Y)-(V, V,Y)) + k2(V ,V,o-)] ( k2(o-,o-)., +1 r ½} 
Here we have used the fact that Y is Killing, thus ( iT, V v Y) = -(V, V;, Y). 

Let £2([0, l], JR.) denote the quotient space L2([0, l], JR)/C, which is naturally 
identified with the set of functions with null average in [0, l]: 

(2.20) L2([0, l],.R) = L2 ([0, 1],E)/C ~ {f E L2([0, l],JR): fo1 

f = 0 }-

Let Il : L2{[0, 1], JR) x L2 ([0, l], JR) i----+ £2([0, 1], JR) x L2([0, 1], JR.) be given by 
the quotient map on the first factor and the identity on the second factor. 

Let now u be a C1-curve in B~~;(k); then, the maps (u, Y), (u, Y}2 and (o-,u) 
are in C°{[O, 1],JR). To prove the Proposition we use the Inverse Mapping Theo­
rem (see [15]). According to this Theorem, there exists an open neighborhood of 
u in Bi~;(k) which is a smooth submanifold of n~; provided that the map :F be 
transversal over c- x {O} at u, i.e., if the composite map: 

(2.21) Il o d:F(<1): T6 0};1;~ i--.. £2{[0, l], JR.) x L2 ([0, 1],.R) 
is surjective. This amounts to saying that, for all h1 , h2 E L2([0, 1], .R) there exists 
a constant c E E such that the system of differential equations: 

(2.22) (V;, V, Y) - (V, V ;,Y) = h1 + c 
(2.23) (o-,Y)((V;,V, Y)- (V, V;,Y)) + k2(V;,V,o-) = h2 

has at least one solution V E T6 fi~;- Using the fact that ( o-, Y) is constant. we can 
rewrite (2.23) as: 

(2.24) (V;,V,a) = ha, 

where 
h _ h2 + 2k7;,(h1 + c) 

a - 2k2 
is in L2 ([0, 1), JR). 
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Let Z e 0 1((0, l], TM) be a vector field along u satisfying 

(2.25) (Y,Z) = o, and (Z,u)-# 0. 
To prove the existence of such a vector field Z, consider first the vector field along u 
given by u.1, which is the orthogonal projection of iT onto the distribution fl. = Y .l 
orthogonal to Y. Formally, we have: 

226) ·.l . (u,Y) y . k~ Y. 
( . " = " - (Y, Y) = u + (Y, Y) . 

Obviously, we have: 

(2.27) ( 
· l. . ) - _-r k2 + (Y, Y) -I- 0 
u ,u - ~" (Y,Y) r . 

Observe that q.l E 00, and it does not have the required 0 1-regularity. Now, let 
Z be any section of class 0 1 of fl. which is uniformly close to q-1, in such a way 
that ( Z, ii) -:ft 0 as well. For the approximation theorem, we can use a 0 1 parallel 
referential of A. along u, so that sections of fl. along u will be identified with curves 
in the Euclidean space, and standard approximation results apply. 

Observe in particular that. since (Z, u) is continuous, then ~Z, u)-1 
is a function 

in L00 ((0, lJ, JR). 
In order to solve equations (2.22) and (2.24), we set 

V = <p1Y + <p2Z, 

where '{)1, '{)2 E H 1 ([O, 1], R.) are to be determined. Observe that such a V belongs 
to T"01:~ provided that '{)1 and '{)2 satisfy the boundary conditions: 

(2.28) <p1(0} = 1P2(0} = 0, and 1P2(l) = 0. 

Since (Z, Y) = 0, equations (2.22) and (2.24) are translated into: 

(2.29) <p1 '(Y, Y) + 2y:,2(V vZ, Y) = h1 + c 

(2.30) -k7u<p1' + <i'2'(Z, ii)+ <i'2(V vZ, ii) = h3. 

We solve for 1.p1' equation (2.29) obtaining: 

(2.31) cp1' = (Y,Yf1 
(h1 +c-2<p2(VvZ,Y)]; 

substituting {2.31) in (2.30) gives: 

(2.32) cp2' + 0'{)2 = /3 + cD, 

where 
(Y, Y)(V1,Z,u) + 2k~(V1rZ, Y) a= -----=-...a.....-=-_,,,-,--,,....,_--~ 

(Z,u)(Y, Y) ' 
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and 

f3 = kTvh1 + ha(Y, Y) O = k'Ia _ 
(Z, o-)(Y, Y) ' (Z, u)(Y, Y) 

Observe that o and() are in £ 2((0, 1], JR), while {3 E £ 2([0, lj, JR). Thus, the unique 
solution l.{)2 of (2.32) satisfying l.{)2(0) = 0, given by: 

(2.33) l.{)2(t) = e- f~ a [1t {Jea + C 1t (}ea] 1 

is in H 1([0, 1),JR). Observe that(),/; 0 in (0, lj, and so J; fJea ¥, 0. In particular, 
there exists c E JR such that l.{)2 (1) = 0. 

Finally, 1{)1 can be chosen as the unique solution of (2.31) satisfying l.{)t(0) = 0. 
Observe that the right band side of (2.31) is in L2([0, 1], JR), so l.{)i E H 1 (I0, 1], B) 
and :F is transversal over c- at u. Hence, there exists an open neighborhood of u in 
Bi~~ ( k) which is a smooth submanifold of O~~-

By the Inverse Mapping Theorem, for u E Bi~~(k) of class C1, the tangent space 
TaB1~~(k) is identified with the kernel of the map Il o dr(u), which consists of the 
vector fields ( E Tan~~ such that d:F(u)[(] EC x {O}. 

Recalling (2.22) and (2.23), we have that ( E Tan~~ belongs to Tv81~~(k) if 
and only if there exists Cc E E. such that ( satisfies the equations: 

(2.34) (Va(, Y) - ((, VaY) = Cc, 
(2.35) -2k'IaCc + 2k2(V.;(,u) = 0. 

From (2.34) and (2.35) we easily obtain (2.16) and we arc done. D 

In 81~~(k), we can define the travel time functional T, given by: 

(2.36) T(u) = Ta. 
We now proceed to the formal definition of arrival time brachistocbrone. Observe 
that, since B1~~(k) is not a manifold, then we cannot define as brachistochrones the 
critical points of Tin ~~;(k). However, we can define minima for the arrival time 
functional in B1~;(k), without the need of a differential structure. 

If q is any point in U1c, we denote by -y9 the maximal integral line ofY through q. 
Moreover, if J = [a, b] ~ [O, 1] is any interval, and if q1 , q2 are any two points in U 1c. 

we define B~~>,,.,~ (k, J) as the space of curves i e H 1(J, U1c) such that i(a) = q1, 

i(b) e -y92 (E.). and satisfying (i, Y) = -k'Tt, (i,i) = -1{ for some'Tt e JR+. 
Remark 2.3. Observe that if u E B1~~(k), then, for every I = [a, b] ~ [O, 1], the 
restriction of <r to I is a curve in s<1(> ) (k, J). Due to the double constraint in v a ,'Yv(~) 

B1~~(k ). the converse of this statement does not hold in general, i.e., not every curve 
in F 1(> ) (k, J) is the restriction to J of some curve in B,,<1~(k). tr a ,'Yv<•> , , 
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To make this point clear, we consider the following simple but instructive exam­
ple. Let M = JR2 be endowed with the Minkowski metric given in the coordinates 
(x, y) by g = dx2 -dy2; let Y = /v be the chosen timelike Killing vector field, let 

'Y be the y-axis, k > 1, p = {-~, 0), and 

u(t) = (x(t), y(t)) = ((t - 1)\!k2 - 1, kt), 

t E [0, l]. Then, u E Bi~;{k) with 7;, = 1; consider the interval [a,b] = [½, l], so 

that 'Ycr(b) = 'Y and q = u(a) = (-½&"=1, !), 
An obvious calculation shows that every curve u E ~~;(k) passing through q 

at t = ½ is such that Tu = 1. Namely, if if = (x,y) is a curve in Bi~;(k), then 
y(t) = k Tut, and the passage through q at t = ½ implies Ta- = I. On the other 
band, one can easily construct curves in B~~~(k, [½, l]} with arbitrary large travel 
time, which proves the claim. 

A similar case is treated in Lemma 4.5 ahead. 

We can now define the localized minimizers for the arrival time functional: 

Definition 2.4. A curve u E 81~?,(k) is said to be a localized minimizer for the 
arrival time if, for all 0. $ a < b $ 1 such that b - a is sufficiently small, the 
restriction of u to the interval I = [a, b] is a minimum point for the arrival time 
functional T in the space B~la),..,.,<•> (k, I). 

A curve u is said to be an arrival time brachistochrone of energy k between p and 
'Y if it is a critical point of class C2 for the restriction of r to .AR~( k). 

We will show in Section 5 that the concepts of localized minimizer and critical 
point for the arrival time functional coincide. To prove this, we will use horizontal 
curves with respect to the orthogonal distribution of Y, which will allow to reduce 
the brachistochrone problem to the search of critical points for a functional subject 
to only one constrainL The main motivation for this approach is the lack of regu­
larity for the critical points of r on Bi~~(k); to realize this we discuss a simple but 
instructive example. 
Example 2.5. Let (M,g) be the four-dimensional Minkowski spacetime; i.e., M = 
E.3 x B and g = !Jo - ~. where !Jo = dxi + dx~ + dxi is the Euclidean metric 
in E.3• Let Y be the Killing vector field -lz;_, p = (0,0,0,0), -y(s) = (1,0,0,s), 
s e JR, and let k > 1 be fixed. · 

In this example, the set Bi~~(k) can be described explicitly as: 

B1:~(k) = {u =(x1,x2,X3,X4) E H1([0,1},R4): 

3~ > 0 such that:i:4 = k'To- and:i:~ +~ + :i:~ = (k2 -1)7;, 

x4(0) = 0, (x1,x2,xa}(0) = (0,0,0), (x1,z2,xa)(l) = (1,0,0) }· 
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We consider the curve uo E Bi:;(k) given by: 

{ 

(3t, 0, 0), 
u0 (t) = {2 - 3t, 0, 0) 

{3t - 2,0,0) 

~t E [~, il: 
~ftE]~, 3], 
1ftE)a,l]. 

Moreover, we set x4(t) = kTvt, where 7;, 
(uo(t),x4(t)) belongs to ~~;(k). 

= 3(k2 - 1)-½, so that u(t) = 

We claim that u has an open neighborhood in B1~~(k) which has the structure of 
a manifold of class C 1• To prove this, arguing as in Proposition 2.2, it suffices to 
show that, for every h E £2(!0, 1],JR), there exists c E Band { = (fa,{2,{a) E 
H 1([0, 1],B3) such that: 

9o(&o, {) = h + c, {(0) = {(l) = 0. 
A direct computation gives the following solution for the problem above: 

~(t) = (.X(t), o, 0) 
with 

½ J;(h{r) + c)dr, 
½ J;13(h(r) + c) dr - ½ J:13(h(r) + c) dr, 
½ J;13 h(r) dr - ½ J1

2j; h(r) dr + ½ J;1a(h(r) + c) dr, 
and the constant c is given by: 

c = -9 (1¼ h(r) dr - /4* h(r) dr + /41 

h(r) dr) . 
Now, the arrival time T of a is easily computed as: 

if t E [O, ½h 
ift E]i,j]; 
ift EH, 1], 

r(u) = 11 
x4{t) dt = kTv = k 11 

J x1{t)2 + x2(t)2 + ±a(t)2 dt. 

Then, u is a critical point for -r in si~;(k) if and only if the following condition is 
satisfied: 
(2.37) 

fo1 
g0 (o-o, {) dt = 0, V { of class C 1 with {(0) = {(1) = 0 and 90(0-0, {) constant; 

in other words, O' is a critical point for Tin si~;(k) if and only if given any e of class 
C 1 with e(O) = e(1) = 0 and such that go(&o, t) is constant, then the value of such 
constant is zero. 

