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ABSTRACT. We consider a general relativistic version of the classical brachis-
tochrone problem, whose solutions are causal curves, parameterized by a constant
multiple of their proper time and with 4-acceleration perpendicular to a given ob-~
server field, that extremize the arrival time measured by an observer at the final
endpoint. This kind of brachistochrones presents characteristics different from the
travel time brachistochrones, that were studied in [8, 9, 10]. In this paper we for-
mulate the variational problem in a general context; moreover, in the case of a
stationary metric, we prove two variational principles and we determine the second
order differential equation satisfied by the arrival time brachistochrone. Using these
variational principles and techniques from Critical Point Theory we establish some
results concerning the existence and the multiplicity of travel time brachistochrones
- with a given energy between an event and an observer. J
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The classical brachistochrone’ problem dates back to the end of the seventeenth
century, when Johann Bernoulli challenged his contemporaries to solve the following
problem.

If in a vertical plane two points A and B are given, then it is required
to specify the orbit AM B of the movable point M, along which it,
starting from A, and under the influence of its own weight, arrives
at B in the shortest possible time. Acta Eruditorum, June 1696

This problem attracted the attention of many important mathematicians of the
time, including Newton, Leibniz, L'Hdpital, and Johann’s brother, Jackob Bernoulli.
The papers written on the subject may be considered the fundaments of a new field
in mathematics, the Calculus of Variations. A beautiful historical exposition of the
brachistochrone problem may be found in Reference [25], where the authors’ thesis
is that the brachistochrone problem also marks the birth of Optimal Control.

Still now the classical brachistochrone problem is very popular, and its impor-
tance is witnessed by the fact that there is hardly any book on Calculus of Variations
that does not use this problem as a takeoff point. The well known solution to the
brachistochrone- problem is a cycloid, which is the curve described by a point P on
a circle that rolls without slipping.

The cycloid curve was introduced by Galileo, who was actually the first scientist
to formulate the brachistochrone problem several decades before Bernoulli, in his
Discorsi e dimostrazioni matematiche intorno a due nuove scienze, of 1638. Curi-
ously enough, Galileo did not find the correct answer to the problem; apparently, he
simply noticed that an arc of a circle joining A and B would give a faster travel time
than the straight segment.

Huygens had discovered another remarkable property of the cycloid: it is the only
curve such that a body, falling under its own weight, is guided by this curve so as
to oscillate with a period that is independent of the initial point where the body is
released. For this reason, Huygens called this curve the tautochrone.2

The classical brachistochrone problem has several generalizations, e.g., the homo-
geneous gravitational field could be replaced with an arbitrary Newtonian potential,
and instead of releasing the particle from rest one could prescribe an arbitrary value
for the initial speed, leaving the initial direction of the velocity undetermined.

In modern terminology, the Newtonian brachistochrone problem can be stated
as follows. Given a manifold Mo endowed with a Riemannian metric go, to be
interpreted as the configuration space, and a smooth function V : My — R,
representing the gravitational potential, a brachistochrone of energy E > 0 between

Hrom the greek: BpartoTog=shortest, Xpovos=time.
7'fmmthegreek.1avro<=equalorwne.mdxpovo<=ﬁm.
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two points zp and x; of My is a curve z : [0,7;] — M joining z¢ and z; that
extremizes the travel time T, in the space of all unit speed curves y joining xy and
z; and satisfying the conservation of energy law:

¢8)) %g(:i:, )+ V(z)=E.

(throughout this paper we will consider the motion of particles with unit mass) A
well known variational principle states that a curve z joining xo and z; is a brachis-
tochrone of fixed energy F if and only if z is a geodesic with respect to the conformal
Riemannian metric ¢ - go, with conformal factor ¢ = (E — V)2

The first relativistic versions of the brachistochrone problem appear in [11] and
[13]. V. Perlick (see [20]) has determined the brachistochrone equation in a reg-
ular stationary Lorentzian manifold, i.e., in a time-independent split gravitational
field according to general relativity, and Giannoni, Piccione and Verderesi in [10]
have generalized Perlick’s result to the case of a possibly non regular stationary
Lorentzian manifold by reformulating the brachistochrone problem in the context of
sub-Riemannian geometry. The variational principle proven in [10] was then used in
(8] to prove some results concerning the existence and the multiplicity of relativistic
brachistochrones with respect to the travel time, having fixed energy, between a fixed
event and a fixed observer of a stationary spacetime.

The general relativistic brachistochrone problems can be formulated on Lorentz-
ian manifolds in the following way.

Let (M, g) be a 4-dimensional Lorentzian manifold, i.e., an arbitrary spacetime
in the sense of general relativity and fix a timelike smooth vector field Y on M.
The integral curves of Y can be interpreted as the worldlines of observers. Please
note that we do not require Y to be normalized, i.e., in general the worldlines of our
observers are not parameterized by proper time. The reason is that in the stationary
case, i.e., if (M, g) admits a timelike Killing vector field, it is convenient to choose
this Killing vector ficld for ¥ and not a renormalized version of it, that may fail to
be Killing.

To formulate the brachistochrone problem with respect to our arbitrarily chosen
observer field Y, we fix a point p in M, a (naximal) integral curve 7y : JR +—— M
of Y and a real number k > 0. The trial paths for our variational problem are all
timelike smooth curves o : [0, 1] — M which are nowhere tangent to Y and satisfy
the following conditions.
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(12) a(0) = p;

(1.3) o(1) € 7(R);

(14) 9(6(0), Y ((0))) = —k ( - 9(6(0), 5(0))) >;
(1.5) 9(Vs0,6) =0

(1.6) 9(Vs6,Y) =0.

Here V denotes the Levi-Civita connection of the Lorentzian metric g.

If we interpret each integral curve of Y as a “point in space”, (1.2) and (1.3) mean
that all trial paths connect the same two given points in space, where the starting
time is fixed whereas the arrival time is not. Condition (1.4) says that all trial paths
start with the same speed with respect to the observer field Y. By condition (1.5),
the quantity 7, defined by ~7,,%> = g(&,¢) is a constant for each trial path o (but
takes different values for different trial paths). This implies that the curve parameter
s along o is related to proper time 7 by an affine transformation, 7 = 7,8 + const.
As a consequence, the 4-velocity along each trial path is given by 7; ™14, whereas
the 4-acceleration is given by 7,2V ;4. Hence, conditions (1.5) and (1.6) require
the 4-acceleration to be perpendicular to the plane spanned by ¢ and Y. In other
words, with respect to the observer field Y there are only forces perpendicular to the
direction of motion. Such forces can be interpreted as constraint forces supplied by a
frictionless slide which is at rest with respect to the observer field Y. The quantity 7,
will be called the travel time of the curve o; the set of trial paths for our variational
problem will be denoted with the symbol B}, (k).

The two brachistochrone problems can now be formulated in the following way.

The travel time brachistochrones of energy k between p and -y are those curves in
B} (k) for which the travel time is stationary.

The arrival time brachistochrones of energy k between p and + are defined to be
the stationary points in B (k) for the arrival time functional, given by

7(0) =y} (a(1)).

In other words, 7(o) is the value of the time of the receiver at the arrival event; this
is the proper time if and only if Y is normalized along ~. In order for 7 to be well
defined, we need to assume that v does not have self-intersections, i.e., that v is
injective. Observe that if one reparameterizes smoothly the curve -, then clearly the
values of the arrival time functional T are affected by this change; nevertheless, the
stationary points of T do not depend on the parameterization of .

The arrival time functional was introduced by Kovner in [14), and its properties
were further investigated for the study of causal geodesics in Lorentzian manifold by
other authors (see e.g. [5, 19)).
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In physical terms, the two brachistochrone problems differ by the way of mea-
suring time: in the first case the time is measured by a watch traveling along the
trajectory of the mass, in the second case the time is measured by the observer that
receives the mass at the end of its trajectory.

For a physical interpretation of our brachistochrone problem, the timelike vector
field Y should be related to some observable quantities, i.., Y should be co-moving
with some bodies. For instance, if we are in the solar system and Y is comoving
with the planets, the solutions to our brachistochrone problem will give worldlines
of particles that minimize the arrival time time among all curves that have a fixed
specific energy in the rest system of the planets. If Y is at rest with respect to the sun
and to the distant stars, then the brachistochrones will be the worldlines of massive
objects that minimize the arrival time among all curves that have fixed energy in a
reference system oriented at distant stars.

It is also possible to return to the original interpretation of of the brachistochrone
problem and think of the body guided by a frictionless slide, in which case Y is
determined by being the rest system of the slide.

If (M, g) is a stationary spacetime and Y is a Killing vector field, i.e., the flow of
Y preserves the metric g, then the condition (1.6) means that the product g(5,Y) is
constant along o. The value of this constant can be easily computed using condition
(1.4), that gives g(6,Y) = —kT,. Hence, in the stationary case, the conditions (1.4)
and (1.6) can be resumed in the condition:

a.n 9(6,Y) = —kT,.