Now, if e = ((1, {2, { 3) is any map of class C 1, the condition 90(110, {) constant 
is satisfied if and only if (o = 0. Therefore, 90 ( &o, {) = 0, so that (237) is satisfied 
and u is a non smooth critical point of Tin B::,~(k). 
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This example shows that we cannot expect to have regularity results for the critical 
points of r, if we work directly in B1~~(k). 

To introduce the set of horizontal curves, we denote by ll. the smooth distribution 
on M given by the orthocomplement of the vector field Y. Observe that, since Y is 
timelike, the wrong way Schwartz's inequality implies that a is spacelike, i.e., the 
restriction of the Lorentzian metric g on ll. is positive definite. 

Let ,p : A ~ M be the flow of Y defined on the open subset A of M x .R, 
i.e., for q e Mandt E JR such that (q, t) e A, t/J(q, t) is the value -y9{t), where "'(9 

is the maximal integral line of Y satisfying ')'9 (0) = q. As we have observed, Y is 
complete in U1c, which implies that the open set A contains the product U1c xB. Since 
Y is Killing, then "1(·, t) is a local isometry for all t E .ll.; moreover, it is easy to see 
that the distribution ll. is t/J-invariant, which means that t/Jz(q, to)(ll.9) = /l.,p(q,to)• 
where t/J~ ( q, t0) denotes the differential of the map ,p( •, t0) at the point q. A function 
tJ, : M .__ B is said to be Y-invariant if it is constant along the flow lines of Y; if 
,p is C1, this amounts to saying that (Y, V 4>) = 0. 

We define 01~;(A) to be the subset of 01~; consisting of curves with tangent 
vector at each point lies in A: 

(2.38) 0~.~(ll.) = { w E 01~~ : tb(t) E li.;(t), Vt E [O, 1) }· 

Using the language of sub-Riemannian geometry, we will call horizontal the curves 
in 01~~- By the same arguments of Proposition 2.2, one checks immediately that, 

since (Y, Y) is never vanishing, o;:;~(/i) is a smooth submanifold of01~;. and that, 
for w E n~;(li}, the tangent space T,.,01~;(A) is given by: 

(2.39) TwO~~(/i) = { V E T11101~~ : (V w V, Y) - (V, V wY) = 0 }-

The set O~;(ll.) is closed in O~~ with respect to the metric (2.6); namely, if {wn}n 
is a sequence in 01~;(/i) that converges to a curve w in 01~;. then, since tb{t) 
is pointwise limit ahnost everywhere of tbn(t), it is (w(t), Y(w(t))) = 0 almost 
everywhere, and w E oi~~{A). 

Observe that, due to the presence of the boundary 8U1c, the manifolds 01~~ and 
oi~(/i) are not complete. Namely, if Zn is a Cauchy sequence in either of these 
spaces, then Zn converges to a curve z whose image may contain points of au.,,. 

3. THE ARRIVAL TIME BRACHISTOCHRONE DIFFERENTIAL EQUATION 

The aim of this section is to characterize the arrival time brachistochrones in terms 

of a differential equation and suitable initial conditions. 
We start with the following easy observation, that follows immediately from 

Lemma 2.1 and the definition of arrival time brachistocbrone: 
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Lemma 3.1. A curve u E ~.~( k) of class C2 is an arrival timt! brachistochrone of 
energy k between p and -y if and only if, for all ( E TjT~~~(k), it is ((1) = 0. 0 

Based on this fact, we can now prove the following: 

Proposition3.2. Let k > 0 be fixed. A curve u: [O, 1] - Uk of class C 2 joining p 
and -y is an arrival time brachistochrone of energy k between p and -y if and only if 
u is a curve that satisfies the second order differential equation: 

(3.1) 
. 21;,. 2 (VuY,Y) . 

V uu - TV uY - k k2 + (Y, Y) (ku - TjT Y) = o, 
and whose initial tangent vector &(O) is timelike, future pointing and it satisfies the 
condition: 

(3.2) 

Proof. We start proving that a curve <1 that satisfies the equation (3.1) and the ini­
tial condition (3.2) belongs to Bi~~(k). Given such a <J, denote by 'Lr the quantity 
-k-1(0-(0), Y(u(O)), which is positive by definition; observe that (u(O), o-(0)) = 
-Tj12• 

We introduce the two functions p1 and P2 in C1 ([O, 1), JR) given by: 

(3.3) P1(t) = (a(t), Y(u(t))), and P2(t) = ½<a(t),&(t)). 

By construction, we have: 

(3.4) 

the curve u belongs to Bi~~(k) if and only if Pl and P2 are constant on [O, 1). To 
prove this, we multiply the differential equation (3.1) by Y and by i,, and we obtain 
the system of differential equation: 

(3.5) { Pl + ~ Pl + k T~ ~ = 0, 
P2 + 2~ />'l - f ~ Pl = 0, 

where~ is the function: 

(3.6) 

Then, an immediate calculation shows that the constant functions Pl = -kT~ and 
P2 = -½Ta 2 are the unique solutions of the system (3.5) with initial conditions 
(3.4), which proves that u E Bi~~(k). 

We now prove that a curve u E si~~(k) of class C2 is a critical point for the 
arrival time functional if and only if u satisfies (3.1). Observe that (3.2) is satisfied 
by every curve in Bi~~(k). 
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To this aim, given any u E Bi~;(k) of class 0 2 and any vector field V along 
u, with V e H1([0, 1), TM) and V(O) = V(l} = 0, we define a vector field 
( E TvB~;(k} by setting: 

(3.7) ((t) = V(t) + .\(t) · Y(u(t)) + µ(t) · CT(t}, 

where ,\ and µ are functions satisfying the boundary conditions: 

(3.8) .>.(O} = µ(O} = µ(1) = 0, 

and the differential equations: 

(3.9) .\' __ (v'c;, V, 1;,Y - ku) - (V, '1;, Va.Y) 
- '1;,(k2 + (Y, Y)) 1 

. (3.10) 
, c, (Y, Y)(V a-V, o-) + k1;,Cv 

µ = - k'l;, + '1;, 2(k2 + (Y, Y)} I 

where the function Cv is: 

Cv = (V a-V. Y) - (V, V ,;,Y), 
and the ~nstant c, is defined as: 

_ ~ /
1 (Y, Y}(V,;, V, o-) + kT.rCv 

c, - '1;, lo k2 + (Y, Y) dt. 

We observe that, using Lemma 3.1, a c2-curve u E Bi~;(k) is a critical point for T 

if and only if, for every ( = W + >. • Y vector field in Ta~~~(k), with W vector 
field along u of class H 1 such that W(0) = W(l) = 0, and.>. any function of class 
H 1 on (0, 1), it is .>.(1) = 0. Hence, the curve u is an arrival time brachistochrone if 
and only if .>.(1) = 0, which, using (3.9), is the same as: 

(3_11) /1 (V .. V,-ko-+7;,Y} -(V,T.rV .. Y} d _ 
lo k2 + (Y, Y) t - O, 

for all vector field Vof class H 1 along u such that V(0) = V(l) = 0. 
Integrating by parts the first term of (3.11) gives: 

/
1 

(V: ( kir-1;,Y ) TaV,;,Y ) 
(3.12) Jo 'V.. k2 + (Y, Y) - k2 + (Y, Y) dt = O, 

for all V. Hence, the Fundamental Lemma of Calculus of Variations implies that: 

(313) "· ( k&-1;,Y )- 7;,V,;,Y _ 0 
• v 

17 k2 + (Y, Y) k2 + (Y, Y} - 1 

which is equivalent to (3.1), and we are done. □ 
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If a E B~~~(k), we can reparameterize a using its proper time by setting: 

t 
z : (0, T,,] ...- U1c, z(t) = u(T,, ). 

Then, a curve z parameterized by proper time is an arrival time brachistochrone if 
and only if it satisfies the differential equation: 

(3.14) V·z-!V-Y-2 (VzY,Y) ·+~- (V.tY,Y) Y=O 
z k z k2 + (Y, Y) z k k2 + (Y, Y) ' 

and with initial tangent vector z(O) satisfying: 

(z(O), Y(z(O))) = -k. 

4. LOCALIZED MINIMIZERS OP THE ARRIVAL TIME 

Let k > 0 be fixed and let U1c be the open subset of M defined in (1.10). We 
introduce the following smooth functions '\II 1c : M ...- JR and </J1c : U1c ...- JR: 

(4.1) 
• 2 (Y(q), Y(q)) 

'\ll1c(q) = (Y(q), Y(q)) + k , and </,1c(q) = - (Y(q}, Y(q)) + k2 • 

Observe that ¢1c and 'P1c are positive in U1c; moreover, it is: 

au1c = q,; 1(0). 

1be assumption that k2 be a regular value for the function -(Y, Y) implies that the 
derivative of '\ll" is non vanishing on the boundary of U": 

d'\ll1c # 0 on 8U1c. 

Hence, 8U1c is a smooth submanifold of M. 
In order to state properly our variational principle, we introduce an operator 1J 

that deforms curves in O~~~ into horizontal curves using the flow ofY. 
Let 1) be the map: 

1) : {l(l) ...,_ {l(l) (/.:,,.) ,,,.., ,,,.., 
defined by 1J(u) = w, where 

(4.2) w(t) = 1/J(u(t),r,,(t)), 

and ra is the unique solution on [O, 1} of the Cauchy problem: 

(4.3) ra-(0) = 0, 
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namely, 

1t kT;,. 
ra(t) = o (Y, Y). 

Using the Killing property of Y it is easily checked that 'D is well defined, i.e., the 
maximal solution of (4.3) is defined on the entire interval [O, 1] and the corresponding 
curve w given by (4.2) is horizontal. 

The differentiability of 'D and a formula for the differential d'D is established in 
the next: 
Proposition 4.L The map 'Dis a smooth deformation ntract between the manifolds 

n~; and 01~;(a). 
Proof. The smooth dependence on a of the solution r" of (4.3) proves that 'Dis a 
smoothmap. 

To prove that 1) is a deformation retract, we consider the map 

H : 0~~ x [O, +oo] 1-+ 0~~ 

given by: 

(4.4) H( )(t) _ { 1/,(u(t), r), if r ~ r 17(t); 
u, r - 1/,(u(t), r"(t)), if r > ra(t). 

Such a map H is clearly continuous, and it is a homotopy between the maps H ( ·, 0), 
which is the identity on 01~;. and H(·, oo) = 'D. □ 

Remark 4.2 Observe that, by the last statement of Proposition 4.1, the spaces f21~; 
and 01~;(~) have the same homotopy type. 

We define the following functional on O~;{a): 

(4.5) 
/1 J t/J1c(w) • (tb,tb) 

Tk(w) = T(w) - k Jo (Y{w), Y(w)) dt. 

.obsecve that every curve w E 01~;(~) is spacelike, i.e., (tb, w) ~ 0 almost evecy­
wbere, and T,r is well defined in 01~;(~}. 

It is not difficult to prove that T/c is Lipschitz continuous in n1~;(a) and that it is 
differentiable at those points w for which the following condition is satisfied: 

(4.6) 3 ""' > 0 such that t/>1c(w)(w, tb) ~ ""' a.e. on (0, 1). 

By critical point of T1c we will mean a curve w that satisfies (4.6) and dT1c(w} = 
0. Observe also that T/c is invariant by reparameterizotions, and so is the space 
O~;(a). By that, we mean that if w E 01~;(~) is given and w0 is any repa­
rameteriwion of w of class H 1 on the interval [O, 1], then w0 E n1~;(~) and 
T/c(wo) = T/c(w). 
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In particular, given any w E n~~~(d) satisfying (4.6), there exists a unique repa­
rameterization w0 E n~~~(a) of w for which the quantity 'Pk( w0(t))( w0(t), w0(t))) 
is constant (positive) on [O, 1]. In the proof of the following Lemma we will see that, 
ifw E V(Bi~~(k)), then w is parameterized in such a way that 'Pk(w)(w,w) is 
constant (and positive). 

The maps r, 7l: and V are related by the following: 

Lemma 4.3. For all <T E 81~~ (k }, we have: 

(4.7) 7l: (V(u)) = r(u). 