The condition (1.7) is the relativistic counterpart of the energy conservation law in
the Newtonian case. Although physically meaningful, the mathematical approach to
the general relativistic brachistochrone problem in the non stationary case presents
difficulties of higher order than in the stationary case. For instance, it is not even
clear whether the non stationary brachistochrones are solutions to a second order
differential equation; in Reference [21], the authors used a Lagrange multiplier tech-
nique to derive a system of differential equations for the travel time brachistochrones
and for the Lagrangian multipliers. Unfortunately, it does not seem to be possible to
eliminate the Lagrangian multipliers from the system without introducing integrals,
unless in the stationary case. Thus, it looks as if the brachistochrones in the non-
stationary case are not determined by a second-order differential equation, but rather
by an integro-differential equation.

The travel time brachistochrones in stationary manifolds have already been stud-
ied from a variational point of view, and the main results may be found in Refer-
ences [6, 8, 9, 10]. This kind of brachistochrones are characterized by the second



THE ARRIVAL TIME BRACHISTOCHRONES IN GENERAL RELATIVITY 6

order differential equation:
2k 7T, 9(V;Y,Y) .
. - =0.
18) Veo+—+~ FvA% VsY +2k ANCET VA (ko - T,Y)

In this paper we want to develop a similar theory for the arrival time brachis-
tochrones, in particular we determine the differential equation that characterizes the
arrival time brachistochrones, and we give conditions that guarantee the existence
and the multiplicity of brachistochrones of given energy between an event and an
observer of a stationary Lorentzian manifold.

Let’s assume from now on that (M, g) is a stationary Lorentzian manifold, and
that Y is a given timelike Killing vector field on M. For all ¢ € M, we will
denote by (., -) the Lorentzian inner product in the tangent spaces T, M induced
by the metric g. As it is natural to expect, in order to obtain existence results for
brachistochrones, one needs to assume the completeness of M with respect to some
Riemannian structure which is related to our variational setup. To this purpose, we
introduce an auxiliary Riemannian structure on M, denoted by g, defined by means
of the timelike field Y as follows:

v,Y
a9 ° ga(v,v) = (v, v)m (v,v) -2 ((Y Y))
for all tangent vector v € T'M. The positive definiteness of g is proven easily using
the wrong-way Schwartz’s inequality satisfied by the Lorentzian inner products. It is
easy to see that Y is Killing also in the metric gg; moreover, the restriction of g and
gr on the orthocomplement of Y coincide.
For all k € IR*, we consider the open subset Uy, C M defined by:

(1.10) Ue={ge M:(¥(g),Y(g)) + ¥ > o}.

Since Y is Killing, then the quantity (Y,Y’) is constant along each flow line of Y’; it
follows that Uy, is Y-invariant, i.e., Uy, is invariant by the flow of Y.

We have the following existence result for the arrival time brachistochrones:
Theorem 1.1. Let (M, g) be a stationary Lorenszian manifold, Y be a timelike
Killing vector fieldon M and k € R* be a fixed positive constant. Let p be a fixed
pointinUy and vy : R v~ Uy be a maximal integral line of Y, which is assumed to
be injective.

Suppose that the following hypotheses are satisfied:

(1) —k? is a regular value for the function {Y,Y) on M;
(2) Y is bounded away from 0, i.e., there exists a positive constant v > 0 such
that:

(1.11) 0<v<—(Y(),Y(@), VgeUy
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(3) the closure Uy = Uy |J8Uy is complete with respect to the Riemannian
metric gn;
4 p¢1(R).
Then, there exists at least one arrival time brachistochrone of energy k between p
and 4.

If the topology of Uy is non trivial, then we can prove the existence of arrival time
brachistochrones of arbitrary large arrival time:

Theorem 1.2. Under the hypotheses of Theorem 1.1, if Uy, is not contractible, then
there exists a sequence of arrival time brachistochrones {0 }ne N in B;', (k) such
that:

(1.12) "lingo T(0n) = +00.

Theorem 1.2 is the analogue of Serre’s Theorem (Ref. [23]) concerning the mul-
tiplicity of geodesics joining two fixed points in a complete, non contractible Rie-
mannian manifold.

We outline briefly the structure of the paper.

In Section 2 we give the basic definition and properties of our functional setup,
and we prove the existence of an infinite dimensional differentiable structure for the
brachistochrone variational problem.

In Section 3 we prove the regularity of the solutions of our variational problem,
and we give a characterization of the arrival time brachistochrone in terms of a sec-
ond order nonlinear differential equation.

In Section 4, we introduce a sort deformation map which plays the role of a spatial
projection (observe that we do not assume any topological space-time splitting on the
Lorentzian manifold (M, g)), which is used to prove a first variational principle for
brachistochrones. Such principle relates the arrival time brachistochrones of a given
energy k to the local minimizers of a Lipschitz functional, denoted by 7%, defined on
the set of curves that are horizontal with respect to the orthogonal distribution of Y.
The functional 7, lacks smoothness. Moreover, it is invariant by reparameterization,
which means that the set of its critical points, i.e., minimizers for a set of curves
joining events and integral curves of Y sufficiently close, is acted upon by the infinite
dimensional group of diffeomorphism of the interval [0, 1]. Then it is quite hard to
study with global variational techniques.

Under this point of view, it appears an evident analogy with the problem of light-
like geodesics in stationary manifolds. In reference [4], under the assumption of
space-time splitting for the stationary metric g, the authors prove a Fermat princi-
ple for lightlike geodesics, which reduces the null geodesic problem to the study of
critical points of a smooth functional defined on the set of spatial curves. Such func-
tional, which is not invariant by reparameterization, can be obtained from the arrival
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time functional by interchanging the position of a square root and an integral sign
of a suitable Riemannian metric (see formulas (4.5) and (5.2)).

In order to overcome the problems of the lack of regularity for 7 and its parame-
terization invariance, using the same artifice employed in reference [4], in Section 5
we prove a second variational problem for arrival time brachistochrone of a given en-
ergy k with the introduction of a smooth functional, denoted by Gk, defined on the
set of horizontal curves, and which is not invariant by reparameterization. We prove
the existence of a bijection between the set of critical points of G, and the set of
critical points of 7} that are parameterized in such a way that a suitable conservation
law is satisfied. Thanks to this principle, we reduce the proof of Theorems 1.1 and
1.2 the the proof of analogous results of existence and multiplicity of critical points
of the smooth functional Gj. The situation here is very different from the travel time
brachistochrones, where the problem was reduced to the search of geodesics in a
convex subset of a suitable Riemannian metric (see [8, 10]).

To prove the existence of critical points for Gk, we use well known technigues
from Ciritical Point Theory. Under the assumptions of Theorem 1.1, the functional
G, does not satisfy the Palais—Smale compactness condition, because of the presence
of the boundary 8Uj. To deal with this problem, we use a penalization technique
which was introduced to study unidimensional variational problems in manifolds
with convex boundary. In Section 6 we present this technique with the introduction
of a family G} . of smooth functional, parameterized by a positive constant £, which
approximate the functional Gy, as e — 0, that are bounded from below and that sat-
isfy the Palais-Smale condition. In Section 7 we prove some a priori estimates on
the critical points of the penalized functionals G, ., and we prove Theorem 1.1. Fi-
nally, in Section 8, we obtain a Ljusternik—Schnirelman theory for the critical points
of G by a limit process that involves the estimates proved in Section 7, and that will
yield the proof of Theorem 1.2.

In Appendix A we discuss the abstract theory in the particular case of the Schwarz-
schild metric. Here, it appears a remarkable difference between the travel time and
the arrival time brachistochrones. Namely, thanks to a suitable convexity property,
the hypothesis of Theorem 1.1 are satisfied in the Schwarzschild spacetime, so that
every event p and every observer -y can be joined by a travel time brachistochrone
of energy k, for any positive value of k. On the contrary, due the presence of the
events horizon, there are pairs (p, y) that cannot be joined by any travel time brachis-
tochrone (see [20]).

For the basic geometric notions used in this paper we refer to standard textbooks
of semi-Riemannian geometry, like for instance [1, 17]; the classical books [1, 12,
17, 22] provide excellent references for the background physical knowledge assumed
in this paper.
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2. THE FUNCTIONAL FRAMEWORK

Throughout this paper we will denote by (M, g) a stationary Lorentzian mani-
fold, with g a Lorentzian metric tensor on M, and Y is a smooth timelike Killing
vector field on M.

Moreover, we will assume throughout the paper that the hypotheses 1, 2, 3 and
4 of Theorem 1.1 are satisfied by (M, g), Y, k, p and ~. The role of each single
hypothesis in the proof of our results will be pointed out at every occurrence.

The symbol (-, -} will denote the bilinear form induced by g on the tangent spaces
of M; the usual nabla symbol V will denote the covariant derivative relative to the
Levi-Civita connection of g. Given a smooth function ¢ on M, for g € M we
denote by V¢(q) the gradient of ¢ at ¢ with respect to g, which is the vector in T, M
defined by (Vé(g),-} = de(g)[-]; the Hessian H?(g) of ¢ at g is the symmetric
bilinear form on T, M given by H%(g)[v,vs] = (V, V§,v2), for vy, v2 € TuM.

The Killing property of Y, which is crucial in most of the results presented in this
paper, will be used systematically in our computations through the following two
facts:

(1) the quantity (Y,Y’) is constant along each flow line of Y,
@ (VyY,w) = —(V,Y,v) for all pair of vectors v and w; in particular, for
all v € TM, itis (V,Y, ) = 0.

Observe the second condition above is in fact equivalent to the Killing property of
Y (see [17, Proposition 9.25]). Moreover, since the open set Uy, is invariant by the
flow of Y and U} is gn-complete, it follows that Y is complete in Uy, i.e., the flow
lines of Y in Uy, are defined over the whole real line.