Proof. Let u E Bi~~(k) be fixed and let Wu denote the curve V(u). We start with 
the following calculation, that relates the Riemannian length of Wu with the travel 
time 7;,: 

</>k(w,,}(tbu,W11) = 

= - k2 r(~:Y) (dz¢[&)+ ruY,dz1/i[&) + t 41Y) = 

(4.8) 
= - k2 r(~:Y) ((u,u) + 2ru(Y,u) + r!(Y, Y)) = 

(Y, Y) . . (&, Y/ 
= k2 + (Y,Y/(u,u)- (Y,Y)) = 

(Y, Y) ( 2 2 k2 
) T. 2 _ ( . . ) = k2 + (Y, Y) - Ta - 'Ta (Y, Y) = IT = - u' u 

Then, using (4.2), (4.3), (4.5) and (4.8), we compute easily: 

1
1 J tJ>k(W,r)(wu,W,r) 

TA:(Wu} = r(wv) - k 
O 

(Y, Y} dt = 

(4.9) = r(u) + rv(l) - k 11 

(:,;,) dt = 

= T(u) + k 11 
(::Y) dt - k 11 (;;r) dt = T(u), 

which concludes the proof. D 

The above Lemma explains the introduction of the functional 7};. However, in 
order to prove the results of existence and multiplicity, it turns out to be more con­
venient to use another functional denoted by Gk, constructed starting from 7l:, that 
will be introduced in Section 5. 
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Remark 4.4. Observe that, from (4.8) it follows that, if Wu = V(u) for some u E 

Bi~~(k}, then ¢k(wu)(wu,wu) is constant along w". Moreover, if w E n1~~(~) 
is such that cf>k(w)(w,w) is constant, then there exists u E Bj,~~(k} such that w = 
'D(u). To see this, one can introduce the following map: 

(4.10) 

given by: 

(4.11) 

where 

g • n<1> I----+ n(l) 
• P,'Y P,'Y' 

Q(w)(t) = ,P(w(t), hw(t)), 

ft J t/>1c(w(O)){w(O), w(o)} 
hw(t) = -k lo (Y, Y) dr. 

It is easy to check that if w E n1~~ ( ~) is such that t/,1c ( w) ( w, w) is constant, then 
Q(w) E 81:~(k) and t>(Q(w)) = w. In particular, t> gives a bijection between 
8<1> (k) and the set P,7 

{ w En~~: 4>,.(w)(w, ti,) is constant a.e. on (0, 1] }-

In order to define the concept of localized minimizer for the functional TJe we 
need to give a localked version of the space O~~~ (ti) and of the functional TJr.. This 
is done as follows. For z1, z:2 e Uk and I = [a, b] ~ [O, 1], we define the space 

n~!~7• 2 (ti, I) as 

0~!!7•
2 
(ti, J) = { w E H1(J, Uk) : w(a) = z1, w(b) E 'Yz2 (.JR), w horizontal}­

Recall that 'Yz denotes the maximal integral line of Y such that 'Yz (0) = z. 
Hw en~~(~) and I= [a,b] ~ [O, 1], then thercstrictionofw tol is an clement 

of n~lo),'Y.<•> (~, I). Conversely, we have the following simple Lemma: 

Lemma 4.5. Let q1,q:2 e Uk be such that there exists we n~~(ti) with w(a) = q1 
and w(b) = q:z for some O $ a $ b $ 1. Then setting I = [a, b], every curve 

u E ni!?.,.2 (ti, I) is the restriction to I of some curve w1 e n~~~(~). 

Proof. Given any u E sl<1> 91 ,,.,
92 

(k,J), let ro = ro(u) E B. be defined by the 
relation: 

1/J(w(b), ro) = u(b). 

Define w1 as follows: 

{ 

w(t), 
W1(t) = u(t), 

tJ,(w(t), ro), 

if t E [O,a]; 
ift E )a, b); 
ift e]b,l]. 
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Obviously, u = w1 lr To see that w1 E n~~~(.~). observe that w 1 is continuous, and 
since both w and u are of class H 1, then also w1 is of class H 1• Clearly, w1 {O) = p 
and w1(l) E "f(.IR). Finally, to check that (ti.11, Y) = 0 observe that (ti.I, Y) = 
(ti, Y) = 0, and that d:&t/J is an isometry. D 

The localized functional r1c{J) on ni!~,..
2 
(~, I) is defined by: 

_
1 1

b J¢1c(w)(w,w) 
r1i:(J)(w) = 'Yz2 (w(b)) - k ( ) dt. 

o Y,Y 

We can now define the local minimizers of TA: as follows. 

Definition 4.6. A curve w E n~M A) is a localized minimizer for the functional TJc 

if for every interval I = [a, b] ~ (0, 1] with a and b sufficiently close, the restriction 
wl1 isaminimumforthefunctional-r1c(I) inn<1

(>) (A,/). 
w a ,'Y-<•> 

By Lemma 4.3, we see immediately that the following result holds: 

Proposition 4.7. If u is a localized minimizer for r in B~~~(k), then w = Z>(a) is a 
localized minimizer for T1,: in n~~~{A). 

Conversely (see Remark 4.4), if w is a localized minimizer for Tk in n~~~(A) 
parameterized by ¢1c(w)(ti.1,ti.1) = const., then there exists a unique u E B1~~{k) 
which is a localized minimizer for -r in B~:~ ( k) and such that w = V( u ). □ 

Remark 4.8. Using Proposition 4.7, we could try to prove the existence results for the 
arrival time brachistochrones by proving the existence of smooth localized minimiz­
ers for the functional 'TA: in n~~~(a). Towards this goal, two main difficulties arise. 
In first place, the square root under the integral sign defining 'TA: {formula (4.5)) in­
volves many analytical difficulties. This problem will be solved by the introduction 
of a smooth functional G 1c in n~.~ (A), whose critical points are precisely the critical 
points of -r1; with a suitable parameteriratioo (see Section S). The second problem is 
the presence of the constraint given by the distribution A. In [8] the authors man­
aged to remove the constraint using the Killing property of Y and the fact that, in the 
case of the travel time bracbistochrones, the functional to extremize in O}:.;(A) was 
given by an integral of a ¥ -invariant function (cf. (8, Proposition 2.11]). In the case 
of the arrival time brachistochrones, the reduction to a variational problem in 01~~ 
is not possible. Indeed, the critical points of r in n~,; do not in general belong to 
n1~~(~). and the critical points of Tl,: in n1~;(~) are not critical points of -r inn~~-

We conclude this section by showing the following crucial property of the func­
tional 'fl:. 

Proposition 4.9. Assume that Y is a timelike Killing vector field satisfying (l.l 1). 
Then. for all c E B. there exists two constants D1 ( c), D2 ( c) > 0 such that, for all 
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w E O~~(.::l), the following lwlds: 
(4.12) 

r1c(w) ~ c 

Proof. Let w E {l~~~(.::l) be fixed; we use the local metric structure of a stationary 
Lorentzian manifold (see [7) for details), as follows. We cover the compact image 
of w, w([O, ll), with a finite number of open subsets U,, i = 1, ... , r, which are the 
domains oflocal coordinates (x1, ... ,x!n_11 fr) = (x',Oi), in such a way that the 
following conditions are satisfied: 

• there exists a partition O = ao < a1 < ... . < aT = 1 of (0, 1) such that 
w([ai, Oi-11} C u. for all i = 1, ... , r; 

• each coordinate map (x', fr) gives a diffeomorphism of u. with a product 
V. x J,, where V. is identified with a spacelike hypersurface in M and J, is 
an open interval in JR; 

• 91(w(0i-1)} = O; 
• in u,, the coordinate vector field fr. coincides with Y; 
• in Ui the metric g is independent of the variable Oi (because Y is Killing) 

and it is written in terms of the coordinates (xi, 9i) as: 

(4.13) g(x•,oi)[(S,0), (S, 0)] = (S,S) + 2(6i(x'),S) 0-/3(xi) 0 2
, 

where (S, 0) E TxV. x B. ~ T(x',B')M, 6' is a smooth vector field on V. 
and /j = -(Y, Y). 

In such a coordinate system, the product (Y, (8, 0)) is easily computed as: 

(Y, (8, 0)) = (6,(xi), 2) - /j(x') 0, 
hence, we have the following formula for the Riemannian metric ga: 

(4.14) 

9a(x', O')[(S, 0),(E, 0)) = 

= (E, 2) + /3(!•) (6,(x'),s)2 - 2(6,(x•),2) 0 + ,B(x') 0 2
• 

Since 'Y is an integral curve of Y, by our choice of the coordinate maps 8,, we can 
write (see (4.1) and (4.5)): 

(4.15) 

71:(w) = t 1°' /J, dt+ 
i=l a.-1 
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Since w is horizontal, we have: 

and therefore 

(4.16) 

observe that k2 - /J(x•) = (Y, Y) + k2 > O. 
Then, we compute 

1"k(w) = 

t (°' [(cSi(xi)~ x•) + ~ 
i=l la.-1 /3(x') /3(x') 

and, by (1.11), a straightforward calculation shows that the following inequalities 
hold: 

and 

Now, (4.12) is easily obtained by combining (4.14), (4.15) and (4.16). D 

Remark 4.10. The same argument of the proof of Proposition 4.9 shows that TJ. is 
bounded from below on n~~(.6.). 

5. A NEW VARIATIONAL PRINCIPLE 

For all k > 0, we denote by 0k the smooth function on M given by: 

(5 1) 8 ( ) 'Pk(q) l 
• k q = (Y(q), Y(q))2 = (Y, Y)(k2 + (Y, Y))' 
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where 'Pk was defined in (4.1). By (1.11), the functions tl>k and ek are bounded away 
from z.ero in Uk: 

II 4 
t/>k(q) ~ k2 > 0, 81c(q) ~ k2 > 0. 

Moreover, we consider the following functional on n~?y(A): 

(5.2) G,(w) = T(w) + k (J.' e,{w) • (w,w) dt) ½ 

In this case, since p <I. -y(JR) and ek > 0 in U1c, then the integral ft 81c(w) · 
(w,w) dt is strictly positive for all w E n~~!,(A), and so G is smooth. The trick 
of placing the square root outside the integral sign to obtain a smooth functional 
with the same critical points (cf. formulas (4.5) and (5.2)) was inspired by a result in 
[4], where the authors study lightlike rays between an observer and a source, which 
are obtained as the critical points of the arrival time in the space of lightlike curves 
joining an event and a timelike curve. 
Remark 5.1. By Holder's inequality, we have: 

1"k(W) $ Gk(w), Vw E n~~(A); 

and since 01c is bounded away from zero in U1c, for all c E R, we obtain the existence 
of a positive constant D(c) such that: 

(5.3) Gk(w) $ c ==> 

since we are considering horizontal curves, in the integral of (5.3) one could consider 
equivalently the Lorentzian product (w, w). 

Observe that G1c is bounded from below because -r1c is bounded from below on 
n~~!, (see Proposition 4.9 and Remark 4.10). 

The following Lemma plays a crucial role in the proof of the relations between the 
arrival time brachistocbrones of energy k and the critical points of G1c in O~!y(A): 

Lemma 5.2. Let w be a critical point of G1c in n~~~ (A). Then, w is a curve of class 
02, and there exists a positive constant Cw such that: 

(5.4) 01c(w)(w,w) = c; on [o, 1), 

and the following differential equation is satisfied: 

;"' ( 01c(w)Vww+ (V01c(w),w)w-½(w,w) vek(w))+ 

2 2(Y,VwY) 
- (Y. Y) V,;,Y + 2 Y = 0. 

I (Y,Y) 

(5.5) 
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Conversely, if w E fl1~;(A) is of class C2 and it satisfies (5.4) and (5.5), then w is a 
critical point of Gk in n~~; (A). 

Proof Let w be a critical point of Gk in O}:,;(A). Recalling formula (2.12), given 
any vector field ( E Twf21:;(A) of class C1, the derivative dGk(w)[(] is easily 
computed as: 

(5.6) 
_ (Y(w(l)),((1)) 

dGk(tD)[(] - (Y(w(l)), Y(w(l))) + 

+ J k 11 

(~(vek(w),()(w,w) + ek(w)(w, V,;,()) dt. 
J;e"(w)(w,w)dt 0 

Let V be a vector field along w, with V(O) = V(l) = 0 which is the restriction to 
w of a C00 vector field defined around w([O, 1]). By (2.39), the vector field ((t) = 
V(w(t)) - µ(t) · Y(w(t)) is in Twfl1~;(A) if and only if: 

(5.7) 

Setting 

we have: 

(5.8) 

() -1' (V,;,V,Y) - (V, VwY) d 
µ t - ( ) r. 

o Y,Y 

dGk(w)[V -µ · Y] = 

= -µ(l) + ;w fo1 

½(w,w)((V0k(w), V)-µ · (V0k(w),Y)) dt 

+ ;w fo1 

9k(w) · (w, VwV -µ'Y - µV..,Y) dt. 

Hwe set -\1:(s) = -(s2 + sk2)-1, we have 81: = Ak((Y, Y}), and 

(V0k(w),(} = 2,\~((Y, Y})(VcY, Y). 

Moreover, since Y is Killing, we have: 

(VyY, Y) = (V,;,Y,w} = O; 
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and, since w E 01~~(a), it is (w, Y) = 0. Then, we get 

(5.9) 

1
1 (V . V. Y) - (V. V · Y) 

dGk(w)[V - µ • YJ = - w ' ' w dt+ 
o (Y,Y) 

+ ;"' fu
1 

(~(w,w)(V0k(w), V) + 0,c(w)(w, Vwv)) dt. 

Since w is a critical point for Gk, then the above expression vanishes for all smooth 
vector field V such that V(0) = V(l) = 0. • 

Now, we use covariant integration along w (see formulas (2.9) and (2.10)), and, 
by the Fundamental Theorem of Calculus of Variations, it is easy to show that the 
vanishing of (5.9) for all V implies the existence of a parallel vector field Z of class 
H 1 along w, i.e., V wZ = D, such that: 
(5.10) 

y It V . y k (It ) k - (Y,Y) .... 
0 

(Y~Y) - 2c. 
0 

(w,w)V0k(w) + C., ak(w)tiJ = z. 

From (5.10), ~e obtain immediately that 0 A: ( w) • tiJ is a continuous vector field al~ng 
w; moreover, repeating the argument, since 0k(w) :/; 0, we prove that tiJ is of class 
c1. 

A straightforward integration by parts of (5.9) and a repeated application of the 
Fundamental Theorem of Calculus of Variations shows that, if w is a critical point 
of Gk, then it satisfies the differential equation: 

Vw ( (Y~Y)) + (;"';) + ;
111 

(½(w,tb}V0A:(w)-V.., (0k(w)w)) = 0, 

which is: 

(5.11) 

2VwY 
{Y,Y} 

_2 (-'-V_wY._, ____ Y).__·_Y + 
(Y,Y}2 

+ ;.., (½(w,tiJ)V0A:(w) -(V~"(w),tiJ)tiJ-81c(w)V..,tiJ) = 0. 

Since (VwY,tb) = (Y,tb} = 0, multiplying (5.11) by tiJ yields: 
(5.12) 

-½(ve,.(w),w)(w,w) - ek(w) (V..,w,w) = -½ :t (ek(w)(w,w)) = o. 
Formula (5.4) follows immediately from (5.12), and then (5.5) follows from (5.11), 
which concludes the first part of the proof. 
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Conversely, assume that w E n~~(.6.) is of class C2 and it satisfies (5.4) and 
(5.5). Then, w satisfies (5.11) and, arguing backwards, it follows that dGk(w)[(] = O 
for all ( E Twf2~~~(.6.) of the form 

(5.13) (=V-µ-Y, 

with Va vector field of class H1 along w such that V(O) = V{l) = 0. The con­
clusion follows easily from the fact that every vector ( E T111 n~~~(.6.) can be written 
in the form (5.13). Namely, if ( E Twn~~(.6.) is given and µ is any H1-function 

such that µ{O) = 0 and µ{1) = (((1), Y(w(l))) • (Y(w{l)),Y(w(l)))-
1

, then 
V = ( - µ • Y is the desired vector field along w that vanishes at the endpoints. D 

Remark 5.3. For the study of the arrival time brachistochrones, we need a way to 

pass from curves w satisfying: 

(5.14) <fot(w)(w,w) = Ew > O (constant) 

to curves w satisfying the condition: 

(5.l5) 81;:(w)(,i;, ti;)= E,,, > O (constant). 

This can be done by taking a reparameterization of w of the fonn: 

(5.16) ~ w(t) = w(,\(t)), 

where ,\(0) = 0, ,\(1) = 1 and: 

E- e (-)(:. :.) ¢k(w(,\)) (,\')2(. (,\) . (,\)) ;;, = k w w,w = (Y(w(,\)), Y(w(,\))) w ,w = 

= (Y(w(,\)f.'ir(w(,\))) (,\')
2

• 

• Then, ,\ must satisfy the Cauchy problem: 

,\
1 = - !: (Y(w(,\)), Y(w(,\))}, ,\(0) = 0, 

where E111 has to be chosen in such a way that ,\(1) = 1. Hence, we get: 

- ,\' r1 ,\' 
E,,, = -E,,, (Y(w(,\}), Y(w(.X))) = -Ew Jo (Y(w(.X)), Y(w(.X))) dt = 

1
1 dr 

= -Ew O (Y(w(r)), Y(w(r))) · 
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Thus, in order to (5.15) be satisfied, the function>. = >.w needs to satisfy the Cauchy 
problem: 

(5.17) A'= ([ (Y(w(r)~~(w(r)))) (Y(w(A}), Y(w(A})}, A(O) = 0. 

Observe that the unique solution of (5.17) satisfies ,\(1) = 1 and').' > 0 on [D, l]; 
notice also that the map from Bi~~(k) to { w E {l~~~(A) : w satisfies (5.15)} sending -<1 to 1'(<1) is bijective. 

The following theorem relates the brachistochrone cmves to the critical points of 
G1c. Let's consider the map 1) defined by (4.2), and, for all w E n~~~ satisfying 
(5.14), let 'Iii be given by (5.16), where,\ = ,\,i, satisfies (5.17). 

Theorem S.4. Let <1 E Bi~~(k) be fixed. The following statements are equivalent: 
(1) <1 is a localized minimizer for Ton Bi~~(k),· 
(2) 1>( <1) is a localized minimizer for 7l: on n~~~ (A); 
(3) VM is a localized minimizer for G1c on n~~(A); 
(4) ~ is a critical point for G1c on o,,~~(-6.); 
(5) <1 is an arrival time brachistochrone of energy k (namely, a C2-curve joining 

p and 'Y and satisfying (3.1} and (3.2)). 

Moreover, in the above situation, it is r(u) = 1'li(V(u)) = G1c(£{;)). 
To prove Theorem S.4 some preliminary results are given. 

Lemma S.S. If wo is a localized minimizer for 7l: on O}:.~(A), then there exists 
w e ni~~(A) localized minimizer for 1'li satisfying (S.14)(and 7l:(w) = -r(wo)J. 

Proofi We prove first that, if p and 'Y are sufficiently close, with p (/. -y(R), I = 
[a, b] C [D, 1] is sufficiently small and Wo is a minimii,er for 7l: on 01~~ ( A, J), then 
there exists w E f21~~(A, I} satisfying (5.14) and such that r(w) = r1c(w0 ). Towards 
this goal. we can use an open and relatively compact neighborhood U = V x ]a, ,8[ 
of wo([a, b]), as in the proof of Proposition 4.9. where the metric g has the form 
g[(S,0), {S, 8)) = (S,S) + 2(6(x'),3) 8 - /J(x') 02, for some smooth vector 
field 6 on the closure V of V and p is a smooth positive scalar field on V such that 
k2 - /3(x) > 0 in V. For each z E U, we write z = (x, 8), where x E V and 
iJ e ]a, P[. The horizontality ofa curve z(t) = (x(t), 9(t)) ((z, Y) = 0) is written 
as in (4.16). 

Ifwesetwo = (Xo,Oo) and (cf. (4.15) and (4.16)) 

1b [ (6(x),x) k /J(x) . . (6(x),x)2 ] 
7l:(x) = 

0 
P(x} + ,B(x) k 2 - ,8(x) (x,x) + k2 - /j(x) dt, 
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we only need to prove that, if Xo is a minimizer for Tk on the manifold: 

n1(V;Xa,Xb) = {x E H1([a,b], V}: x(a} = Xa, x(b) = Xb} 

where Xa and Xb are given fixed points in V, then there exists x E 0 1(V;Xa,xb} 
and c > 0 such that 

(5.18) k2 _\,(x) (.B(x)(i,i) + (&(x),i/) = c a.e., and r"(x) = rk(Xo)­

Denote by ( ·, ·) 1 the Riemannian metric in V given by: 

(s, s) i = k2 ~ /3 (.e(s, :s) + ( 6, :s) 2) , 
and, for each n E JN, let ..Xn : [a, b] 1-+ JR+ be the unique solution of the following 
Cauchy problem: 

{ 
~ = _1 (lb . /(X-0 X-0) +:. dt) 1 

b-a a V ' 1 
n / (-xo(>-n),Xo(>..n))

1
+¼ 

>-nW=Q . 

Observe that >-n is strictly increasing on [a, b] and >-n(b) = 1. 
We set Yn = Xo(-Xn). Since: 

(5.19) 

( .. ) 1 (lb ✓<· . ) 1 d) 2 

(-xo(>..n),Xo(>..n))l 
Yn, Yn 1 = (b _ a)2 a Xo, Xo 1 + ;; t (-xo(>..n), Xo(>.n) )

1 
+ ¼' 

the sequence y n is bounded in H1 , and so there exists y E 0 1 (V; Xa, :,q,) such that 

(5.20) Yn ..,__. y uniformly in [a, b], 

(5.21) 1b (Y,u'P) dt f--+ lb (y,cp) dt, Yep E L1 ([a,b],1Rm-l) 

(n:call that m = dim(M)). 
Note that. by the uniform convergence, we also have: 

lb (Yn,'P)
1 

dt t--+ lb (y,cp)
1 

dt, Vcp E L1([a,b},Rm-l), 

namely, y n is weakly convergent to y in £ 2 also with respect to the metric ( ·, ·) 1 • 

In particular, the above property is satisfied for all ip E L00([a, b}, nm-l ), hence 
(see (21), we obtain: 

(5.22) 1/J J(y,y)1 dt 5, lir~}nflb J(Yn,Yn}1 dt, V[a,,8] C [a,b]. 
a n oo a 
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. 
Since k/J(Yn)-1 

1--+ k/3{y)-1 uniformly and 

lb (o(yn),Yn) dt-..+ lb (o(y),y) dt, 
a /3(Yn} a /3(y) 

we get: 

TA:(Y} $ liminf TA:(Yn}-n-+oo 
But 7lc is invariant by reparameterizations, therefore TA:(Yn) = TA:(Xo}. Since Xo is a 
minim.irer, it must be TA:(Y) = TJ:(Xo). 

Now, by (5.19), we have: 
(5.23) 

J(Yn(t), Yn(t))1 S: b ~ a i" ✓ (io,i-0)1 +; dt ae. on [a, b], V n E :N. 

Combining (5.22) and (5.23), a simple contradiction argument shows that 

(5.24) {(y,y)1)½ $ b~aLb J(X-O,ico)1 dt a.e.on[a,b]. 