We set:

m = dim(M);

the physical interesting case is m = 4.

Given any two smooth manifolds M; and M;, possibly with boundary, and an
integer n € IV, we denote by C™(M;, M) the set of all maps of class C™ be-
tween M; and M,. As customary, for 1 < g < +o00, L?([0,1], IR) will denote the
space of Lebesgue g-integrable real functions; for n € IN, H*([0, 1], R) will de-
note the Sobolev space of functions of class C"~! and having weak n-th derivative
in L%([0, 1], R).

For all ¢ > 1, we define the spaces L9([0, 1], TM) of g-integrable T'M-valued
functions:

2.1)

L([0,1), TM) = {c: [0,1] — T M measurable : /0 ' (¢®),¢@))? at < +oo}.
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The set L>°([0, 1}, TM) is defined similarly:
L=([0,1}, TM) = {c : [0,1] —— T:M measurable : {¢, (), € L=([0, 1),1R)}.

Let # : TM — M be the canonical projection. Given any curve o : I C
R — A, avector field along ¢ is amap { : ] — T M such that 7 o { = 0. Let
A be any open set of M; forall j € IV and all 1 < ¢ < +00 we define the Sobolev
space W74([0,1], A) as:

2.2)

w([0,1], 4) = {a € C771([0,1}, A) : Vi~o is absolutely continuous and
Vio € L([0, 1}, 4) };

we set:
23) H'([0,1], A) = W¥([0, 1], 4).

It is not too difficult to prove that the definition of the spaces W74([0, 1], A) does
not indeed depend on the choice of the Riemannian metric g, that appears in for-
mula (2.1). As a matter of fact, W#9([0, 1], A) can be defined intrinsically for any
differentiable manifold A using local charts (see [18]) or, equivalently, using aux-
iliary structures on A, like for instance a Riemannian metric. The definition of the
spaces W#9([0, 1}, T M) is given similarly.

If A is a smooth submanifold of M, in particular if A is an open subset, then
H([0,1], A) has the structure of an infinite dimensional Hilbertian manifold, mod-
cled on the Sobolev space H([0, 1], R™); for ¢ € H([0, 1], A), the tangent space
T,H'([0,1], A) can be identified with the Hilbert space:

@4  T,HY([0,1],4) = {c € HY([0,1], TM) : ¢ vector field along a}.
The inner product in T, H([0, 1}, A) is given by:

1
@9 0= [ (600 + (736, 750),,) dt.
Note that, if we require {(0) = 0 in T, H*([0, 1], A), then the inner product (2.5) is
equivalent to;
1
(2.6) (€: <o = /o (V56 Vo), dt-

Recalling the definition of the open set Uy, given in (1.10), where k is a fixed
positive constant, we now choose an event p € Uy and v : IR +— Ui a maximal
integral line of ¥ whose image does not contain p. We introduce the space:

@n o ={we (01,0 : w(©) = p, w(1) € ¥(R)};
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it is well known (see [18]) that Q) is a smooth submanifold of H([0, 1], U).
For w € Q) the tangent space T,,(), is identified with the Hilbert subspace
of T, HY([0, 1], Uy) given by:

28 TP = {q € T, H'([0,1},Uk) : ¢(0) = 0, ¢(1) € R - Y(w(l))}

Given any absolutely continuous curve w : [a, b] — M with % € L}([0,1], TM)
and any continuous vector field V along w, the covariant integral of V along w is an
absolutely continuous vector field V along w, denoted by:

@9) () = f v
a
which is (uniquely) determined by the conditions:
(2.10) V(@)=0 and V4V =V ae.on|a,b].

In local coordinates, the covariant integral of V' along w is obtained as the solution
of a first order liner differential equation that involves the Christoffel symbols of the
metric g, which are smooth functions, evaluated at the pomts of w. It is easy to see
that, if wisa curve of class H 1 and V is continuous, then V is a vector field of class
Hl
We consider the arrival time functional 7 on 02, given by:
@11 T(w) =77 (w(1)).
Observe that 7 is well defined because -y is assumed to be injective, by the causality
of M. The value of the functional 7 at a given curve may be interpreted physically
as the time measured by an observer at the final endpoint of the trajectory of w.
We have the following easy regularity result for 7:
Lemma 2.1. The functional T is smooth on Q.. For w € QY and { € T,Q)

P Py
the Gateaux derivative dr(w)[(] is given by:

(€)Y (w(r)))
(Y (w(1)), Y (w(1)))
Proof. Letw € Q) and { € T,,Q25), be fixed. Let s — w, be a smooth variation
of w with variational vector field ¢, i.e., s — w, is a smooth map from | — €, [ to
Q5% withe > 0, with wo = wand £ _ w, = Itis:
(2.13) Y(7T(ws)) = wy(1), Vs€]—gel.
Differentiating (2.13) with respect to s and evaluating at s = 0, since ¥(7(w)) =
Y (w(1)), we get:

(2.14) dr(w){(] - Y(w(1)) = {(1).