If it were 

✓<Y,Y)1 < b~a1" ✓<Xo,Xo)1 dt= b~a1" ✓<Yn,Yn)1 dt 

on a set of positive Lebesgue measure (recall that Yn = Xo(..\n}), then we would 
have: 

and therefore it should be: 

(5.25) n:(y} < liminf n:(y,.) = n:(:xo}, n-+oo 

because f: (6(yn),Yn}/3(Yn}-1 dt ...... J: (o(y},y)1 dt and k,B(yn)-1 
i--+ k{3(y) 

uniformly. 
But Xo is a minimiur for TA:, hence (5.25) is impossible, which implies: 

(;,, Y)1 - ( & ~ a [ J (Xo, Xo). dt Y. a.e. on [a,&], 

and (5.18) is obtained by taking x = y and c.= ( Tb J: J(Xo,Xo)1 dtf. 
Now, the above argument can be repeated on a finite covering of the interval [O, 1] 

consisting of closed intervals [a., bi), i = 1, ... , r, (whose interiors cover [O, 1)); 
in this way, since n: is invariant by reparameterizations, we obtain a curve w E 
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O~~(~) which is a localized minimizer for -r1c, a finite sequence of constants c; ~ 0, 
i = 1, ... , r, such that: 

<l>1c(w)(w, w) = c;, a.e. on [a,, bi], i = 1, ... , r. 

Moreover, c; = 0 if and only if w is constant on [ai, b,]; since p ¢ -y(JR) the curve 
wo is not constant, which implies that at least one of the c; 's is strictly positive. 
Hence, possibly by changing the intervals [Oi, b,], we can assume that c; > 0 for 
all i = 1, ... , r. Therefore, we obtain a localized minimizer for n: and a positive 
constant c, defined as the minimum of the c; 's, such that: 

(5.26) 4>1c(w)(w,w)~c>O, a.e.on[O,l]. 
Finally, we consider the solution A of the following Cauchy problem: 

(5.27) { ..X'= (11 ✓4>1c(w)(w,w)dt) 4>1c(w}(w,w)' 
A(O) = O, 

which is well defined by (5.26). The desired curve w is then given by w(.~); observe 
indeed that w is a localiz.ed minimizer for TJc, because -r1c is invariant by reparame­
teri7.ations, and 

<1>1c{w)(Ji,J,) = (11 

J ¢1c(w)(w,w) dt) 
2

, 

by {5.27). This concludes the proof. D 

We now consider the functionµ : [0, 1) 1-+ [0, I] given by the inverse of the 
function A defined by (5.17). The function µ can be obtained as the unique solution 
of the Cauchy problem: 

(5-.28) { µ' = (Y(w(p))~Y(111(µ))) (I: (Y(w), Y(w)) dt)-1 
µ(O) = 0. 

We have the following: 
Lemma 5.6. Let w E O~~~(~) be a curve satisfying (5.4) and (5.5), andµ be tM 
solution of ( 5.28 ). Then, the curve u = w o µ satisfies the differential equation: 

2V ·Y-2(Y, VuY) Y+ 
u (Y,Y) 

(5 29) k [ (Y, VuY) o! ] - + Ou </>1c(u)Vuu - 2¢1(u) (Y, Y) u - 2 (Y, Y) VyY + 

+ ~ [(Vif>1c(u),u)u-½(u,u)V¢1(u)] =0, 
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where o:u is the positive constant J<1>1c(u)(u, u). 

Proof. H w satisfies (5.4) and (5.5), and u = w o µ, then u satisfies: 

(5.30) 
2 2 

µ'(Y, Y) V,;Y + µ'(Y, Y)2(Y, VuY) Y+ 

+ (µ')~c,Je1c(u}(Vuu-~;u) +(V81c(u),u)u-½(u,u)V81c(u)] =0. 

Now, u(t) = w(µ(t))µ'(t), and 

./ cp1c(u)(u,u) _ 
C111 =y81c(w)(w,w) = 2 -

(5.31) (µ') 2{Y, Y) 

= - µ'(~,Y) J<1>1c(u}(u,u) = - µ'(~:Y)" 

Observe that, by (5.28), O:u is a real constanL Moreover, by (5.31), setting d,. = 
- (It (Y(u(t)), Y(u(t))) dt )-

1
, we get 

, _ -~ and ,, _ 2d,.(Y, V,;Y) 
µ - (Y, Y) , µ - {Y, y)2 

Therefore, after multiplying (5.30) byµ', using (5.31) to evaluate C111 , we get: 

(5.32) 

__ 2_V·Y 2(Y,V,;Y)y_k(Y,Y)01c(u)[ .· _2_(Y. . )·] 
{Y, Y} u + (Y, Y}2 o:u Vuu + {Y, Y} , VuY u 

k(Y, Y} [ 1 ] - au (V0A:(u),u}- 2(u,u}V0A:(u) = o. 

Since (Y, VcY) = -((, VyY), we have: 

and so: 

(5.33) 

(V81c(u),(} = (V</>1c(u),(} - 4</>A:(u) (Y. V Y) = 
(Y, Y)2 (Y, Y}3 

' C 
= ({Y, Y)VtJ,1c(u) + 4t/>1c(u)VyY ) 

(Y,Y)3 ,(, 

VSA:(u) = (Y, Y}V</>A:(u) + 4t/>A:(u)VvY 
(Y,Y}3 
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Finally, substituting (5.33) in (5.32), and recalling that (VyY,u) = -(V,.Y,Y) 
and that 'PA:(u)(u, u) = a!, we obtain (5.29). D 

Remark 5.1. If u = satisfies (5.29), by (4.8) we have: 

au= J4>A:(u)(u,u) ='Tcr, 
where u is the unique curve in B~!~(k) such that u = 1'(u) and Tc, is its travel time. 
Remark 5.8. From (4.1) we compute easily: 

2k2 2k2 

(V<PA:(u),() = (k2+(Y,Y))2(Y,V<Y) = (k2+(Y,Y))2((,VyY), 

hence: 
2k2 

VtpA:(u) = (k2 + (Y, Y))2 VyY. 

Then, since (Y, V ,.Y) = -(Vv Y, u), if u satisfies (5.29) a straightforward compu­
tation (see also Remark 5.7) shows that the following differential equation is satis­
fied: 
(5.34) 

(Y, V uY) k [ ' . 2(Y, Y) + k2 . . ] 
2V,.Y - 2 (Y,Y) Y + Tc, cl>A:(u) V,.u + (k2 + (Y, Y))2 (u,u) VyY + 

2k (Y,Y) .. 
- Tc, (k2 + (Y, Y))2 (VyY, u) u = O. 

Now we are ready to prove the following variational principle: 
Proposition 5.9. Let k > 0 be feud. ~a curve a E B~~~(k) is an arrival tinu! 
brachistochrone if and only if the curve 1'( CT) is a critical point of the functional GA: 
in o~~~<~>-

-Proof. Let a E Bi~?,(k) be fixed, define w = V(a) and w = V(a); since the critical 
points of G1c are curves of class C2, we have that u. w and w are curves of class C2. 
We consider the map F: (0, 1) x B 1----+ M given by: 

F(t, s) = ,t,(u(t), s), 

where VJ is the flow of Y. Denoting by T(t, s) the vector field along F given by: 

T= 0F
1 at 

since Y = !ff., a standard argument in calculus of connections (see for instance (24, 
Proposition 6.91) shows that: 

(5.35) VyT - VTY = 0. 
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By (4.2), w(t) = F(t, ra(t)), and so: 

w = T(w) + r17Y(w); 

thus, using (5.35), we compute: 

(5.36) 

Vwtb = V,;,(T + i'uY) = V.,T + :r;,Y + i'uVwY = 
= VT+t.,YT+raY +raVT+t.,Yy = 
= VTT+2taVTY +r!VyY +raY. 

(5.37) T(t,s) = d:i:tJ,(u(t),s)[o-(t)], and Y(w(t)) = do:tJ,(u(t),s)[Y(u(t))); 

and since (Y, Y) is constant along each flow line of Y, for all t it is ¢A:(w(t)) = 
'Pk(u(t)). 

Considering that do:t/J is an isometry, for all pair of smooth vector fields t11 and 112 
in M we have: · 

(5.38) 

Putting together (5.36), (5.37) and using (5.38), we get: 

Now, by (4.8), we have: 

(5.40) 

moreover, the following are easily computed: 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

VY(w)Y(w) = d.:t/J[VY(u)Y(u)]; 
tiJ = d:i:tJ,[&] + r 17Y(w) = do:1/1[& + r.,.Y(u)]; 

VwY = Vd • .,[,;.+t.,Y] ( d:i:,t,[Y(u)J) = do:,t,[V .;Y(u) + ta VyY]; 

. k'I;, r .. = _2k'T' (V,;.Y, Y) 
Ta = (Y, Y}, a Au (Y, Y}2 
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Patiently substituting (5.39H5.44) into (5.34) (that gives the differential equation 
satisfied by w = V(u)) yields the following differential equation for u: 

(5.45) 

v,.&- 2Tuv.y 
u k a 

+ 2 (VyY,u) iF + 2Tu (VaY, Y) y -T. 22(Y, Y) + k2 V y 
(Y, Y) + k2 k (Y, Y) + k2 a (Y, y)2 y 

Tu2(k2+2(Y,Y)) (<a,u) k 2 2k . ) 
- (Y,Y)(k2+(Y,Y)) Ta2 + (Y,Y) + Ta(Y,Y)(a,Y) VyY=O. 

Finally, substituting ( u, a) = -Ta 2 and (a, Y) = -kTa into (5 .45) gives (3.1 ). 
For the converse we observe that the above steps can be done backwards, to prove 

that if u satisfies (3.1) and (3.2), then£(;} satisfies (5.4) and (5.5). This concludes 
theproot □ 

We are finally ready to prove Theorem 5.4: 

'Proof of Theorem 5.4. The equivalence between the statements (lfand (2) is an im­
mediate consequence of Lemma 5.5 and the construction of the map 'D. Observe 
that. by the regularity of G,., a local minimizer for G,. is a critical point of G,., 
and in particular it satisfies (5.4). Then, the equivalence between the statements (2) 
and (3) follows by Lemma 5.5, the invariance by reparameterization of 7l., the con-

struction of£{';;) (see Remark 5.3), and the Holder inequality applied to the second -summand of TJ. in formula (4.5). Moreover, the construction ofV(u), fon:nula (5.4) 

and the invariance by reparameterization shows that7}(1'(u)) = G11:(~)-
We have already pointed out that the statement (3) implies (4). For the converse, 

we use the Cauchy problem satisfied by the critical points of G11: (see (5.5)) to prove 
the local invertibility of the map v 1-+ w(l) from TqM to M, where w is the unique 
solution of (5.5) satisfying w(O) = q and w(O) = v. This fact allows to deduce, in 
analogy with the Riemannian geodesic problem, that a critical point of G11: must be 
a local rninimirer. 

Finally, the equivalence of the statements ( 4) and (5) is given by Proposition 5.9. 
Observe that the equality T(u) = 7l(1'(u)) is given by Lemma 4.3. D 

6. THE PENALIZED FuNCTIONAL G11:,1: AND THE PALAIS-SMALE CONDITION 

The presence of the boundary auk implies that the functional G 11: does not sat­
isfy good compactness properties on O~~(a); moreover, for the same reason its 
subleve)s fails to be complete subspaces of 01~~ ( .6. ). 
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To overcome this problem, we now introduce a penaliwtion argument, which 
has been used systematically in the study of unidimensional variational problem in 
subsets with convex boundary. 

Recalling the definition (4.1) of the function '1r10 for all k > 0 fixed we introduce 
a family G1e,t: of functionals, depending on the parameter e E (0, 1], defined by: 

1
1 dt 

(6.1) G1e,t:(w) = G1e(w) +e 
O 

'1r1e(w)2 • 

Observe that G1e,o = G1e. 
Since G1e and W1e are smooth, then, for all e, G1e,t: is a smooth functional on 

n~~(A), and its Gateaux derivative is easily computed as: 

1
1 {V'h(w),() 

(6.2) dG1e,t:(w)[(] = dG1e(w)[(] ~ 2e 
O 

'111e(w)3 dt. 

For all e > 0, the sublevel of the penalized functional G1e,t: are complete subsets of 
n~~(A). In order to prove this, we use the following result, which is known as the 
Gordon's Lemma, whose proof can be found, for instance, in Reference [16). 

We denote by dist(·,•) the distance function on M induced by the Riemannian 
metric !JR defined in (1.9). 
Lemma 6.1. Let {wn}neN be a bounded sequence in n1:~(A) such that: 

1
1 dt 

sup ,T, ( ) 2 < +oo. 
n O Tie Wn 

Then, Wn stays uniformly far from 8U1e, i.e., there exists p > 0 such ~hat 

dist(wn(t),8U1e) ~ p 

forallt E [0,1] andalln E JN. □ 

From Lemma 6.1 we obtain the following: 
Proposition 6.2. For all e e ]O, 1] and all c e E, tJu sublevel 

Gi,t: = {WE n1~~(A) : G1e,.r(w) ::; c} 
is a possibly empty complete metric subspace ofn,W;~(A). 

Proof. Let {wn}n be a Cauchy sequence in Gtir; since U1e -= U1e LJ8U1e is com­
plete, then Wn is convergent in H 1([0, 1], U 1e) to a curve w with image in U le· Since 
G1e,t:(wn) is bounded, then, byLemma6.1, Wn stays uniformly far from 8U1e, so that 
w has image in U1e and Wn converges to w in n1~~(A). Moreover, by the continuity 
of G'/c,t:, it is G1e,t:(w) ::; c, and we are done. D 

We recall the definition of the Palais-Smale condition for a 0 1-functional on a 
Hilbert manifold: 
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Definition 6.3. Let (X, h) be a Hilbertian manifold and L : X 1----+ JR be a func­
tional of class C 1 on X. For all x E X, we denote by I · I the norm on the dual 
Hilbert space (TzX)*. A Palais-Smale sequence for L at the level c E JR is a 
sequence {xn}n in X such that the following two conditions are satisfied: 

(PSl)c fun L(xn) = c; 
n-+oo 

fun ldL(xn)I = 0. n-+oo 
The functional L is said to satisfy the Palais-Smale condition at the level c if 

every Palais-Smale sequence at the level c for L are convergent in X. 
Proposition 6.4. For all E E]O, 1] and all c E JR, tM penalized Gk,e satisfies the 
Palais-Smale condition at tM level Conn~~~(~). 

Proof. Let c E JR and E E JO, 1] be fixed; let Wn be a Palais-Smale sequence for 
G1c,e at the level c in O~~(~). with respect to the Hilbertian structure (2.6). 

Since G1c,e(wn) is bounded with respect ton, we have the existence of a constant 
D = D(c) > 0 (see Remark5.1) such that: 

1 -1 (wn,tbn)<R> dt $ D, Vn EN. (6.3) 

Hence, up to passing to subsequences, by Lemma 6.1 it follows that there exists a 
curve w : (0, 1] t-+ U1c, w E O~~(a), such that: 

(6.4) Wn ..--.:.+ w uniformly and til,. ........+ ti, weakly in L2([0, l),T M). 

To prove the proposition, we need to show that the convergence of w,. to ti, is strong 
inL2• 

Since w,. is a Palais-Smale sequence, for all n E N there exists a vector field On 
along Wn such that: 

(6.5) dG1c,e(wn}[(] = 11 

(a,., v:t..(}<R, dt, V( E T,,,,.n~~(a), 

and 

(6.6) a,..,....... 0 in £ 2 ([0, 1], TM). 

Now, we can write the Riemannian covariant derivative V-> in terms of the Lorentzian 
covariant derivative V by a formula of the type: 

v:t .. ( = V tb,.( + f{wn)[tiln, (], 

where r(wn)[·, ·] is bilinear. 
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Since Wn is bounded in L00 and U 1c is complete with respect to gR, by (6.3) and 
(6.6) for all n E JN we have the existence of a vector field bn along Wn such that: 

fo1 

(On, V:t .. ()(IIJ dt = fo
1 

( (On, V w,.()(&) + (bn, (}11) dt, 

and 

bn.....-0 inL1([0,1),TM). 

Then from (1.9) and (6.4), for all n E N we have the existence of vector fields An 
and Bn along Wn such that: 

. / 1 (Vir1:(w,.),(} 
dGA:,€(wn)((] = dGA:(Wn}[(] -2e lo ir1c(wn)3 dt = 

= 11 

{(An, Vw .. () + (Bn,()) dt, 

with 

Ani-+O inL2 ((0,l],TM), Bni-+O inL1 ([0,l],TM). 

Let V be any vector field along Wn in H 1([0, 1),M) such that V(O) = V{l) = 0; 
we set: 

(6.7) (t) = t (Vw,. V,Y} -(V, Vw,.Y) d 
µ. lo (Y, Y} r. 

Arguing as in the proof of Lemma 5.2, every vector field in Tw,,O~~?y{.6.) can be 
written in the form V-µ.•Y, where Vis as above. Hence,recallingthat (Vir1c, Y) = 
0, we get (see (5.9)): 

(1 (Vw,. V, Y)- (V, Vw,.Y} d 
- lo (Y,Y) t+ 

+ c: .. 11 

[½(wn,wn)(V81:(wn), V} + 81:(wn)(wn, Vw,. v)] dt+ 
(6.8) 

_ 2e (1 (Vir1:{wn), V) dt = 
lo ir11:(wn)3 

= 1• [(An,Vw,.V-µ'Y-µVw,.Y)+(Bn,V-µY)] dt, 

where Cw,. = (10
1

81:(wn)(wn, tbn) dt) ½. Observe that. from (6.3) and (6.4) it 
follows that Cw.,. is bounded. 
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Combining (6.7) and (6.8) and using Fubini's theorem, we obtain: 

11 

[(-C,,,,.(Y, Vw,.Y) +Cw,.(Vw,.Y, V))(Y,Y)- 1
] dt+ 

(6.9) 
+k 11 

[i(wn,wn)(V0k(wn),V)+(0k(wn)tnn,Vw,.V)] dt+ 

_ 2e C 11 
(Viitk(wn), V) d = 

111,. ,T, ( )3 t 
O Y!k Wn 

= fo
1 

[(On, Vw,.V) + (/Jn, V)] dt, 

where On 1-+ 0 in L2(1D, 1), TM) and f3n 1-+ 0 in L1(IO, 1), TM). 
Integration by parts in (6.9) gives the existence of vector fields Hn and Wn along 

Wn such that V w,. Wn = 0 and such that V .;,.Hn is bounded in L1([0, 1), TM}, and 
satisfying: 

(6.10) 

Integrating (6.10) on [0, 1] we see that Wn is uniformly bounded, and therefore Wn 
is bounded in H 1([0, 1], TM). By (6.4), 01e(wn) is uniformly bounded away from 
uro, and thus from (6.10) we see that V..,ftw,. is bounded in L1([0, l], TM). Then, 
up to subsequences, Wn is convergent in £ 2 ((0, 1), TM) (see [2, Theorem VII. 7)), 
which concludes the proof. D 

We can now use standard techniques from Critical Point Theory to prove the 
existence of minima for the penalized functional G k,E: 

Corollary 6.5. For all e E )0, l], the penalized functional Gt,E attains its minimum 
in oi~~(Ll). 

Proof. Since Gk is bounded from below, then also Gk,£ is bounded from below. The 
existence of a minimi7.er is a classical argument in Critical Point Theory. Let's fix e E 
)0, 1). Thanks to the Palais--Smale condition and the completeness of the sublevels 
of the functionals Gt,£, if the infimum i£ of G1:.£ on O~~~(Ll) weren't a critical 
value, then it would be possible to find a homotopy between the sublevels atE'l and 

C::~, where '1 > 0 is sufficiently small. This is clearly impossible, because, for 

ev~ f1 > 0, ~7 = 0 while~~ ~ 0. Hence, G,.,£ attains its minimum on 
O~~(Ll). D 

7. A PRIORI ESTIMATES FOR THE PENALIZED FUNCTIONAL 
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AND THE PROOF OP THEOREM 1.1 

The goal of this section is to prove that, given a family Wt: of stationary points for 
the penali7.Cd functionals G1c,t:, withe E ]O, 1], there exists a sequence En ! 0 such 
that the corresponding sequence wt:., tends to a curve w which is a critical point for 

G1c in ni:~(A). 
Since (Vw1c, Y) ;: 0, using the Euler-Lagrange equation for the penalized func­

tional G1c,t: and the same technique of Lemma 5.2, it is easy to prove the following: 

Proposition 7.1. Let e e]o, 1] and k > 0 be fixed. If curve wt: E 01'.~(A) is 
a critical point for the functional Gk,t: then it is a smooth curve that satisfies the 

differential equation: 

(7.1) 

; (81c(wt:)Vw.wt: + (V81c(wt:),wt:)wt: - -
2
1 

(tbt:,w1:)V81c(wt:))+ 
Ula 

2 (Y, Vw.Y) 2e 
-(Y. Y} V,;,.Y + 2 2 Y + ,T, ( ) 3 vwk(wt:) = o, 

' {Y,Y) . ... 'Ir. W,: 

□ 

Lemma 7.2. Let k > 0 be fixed. Suppose that {wt:heJo,iJ i., a family of critical 
points ofG1c,c in n~~(A) and c is a positive constant such that: 

(7.2) Gk,c(w,:) :5 c < +oo. 

Then, there exists a positive constant 6 = 6(c) > 0 such that wk(wt:(t)) ~ 6/orall 
E E )0, 1] and all t E [0, l]. 

Proof. Since G1c,c :5 G1c, from Remark 5.1 we deduce the existence of a positive 
constant D = D(c) such that: 

fo1 

{tbc,tbc}<al dt :5 D{c), 

for all E E )0, 1] (rccall that We is horizontal). The completeness of 7J 1c imply then 
the existence of a compact subset K of 7J 1c that contains the image of all the curves 
W,:. 

For all e E JO, 1), we consider the smooth function P1:(t) = W1c(wt:(t)} on the 
interval (0, 1); let tt: be a minimum point for Pt:• 

By contradiction, assume that: 

(7.3) 
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and since 'iltk is bounded away from O on -y(E) (recall (4.1) and the fact that 'Y is an 
integral curve of Y), fore small enough it is tE E JO, 1[. Hence, we have: 

(7.4) 

and 
(7.5) 

0 ~ p;(te:) = (H'l'i(we(te:))[we(te:)],we:(t.,J) + (V'il'k(wt:(te:)), Vw«wt:(te:)), 

where H~,. is the Hessian of 'iltk. To ease the notation, in all the calculations that 
follow we will omit the argument te:. 

Since 0k = - [(Y, Y)(k2 + (Y, Y))r\ the gradient of the functions 'iltk and 
0k are easily computed as: 

(7.6) Y. "0k = __ k_2~+_2_,(_Y._, Y_,) __ "yY·, V'llk = Vy , v 2 v 
( (Y, Y) + k2(Y, Y) )2 

thus, by (J.4), we have: 
(7.7) 

(vek(we:),we) = 0, (V,.,CY(w,:),Y(we)) = -(VY(wc)Y(wt:),we:) = 0. 

Combining (7.1), (7.5) and (7.7) gives: 

(7.8) 
O<p"== - t: 

= (H"+•(we)[wt:],we) + k0k{We}(~~::},Y(we)) (V'iltk(wt:), v,.,CY(we:)) 

('V\JJk(wt:), V0k(We)) (. . ) _ 2eCw« (Vw ( ) V'1T ( )) + 20A:(We:} We:,We k\JJ1:(we:)3 k We ' k We: ' 

where C,,,« = (I; 81:(we)(we,tbe:) dt) ½. 
Now, by the compactness of K, there exist positive constants d1 and d2 such that 

the following inequalities are satisfied: 
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Therefore, since e,. = (-(Y, Y)'IJIA:)-1, (7.6) and (7.8) give: 

(7.9) 

0 :5 d1(we,tbe) +d2(we,we)'C"'• '111:(we)+ 

WA:{We) (Y(wt:), Y(w,:)) (VwJ:(We), VWA:(we))(tbe, tbl!)( k2 + 2(Y(we), Y(wl!))) 

2( {Y(we), Y(we))
2 

+ k2(Y{wt:), Y(wl!))) 
2 

2eCw. { ) 
- kw,.(wt:)3 V'111:(w1!), V'IJ11:(we) . 