2.12) dr(w)i¢] =
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Formula (2.12) follows easily from (2.14), keeping in mind that (Y, Y) # 0. Ob-
serve that (2.12) defines a smooth function in {, because the evaluation at the point
1 is smooth. It follows that 7 is smooth and we are done. 0

We now introduce formally the space of candidates for our variational problem,
which is defined by:
(2.15)

B, (k) = {a’ € Y, : 37, > Osuch that {¢,Y) = —k7, and (6,6) = —’1',2}.

Observe that & is only defined as an L2-function; therefore, {¢,Y) = —k7, and
(¢,6) = —T,2 are to be interpreted as almost everywhere identities. In order to
avoid bothering the reader, in the rest of the paper we will omit to emphasize such
remarks and we will tacitly mean almost everywhere equalities whenever necessary.
Due to the presence of the double constraint, it is not clear whether B! (k) is a
smooth submanifold of 20, . Nevertheless, we can prove that B{’), (k) admits a dense
open subset, denoted by AQ) (k), which has the structure of a smooth submanifold
of Q().
Proposition 2.2. There exists an open dense subset A$>, (k) of BG) (k) that has
the structure of a C* submanifold of Q3. The set A), (k) contains all the curves
o € B®, (k) that are of class C*; moreover, if o € BS), (k) is a curve of class C*,
then the tangent space T, A, (k) is given by:

2.16)
T, AR, (k) = {¢ € T, 0, : there exists C; € R such that (V5¢,5) =

and (V;¢,YY = (¢, VoY) = c'(}.

7, C¢
k ?

Proof. We will show that, given a curve o € B, (k) of class C?, then there is an
open neighborhood of o in B{, (k) which has the desired structure.
Let k € IR* be a fixed constant; we consider the following map:

2.17) F: 90 — L*([0,1], R) x L*([0,1], R)
given by:

@2.18) Flo) = ((a,Y) \3(8,8)p +1- \Jl_ ( (ffy))( Y )

ommauﬁ < 0inT}.

]
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Let C denote the subspace of L2([0, 1], IR) given by all the functions which are
constant almost everywhere, and let C~ denote the open submanifold of C consisting
of negative functions. It is easy to see that B (k) = F1(C~ x {0}).

It is not difficult to prove that F is a map of class C? and that, for o € B&) (k)
and V € T,Q0), the Gateaux derivative dF(c)[V] is given by:

dF(o)[V] =

((VaV, Y) - (V,V,Y),

@19) [ YV, V)~ (V, Vo)) + KXV, Y, &) (¥¢e, &)m+1)~* ) :

Here we have used the fact that ¥ is Killing, thus (¢, VyY) = —(V, V,Y).

Let £2([0,1], IR) denote the quotient space L2([0, 1], R)/C, which is naturally
identified with the set of functions with null average in [0, 1]:

(220)  L%(fo,1), R) = L*([0,1], R)/C ~ {f € L*(fo,1), R) : /o 1 f= 0}-

LetI1 : L%([0,1], RR) x L3([0, 1], R) +— L2([0, 1], R) x L2([0, 1}, R) be given by
the quotient map on the first factor and the identity on the second factor.

Let now o be a C-curve in BE), (k); then, the maps (6, Y), {(6,Y)” and (&, &)
are in C°([0, 1], JR). To prove the Proposition we use the Inverse Mapping Theo-
rem (see [15]). According to this Theorem, there exists an open neighborhood of
o in B, (k) which is a smooth submanifold of Q$), provided that the map F be
transversal over C~ x {0} at g, i.e., if the composite map:

.21 Ilo dF(o) : T,Q, — L*([0,1], R) x L%([0,1], R)

is surjective. This amounts to saying that, for all hy, h, € L2([0, 1], R) there exists
a constant ¢ € IR such that the system of differential equations:

(2.22) (VeV,Y)—(V,VsY) =hi+¢

(2.23) (6. YY(VoV,Y) = (V,VsY)) + k3(VsV,6) = hy

has at least one solution V' € T,£1,. Using the fact that (¢,Y’) is constant, we can
rewrite (2.23) as:

(2.24) (VsV,6) = hs,

where
by + 2k T, (hy +¢)

hs 2k2

isin L2([0, 1}, R).
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Let Z € C1([0,1], T'M) be a vector field along o satisfying
(2.25) (Y,Z)=0, and (Z,6)#0.