Now, ifwe multiply both sides of (7.1) by till!, we obtain the existence of a constant 
El! such that: 

2~"'• 81c{we}(tile,tbe)- '1r1c(:e)2 = Ee, on (0, 1), Ve E]0, l]. 

Integrating the above formula on (0, 1] gives: 

kCw. f1 dt 
- 2 - - e Jo W1c(wa)2 = El!, 

therefore, for all t E (0, 1], and in particular fort= te, it is: 

(7.10) k e ( )(. . ) e _ kCw. /
1 

dt 
2Cw. le W4 We,WI! - W1;(we)2 = - 2- -e lo w,.(wl!)2' 

(7.11) 

solving (7 .I 0) for Cw., we obtain: 

Cw. = - ¼ ( WA:(:e)2 - e 11 WA::e)2) + 

1 e f1 dt 2 • • 
+ k il!1;(wt:)2 - e lo W1;{wt:)2 + k ek(We}{we, wt:), 

and so, by (7.11), we get: 

C,,,. :5 ¼ ✓ 0J:(wt:(te)}( tilc(tt:}, tbe(tt:) ). 
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where the expression above is computed at t = t,:. 
But -(Y, Y)-

1 ~ i and (V'1T1i:, V'1T1i:) ~ v0 > 0 for some v0 independent of e:; 
moreover 

(Y, Y)(k2 + 2(Y, Y)) 2 ( ) ~--=--------~ 1------+ +oo as k + Y, Y 1---+ 0. 
2(Y, Y}2(k2 + (Y, Y)) 

Therefore, if '1T1i;(we(te)) 1---+ 0, by (7.12) there exists II positive constant ao > 0 such 
that: 

0 ~ -ao(w1:,we) - ,.!:f;;)3 (V'1T1c(we), V\Jf1c(we)). 

This is a contradiction, because (we,we) ~ 0 and C10e(V\Jf1,(we), V'1T1i;(we)) is 
strictly positive. So the proof is concluded. D 

Let's assume now that, for all e E JO, l], we is a critical point for G1c,,, in O~.~(A) 
such that: 

(7.13) supG1c,,,(w,,) < +oo. 
,: 

Such a family is given for instance, by a family of minimum points for G1i:,e: observe 
indeed that, for all e E JO, 1], we have 

min G1i:,e ~ min G1i:,1 < +oo. 
~~~(A) n~~~(A) 

Given such a family We, we now prove that we can pass to the limit as c tends to 0, 
obtaining a critical point for the functional G1c: 
Proposition 7.3. There exists a sequence {cn}n C JO, l] tending to zero as n -+ oo 
and a smooth curve w E 0~~~(..1-) such that w,,,. tends to wo in c2([0, lj,M). 
Moreover, such a curve wo is a critical point for the functional G1c in O~~{A). 
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Proof By Remark 5.1, since GA:(wr:) $ GA:,r:(wr:) $ supr: GA:,r:(we) < +oo, then 
there exists a constant do E JR+ such that: 

(7.14) fo1 

(wr:,we)<R> dt $do< +oo. 

Then, by the completeness of U A:, there exists a compact set K C U 1c such that 
we(IO, 11) c K for all e. Moreover, by Lemma 7.2, since 

(7.15) WA:{we(t)) ~ 6 > 0, 

then Kc U1c. 
By the Ascoli-Arzela's Theorem, from (7.14) and the compactness of Kit fol­

lows that there exists a sequence {en}n C ]0, l] such that We,. is uniformly conver­
gent to an absolutely continuous curve w0 joining p and 'Y in K C U 1c; by continuity, 
1lt1c(wo(t)) ~ 6 for all t. 

We considel- the following facts: 
(1) 0A:{We,.) and WA:(We,.) are bounded away from Oby (7.15), and 81c(wr:,J-1 

and '111(wr:.)-1 are bounded in L00 ([0, 1), .ll); 
(2) wr:,. is bounded in L 2 ([0, 1), TM) by (7.14); 

(3) (Y(wr:,.), Y(wr:,J)- 1 
is bounded in £ 00 ([0, l],B), whil~ the vector fields 

V81c{wr:,.), Vllf1c{wr:,.) and Y(we,.) are bounded in £ 00 ([0, l], TM) by 
(1.11) and the compactness of K; in particular, we have: 

(7.16) lim q, ~en )3 Vllt1c{w.:,.) = 0 inL00 ([0,l],TM). 
n-+oo A: W,:,. 

(4) by the previous two facts, V w.,. Y(we,.) is bounded in L2 ([0, I], TM); 

(5) Cw.,. = (J0
1 01c(we,.)(wr:,.,tilr:,.)<a> dt) ½ is bounded by (7.14) and the 

boundedness of 81c( We,.). 
Using the facts above, by analyzing the differential equation (7.1) satisfied by the 
W,:,., we obtain that the second derivative Vw,.,. W,:,. is bounded in L1([0, 1],T M). 
Then, (tbr:,., tbr:,.)ta> is bounded in L00([0, 1], JR) and, again by (7.1), we obtain that 
W,:,. is bounded in W1•00 ([0, 1], M). 

Using this new information and arguing similarly, we have that We,. is bounded 
in W2•2([0, 1], M), which implies that, up to subsequences, We,. converges to wo in 
C 1 ([0, I], M). Then, using again the differential equation (7.1), we finally conclude 
that w~. converges in 02([0, 1],M), and we can pass to the limit as e-+ 0 in (7.1) 
using (7.16), obtaining that wo satisfies the differential equation (5.5). Arguing as 
in Proposition 7.3, we see that wo also satisfies (5.4); this can be easily checked by 
multiplying equation (5.5) by tbo. Hence, by Lemma 5.2, wo is a critical point of G-. 
in O~~(~). and we are done. □ 
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We can now prove Theorem 1.1: 

Proof of Theorem 1.1. For all e E JO, 1], let We be a minimal point for the functional 
G1c,s, which exists by Corollary 6.5. The family {we}e satisfies (7.13). Observe 
indeed that, for all w E 0~~~(.6.) and for all e E JO, l], it is G1c,.(w) ~ G1c,1(w). By 
Proposition 7.3, we can find a sequence Wsn tending to a smooth curve wo that is a 
critical point for G1c in 0~~~(.6.). Let e10 be the unique curve in B1:.~(k) such that -1>(e10) = wo; by Theorem 5.4, such a e10 gives an arrival time brachistochrone of 
energy k between p and 'Y, which concludes the proof. D 

8. LJUSTERNIK-SCHNIRELMAN THEORY AND THE PROOF OF THEOREM 1.2 

The goal of this section is to give a proof of Theorem 1.2 by means of the 
Ljusternik-Schnirelman theory for functionals satisfying the Palais-Smale condi­
tion. We use well known techniques from Critical Point Theory, which are repeated 
here for the reader's convenience. 

We recall the following definition: 
Definition 8.1, If Xis a topological space and B any subset of X, the Ljusternik­
Schnirelman category catx(B) of Bin Xis the minimal number (possibly infinite) 
of closed, contractible subsets of X that cover B. We denote by cat(X) = catx(X). 

Clearly, the Ljustemik-Schnirelman category is increasing with respect to the 
inclusion, i.e., if A and B are subsets of X, then: 

(8.1) A ~ B => catx(A) '$ catx(B). 

Moreover, the Ljusternik-Schnirelman category is a homotopical invariant, i.e., if A 
and Bare homotopical subsets of X, then catx(A) = catx{B). 

It is not difficult to see that, since Y is complete and -y is contractible in M, then, 
for any fixed point q e ,y, the three spaces Op,9 , OjJ,~ and 0~~~{.6.) have the same 
homotopy type. Namely, we have already observed in Remark 4.2 that !l~~ and 
0~~(.6.) have the same homotopy type. 

In particular, it follows that, for every subset B ~ 0~~(.6.), we have: 

catni~~(A)(B) = caln~~~ (B). 
Moreover, given any curve z E n~:~. one can consider the curve z E 0,,,9 given by: 

z{t) = ,J,(z(t), ef>:i:(t)), 

where 
q,:i:(t) = (1-1(q) - -y-1{z(l))) · t. 

Observe that the map -y-1 is well defined and continuous on -y(B) because 'Y is 
injective. Moreover, the evaluation map z 1--+ z{l) is continuous in O~~. so the 
map z i--+ <Pz E C1([0, 1],B) is continuous inn~:~. 
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The map 'H.: 01~~ x (0, I] i-+ 0~~ given by: 

rl(z, r)(t) = ,t,(z(t), <J,,,(t) • r), 

is clearly continuous; moreover it satisfies rl(z, 0) = z. rl(z, r) = z for all z E Op,9 
and all re (0, 1). and 1-l(z, 1) = z, and so it is a strong deformation retract of O~~ 
onto 0,,9• In particular, the map rl{·, I) is a homotopy equivalence between O}:,~ 
and Op,9 and the two spaces have the same homotopy type. 

A well known result by Fadell and Husseini (see [3]) states that, if Uk is not 
contractible. then the category of the space Op,q, and so also the category of 01~~. is 
infinite: 

cat(O~~) = cat(09 ,9 ) = +oo; 

moreover, there exists a sequence Kn of compact subsets of 01~~ such that: 

(8.2) lim cat0 c1> (Kn) = +oo. 
ft-tOO P,'Y 

By Remark4.2, we can assume that Kn C 01~~(A) for all n E JN. 
We denote by r n, n E R. the collection of all compact subsets of 011.~{A) 

having category strictly larger than to n: 

(8.3) r n = { B compact subset oHl1~~(A) : cat0 ~~;(A) (B) ~ n + 1} · 

Observe that, by (8.2), r n / 0 for all n E R. 
For all c E E and e E [0, l}, we denote by Gk,c the closed c-sublevel of the 

functional G1c,c in O~~(A): 

Gk,c = { w E 01';~(A): G1c,c(w) ~ c}; 
clearly 

~.cs;~. Ve EB., Ve E [O, 1]. 

A well known argument in Critical Point Theory shows that, if L : X ...... Bis a 0 1-

functional defined on the Banach manifold X, satisfying the Palais-Smale condition 
at the level d E Band such that the sublevel Lt! is complete, then, the category 
catx(Lc') is finite. 

In the following preliminary Lemma we show that, for all c E B, the category 
catn<t> (Gi c) = cat0 11> (A)(Gi c) is bounded uniformly with respect toe. 

P,"T ' Pi"J ~ ' 

Lemma 8.2. For all c E E there exists N = N ( c) E Iv such that: 

(8.4) 

for all e E [O, 1]. 
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Proof We will show that. for all c E B, there exists d E JR and. for all e E !O, 1 ], a 
homotopy between the sublevel Gk e and a subset of the sublevel L c', where L is a 
suitable smooth functional satisfying the properties described above. 

By the completeness of Ula for all c E JR. there exists a compact subset Kc C U 1c 
containing the images of all the curves in Gk e• for all e E [O, 1]. Indeed, as we have 
already observed at the beginning of the proof of Proposition 7 .3, all such curves w 
have bounded energy: 

fo
1 

(w,w)<I, dt ~do< +oo. 

For 6 > 0, we denote by i'6 the closed subset of U 1c given by: 

(8.5) V.s = {x E U1c: '111c(x) ~ c}. 
Let now 6 > 0 be small enough and H : [O, I) x (U 1c n Kc) i---+ Kc be a map of 
class 0 1 satisfying: 

(1) H{O,x) = x, for all x E U1c n Kc; 
(2) H(r, V.s) C V6, for all r E [O, l]; 
(3) H{l, U 1c n Kc) C V6. 

Such a map is built (up to considering a larger Kc) by using the flow of the vector 
field Vllf1c, which is bounded away from O in the compact set Kc n OU1c. 

Finally, we consider the map 1t : [0, l) x Gt i--+ n~~~ defined by: 

(8.6) 1t(r, w)(t) = H(r • t, w(t)), Vr, t E [O, 1). 

Clearly, 1t is continuous; moreover, by the construction of H, the map 1t(0, ·) is the 
identity on Gk. By construction, the curves in 1-t(l, Gk) have image in the set V.s, 
and so they stay uniformly far from oU ,.. 

Since the curves in Gt have image in a fixed compact set, it is easy to see by a 
direct computation that the map H has bounded partial derivatives, and so the map 
1-t(l, -) is Lipschitz continuous on~- It follows that there exists a real number<! 
such that: 

sup G1:(w) ~ d. 
111E'H(l,C.) 

We denote by A1i:,.s,c1 the set of Clln'es in G( having image in ½: 

A1:,6,c1 = { w E G( : w(t) E V.s, Vt }; 

we have just proven that: 
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Let's consider the functional L : O~~~ .__ JR given by: 

(8.7) 
[1 r(t) 

L(w) = G1:(w) + Jo W1:(w(t))2 dt, 

where r : [O, +oo[i--+ JR+- is a smooth function satisfying: 

r(O) = 1, r'(O) > 0, and r(s) = 0 if s E [~,+oo[. 

Now, the same proofs of Propositions 6.2 and 6.4 can be repeated verbatim to show 
that Lis a smooth functional on O~~l.,(d) that satisfies the Palais-Smale condition at 
every level c, and whose sublevels are complete. It follows that, for all d E E, there 
exists a natural number N ( d) such that 

(8.8) 

Since the function r vanishes identically on the images of the curves in A1:,1,c', then 
A1:,1,c1 ~ Le', and, in particular, 

(8.9) cat0 ~~~ (A1:,.s,c') :5 cat0 ~~~ (Le') = N(d,). 

Thus, by the homotopical invariance and the monotonicity of the Ljustemik-Schnirel­
man categocy, we have: 

(8.10) cat0 ~~t<~.e) :5 cat~~t(~) = cat0 ~~~('H(l,G~)) :5 cat0 ~~~(A1c,1,c1), 

which concludes the proof. D 

A well known minimax argument in Critical Point Theory shows that the numbers: 

(8.11) ~ = inf [sup G1c,e(:r:)] 
Ber,,. :i:EB 

are critical values for the functional G1:,c for all m e n and all e e JO, 1 J. Observe 
that, by the definition (8.3) of r n, each ~m is well defined and finite. Also, since 
e ..,_. G1:,c(w) is increasing on [O, 1] for alha E O~~. it follows easily that: 

(8.12) 0 :5 c!,. $ c!., Ve E (0, 1], V m E N. 

Since r n is non empty for all n, from (8.11) and Lemma 8.2 it follows that G1r.,E 
has arbitrarily large critical values for all e E JO, 1]; in order to prove Theorem 1.2, 
we need to prove that the same claim is true for the functional G1: = G1:,o-
~ 8.3. In the notations of Lemma 8.2,forall c E JR, ifm ~ N(c) then 

(8.13) VeE]O,l]. 
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Proof Let c E JO, 1] and c E JR be fixed. By contradiction, suppose that there exists 
m > N(c) and BE rm such that: 

sup Gic,£{x) ~ c. 
::cEB 

Then, it would be: 

B £; Gk.e• 
and, by the monotonicity of the Ljusternik-Schnirelman category and Lemma 8.2, it 
would be: 

(8.14) cat0 i~;(~)(B) ~cat~~;(~)(~,£)~ N(c). 

The inequality (8.14) contradicts the fact that BE rm and concludes the proof. □ 

We are ready for the proof of Theorem 1.2: 

Proof a/Theorem 1.2. Let {en}n c]O, 1] be any decreasing sequence converging to 
0 and let Gic,e .. be the corresponding sequence of functionals on O~~;(a). 

For all m E R, we define: 

(8.15) , c.ri = liminfc~. 
n-+oo 

By (8.12), the Cm are well defined (finite), and they form a non decreasing sequence. 
By Proposition 7.3, for all m E N, Cm is a critical value for G,.. 
Fmally, by Lemma 8.3, the sequence Cm is unbounded, hence G1c has arbitrarily 

large critical values. Let Wm be a sequence of critical points of Gic in O~~;(a) 
such that Gk(wm) = Cm and, for each m E N, let Um be the unique curve in -----Bi~~(k) such that V(um) = Wm- The conclusion follows then immediately from 
Theorem 5.4. D 

APPENDIX A. THE ARRIVAL TIME BRACHISTOCHRONES 
IN THE EXTERIOR SCHWARZSCHILD'S SPACETIME 

We now present an explicit calculation of the arrival time brachistochrones in the 
exterior Schwarzschild spacetime, that is the relativistic model for the gravitational 
field outside a star static and spherically symmetric (see [I, 12, 17]). We will prove 
that any event p and any observer 'Y can be joined by an arrival time brachistochrone 
of arbitrary (positive) energy. We emphasize that, by a result of [20), the same result 
does not hold for the travel time brachistochrones. 

We consider polar coordinates (r, q,, 8) in JR.3• The exterior Schwarzschild space­
time is given by a product manifold M = Mo x R, where Mo C B3 is the open 
subset given by the region outside the sphere of radius 2m: 

Mo= {(r,</>,8): r > 2m}, 
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and the metric g on M is: 

(A.I) g = /J(r)- 1 dr2 + r2 d!l2 - /J(r) dt2, 

where 
2m 

/J(r) = 1- -
r 

and d02 = sin2 fJ d</>2 + dfJ2 is the standard Riemannian metric induced on the unit 
sphere of B3 by the Euclidean metric. The positive constant m represent the mass 
of the star. 

We consider the timelike Killing vector field Y = I;; its orthogonal distribution 
a is completely integrable, and its integral submanifolds are the spacelike smfaces 
given by the time slices Mo x {to}. Please note that, differently from the previous 
sections, we arc now using the letter t to indicate a the global coordinate function 
on M. The curve parameter will now be denoted by the letter s. Observe also that 
(Y, Y) = -/3, where ( •, •) denotes the metric (A.l). 

FIX. any positive constant k; the potential well Uk defined in ( 1.10) is given by: 

{ 
2m 2} U1;= (r,q,,9,t):1-r<k . 

' 
H k2 2::: 1, then Uk coincides with the entire manifold M; ifO < k2 < 1, then 

Uk= {(r,<f>,9,t): 1-k2 < 
2
~ < 1}. 

As we have observed, a curve z = (x,t) in M, with x e Mo and t e JR, is 
horizontal with respect to the distribution a if and only if its image stays inside a 
time slice Mo x {to}, i.e., if and only if i = 0. Consequently, by Theorem 5.4, 
the arrival time brachistochrones in the exterior Schwarzschild spacetime are curves 
u = (r, </>, 9, t) such that x = (r, ,J,, 9) is a critical point for the functional 

-11 
1 [ 1 ·2 2 ( . 2 ·2 e2)] Gk(r, </>, 9) -

0 
/3(r)(k2 _ /J(r)) f3(r) r + r sm 9 ,J, + ds, 

parameterized by: 

k2 ~(1(r) [{3;r) f2 + r2 ( sin2 9 ~2 + .8.2)] = C. (constant),, 

and t satisfies i = -{3(r)-1k1;,. 
By the radial symmetry of the Schwarzschild metric, we can restrict our attention 

to the equatorial plane (J = ½; in this case, the spatial part x = ( r, tj,, J) of the arrival 
time brachistochrones are characterized as the critical points for the functional: 

(A.2) 1 1 . 2 ·2 11 ( ) Gk(r, t/>) = o /J(r)(k2 - /J(r)) P(r) r2 + r <I> ds 
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that are parameterized by: 

/3(r) ( 1 -2 2 ·2) _ k2 _ /3(r) /3(r) r + r <I> = C (constant). 

The functions </>1c and 81c defined respectively in (4.1) and (5.1) are now given by: 

/3 I 
<Pk= k2 - (3' 81c = f3(k2 - {3)" 

If ( r, <I>) is a critical point for the functional G 1c of (A.2), then it satisfies: 

/1 2/3 - k2) /3' (f2 2 ·2) 
lo (32(k2 - [3)2 7f + r <I> P ds+ 

/
1 

1 ( 1 1 ·2 2fi> ·2 2 · ·) + lo {3 (k2 _ /3) - /F{J pr + /3 + 2rp</> + 2r </>~ ds = 0, 

for all p and () smooth functions on [O, 1] vanishing at O and 1. Then, integration 
by parts and the Fundamental Theorem of Calculus of Variations give the following 
system of differential equations satisfied by (r, ,p): 

{

- :
8 

(132(k~r _ pj + (~(~2 k~ {J)~) f3'f2 + [ (;(~:~;;:
2 

- 2r] 4>
2 = 0, 

2r2 ,J, ;:;::; L (constant), 

which is also written as: 
(A.3) 

{ 

2r 2r2{3' 2 [{2/3 - k2){J'r2 
] •2 _ 

[J2(k2 _ /3) + f33(k2 _ [3)2 (k - I - /3) + {32(k2 _ /3)2 - 2r t/> - 0, 

2r2,t, ="' L (constant). 

Now. as in (5.28). we defineµ to be the unique solution of the Cauchy problem: 

(A.4) 
{ 

1 ( /1 ds )-l 
µ' = /3(r(µ)) lo /3(r(s)) ' 

µ{0) = 0. 

The bracbistochrone differential equation is the equation satisfied by the pair 

(r1,</>1) = (roµ,tpoµ) 
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(see Lemma 5.6), which is given by: 
(A.5) 

(... µ"f1) 1 2rUk2 - 1 - /3) [(2/3 - k2)/3'r? ] ·2 _ 0 
- 2 \1 - y f32(k2 _ f3) + f33(k2 _ f3)2 + /P(k2 _ f3)2 - 2r1 </>1 - • 

2r? <i,! = L (constant). 
µ 

By (A.4), we get: 

JJ
11 = _R( ) /J'(r1)f1 

µ' ,., r1 /3(r1)2 ' 

and, by (A.4) and (A.5) we have: 

2· -
2r1 </>1/3(r1) = L (constant). 

Therefore, up to replacing (r1,t/>1) by (r,t/>) and L by L, we see that the arrival 
time brachistochrones in the equatorial plane (J = J of the exterior Schwarzschild 
spacetime are characterized by the differential equations:3 

(A.6) --------a. . 
{P(k2 - f3) \+{3 + f33(k2 _ f3)2 + .... f3_,.2-(k_2 __ ~f3-)2- 2r 4'=0, 

{ 

2 (... {3'r2) 2r2(k2 -1- f3) [(2/3- k2)/3'r2 ] 

2 r 2 f34' = L (constant). 

We now prove that, fore > 0 suitably fixed, the following subset of M: 

Me= { (r,t/>,8,t) EM: f3(r) ~ e} 

satisfies a convexity property, analogous to a similar condition employed in the proof 
of Lemma 7.2. More precisely, we prove that if (r, q,) satisfies (A.6), with /j(r(O)} = 
e and r(O} = 0, then the following inequality holds: 

(A.7) d2 I 
ds2 •=/(r(s)) < 0. 

Geometrically, the above condition means that every arrival time brachistochrone in 
the exterior Schwamchild spacetime having image in Me: and both endpoints in the 

· interior of M~ never reaches the boundary oM,:. 

3otisene that in Reference (20} the author only writes the differential equations satisfied by the fnJVl:l 
time brachistochroM6. 
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Now, a simple computation shows that (A.7) is equivalent the foilowing inequal­
ity: 

(2/3 - k2)/3' r 
f32(k2 - /3) < 2, 

at the points where /3 = E. This is certainly true fore sufficiently small, because {J'r 
tends to 1 as E goes to 0, while 

. 2/3- k2 

p1$J+ /32(k2 - /3) = -oo. 

Thanks to the above convexity property it is possible to prove, essentially by the 
same arguments in the proof of Theorem LI, that any event and any observer of the 
exterior Schwarzschild spacetime can be joined by an arrival time brachistochrone 
of any fixed positive energy. Note that, as it was pointed out in [20), that this is not 
true for the travel time brachistochrones. 

Finally, we observe that it is possible to extend the results of Theorem 1.1 and 
Theorem 1.2 to the case of a potential well with boundary, as long as the above 
convexity property is satisfied. 
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