To prove the existence of such a vector field Z, consider first the vector field along o
given by ¢, which is the orthogonal projection of & onto the distribution A = Yt
orthogonal to Y. Formally, we have:

1 _ . (oY) ., k7,

f =f——-LY= —Y.
(2.26) g o (Y,Y)Y 0+(Y,Y)
Obviously, we have:

B+{yY
2.27) (6+,6) = -T, E+(Y) Lo

(r.Y)

Observe that 6+ € C°, and it does not have the required C*-regularity. Now, let
Z be any section of class C? of A which is uniformly close to 6, in such a way
that (Z,6) # 0 as well. For the approximation theorem, we can usc a C parallel
referential of A along o, so that sections of A along o will be identified with curves
in the Euclidean space, and standard approximation results apply.

Observe in particular that, since {Z, &) is continuous, then (Z, 6)-1 is a function
in L*=([0, 1}, IR).

In order to solve equations (2.22) and (2.24), we set

V= (PIY + ‘p?zr
where ;1,2 € HY([0,1], IR) are to be determined. Observe that such a V' belongs
to T,Q0), provided that p; and ; satisfy the boundary conditions:

£

(2.28) #1(0) = p2(0) =0, and ¢2(1) =0.
Since (Z,Y') = 0, equations (2.22) and (2.24) are translated into:
(2.29) o' (YY) +202(VsZ2,Y)=hy +c

(2.30) ~kTop1" + 92'(Z,6) + p2(VsZ,6) = hs.
We solve for )’ equation (2.29) obtaining:

(231) o1 = (Y,Y) 7! [h+e=202(VsZ,Y)];
substituting (2.31) in (2.30) gives:

(2.32) w2’ +apy =B +ch,

where

oo (NYNVeZ,6) + RT(VsZ,Y)
(Z’ &)(}’, Y) !
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and
g MEhth(YY)
=TEawy) T @y
Observe that o and 6 are in L2({0, 1], IR), while 3 € L2([0, 1], IR). Thus, the unique
solution - of (2.32) satisfying 2(0) = 0, given by:

t
(2.33) palt) =e oo [ / Be* + ¢ / tOe"‘] ,

is in H'([0, 1], IR). Observe that 8 7é 0in [0,1}, and so f 6™ # 0. In particular,
there exists ¢ € IR such that p3(1) =

Finally, ¢, can be chosen as the umque solution of (2.31) satisfying ¢1(0) = 0.
Observe that the right hand side of (2.31) is in L2([0, 1], IR), so 1 € H'(]0,1], R)
and F is transversal over C~ at 0. Hence, there exists an open neighborhood of ¢ in
Bg) (k) which is a smooth submanifold of ) .

By the Inverse Mapping Theorem, for o € B“’ ), (k) of class C, the tangent space
T, B, (k) is identified with the kernel of the map H o dF (o), which consists of the
vector ﬁelds ¢ € T,Q), such that dF(0)[¢] € C x {0}.

Recalling (2.22) and (2.23), we have that { € 7,07, belongs to T, B{Y (k) if
and only if there exists C; € IR such that ( satisfies the equatlons
(2~34) <V0"C’Y) - (C) V&Y> = CC,

(2.35) —2kT,C¢ + 2k*(V3(,6) =0

From (2.34) and (2.35) we easily obtain (2.16) and we are done. a
In B}) (k), we can define the travel time functional T', given by:

(2.36) T(o)=T,

We now proceed to the formal definition of arrival time brachistochrone. Observe

that, since B[} (k) is not a manifold, then we cannot define as brachistochrones the

critical points of 7 in B§?) (k). However, we can define minima for the arrival time

functional in B (k), without the need of a differential structure.

If q is any point in U, we denote by -y, the maximal integral line of Y through g.
Moreover, if I = [a,b] C [0, 1] is any interval, and if q;, g2 are any two points in Uy,
we define B | (k, ) as the space of curves £ € H'(I,Uy) such that £(a) = ¢;,
£(b) € g, (IR), and satisfying (£,Y') = ~k Ty, (£,€) = —T7? for some Ty € R*.
Remark 2.3. Observe that if o € B!, (k), then, for every I = [a,}] C [0,1], the
restriction of ¢ to I is a curve in Bf"()a) 1oy (K2 1) Due to the double constraint in
B“’ ), (k), the converse of this statement does rot hold in general, i.., not every curve

Bf,(a) Yo (k, I) is the restriction to I of some curve in BS), (k).
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To make this point clear, we consider the following simple but instructive exam-
ple. Let M = IR? be endowed with the Minkowski metric given in the coordinates
(z,y) by g = dz® —dy?; let Y = g; be the chosen timelike Killing vector field, let

~ be the y-axis, k > 1, p = (—vk2 — 1,0), and

o(t) = (z(t),y(t)) = ((t — 1)Vk> - 1, kt),
t € [0,1). Then, o € BY, (k) with 7, = 1; consider the interval [a,b] = [}, 1], so
that 7, = yand g = a(a) =(-3vk -1,%).

An obvious calculation shows that every curve & € B{) (k) passing through ¢
att = 1 is such that T3 = 1. Namely, if & = (z,y) is a curve in B{),(k), then
y(t) = kT5t, and the passage through g at ¢ = £ implies 7z = 1. On the other
hand, one can easily construct curves in B (k, [-;-, 1]} with arbitrary large travel
time, which proves the claim.

A similar case is treated in Lemma 4.5 ahead.

We can now define the localized minimizers for the arrival time functional:
Definition 24. A curve o € B{) (k) is said to be a localized minimizer for the
arrival time if, for all 0. < a < b < 1 such that b — a is sufficiently small, the
restriction of o to the interval I = [a,b] is a minimum point for the arrival time
functional 7 in the space B"()a) Aoy B D)-

A curve o is said to be an arrival time brachistochrone of energy k between p and
v if it is a critical point of class C? for the restriction of 7 to AQ (k).

We will show in Section 5 that the concepts of localized minimizer and critical
point for the arrival time functional coincide. To prove this, we will use horizontal
curves with respect to the orthogonal distribution of Y, which will allow to reduce
the brachistochrone problem to the search of critical points for a functional subject
to only one constraint. The main motivation for this approach is the lack of regu-
larity for the critical points of 7 on B (k); to realize this we discuss a simple but
instructive example.
Example 2.5. Let (M, g) be the four-dimensional Minkowski spacetime; i.e., M =
R® x Rand g = gy — dz2, where gy = d:c + dz3 + dz? is the Euclidean metric
in IR®. Let Y be the Killing vector field ;2-, p = (o 0, o 0), 7(3) (1,0,0, s),
8 € IR, and let k > 1 be fixed.

In this example, the set B{!) (k) can be described explicitly as:

B“?,(k) {U = (1,22, T3, 24) € H([0,1}, R*) :
37, > O such that £4 = k7, and £3 + 22 + 22 = (k? - 1) 72,
z4(0) = 0, (1,2, z3)(0) = (0,0,0), (z1,z2,23)(1) = (1,0, 0)}
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We consider the curve o € B, (k) given by:

(3t,0,0), ift € [0, %];
oo(t)=¢ (2-3t,0,0) ifte]},z);
(3t~-2,0,0) iftels,1].
Moreover, we set z4(t) = kT, t, where T, = 3(k% — 1)~3, so that o(t) =
(o0(t), z4(t)) belongs to B, (k).
We claim that o has an open neighborhood in B, (k) which has the structure of
a manifold of class C. To prove this, arguing as in Proposition 2.2, it suffices to
show that, for every h € L?([0, 1], IR), there exists ¢ € R and £ = (£;,£,,&) €
H([0,1), R3) such that;
%0(60,§) =h+ec, £(0)=¢(1)=0.
A direct computation gives the following solution for the problem above:
() = (A(), 0,0)
with
% j:(h(r) +¢)dr, ift € [0, %],
M) =< L0 +e)dr - [ o) + ) dr, ift €)1, 2);
3L heyar = L TR dr + 4 [}y (h(r) + o) dr, ift€]3,1),
and the constant c is given by:

c=-9 (/fh(r)dr-/:h(r)dr+/;h(r)dr).

Now, the arrival time 7 of ¢ is easily computed as:

1 1
(o) = / oty dt = kT, =k / VE(OF + 22007 + £20)° dt.
0 o
Then, o is a critical point for 7 in B{, (k) if and only if the following condition is
satisfied:
2.37)

l -
/ 9o(d0,€) dt =0, V¢ of class C? with £(0) = €(1) = 0 and go(60,£) constant;
0

in other words, o is a critical point for 7 in BY), (k) if and only if given any £ of class
C? with £(0) = £(1) = 0 and such that go (&, £) is constant, then the value of such
constant is zero. .

Now, if £ = (£;,&2, &3) is any map of class C1, the condition go(do, £) constant
is satisfied if and only if £, = 0. Therefore, go(60,£) = 0, so that (2.37) is satisfied
and o is a non smooth critical point of 7 in B, (k).
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This example shows that we cannot expect to have regularity results for the critical
points of 7, if we work directly in B, (k).

To introduce the set of horizontal curves, we denote by A the smooth distribution
on M given by the orthocomplement of the vector field Y. Observe that, since Y is
timelike, the wrong way Schwartz’s inequality implies that A is spacelike, i.e., the
restriction of the Lorentzian metric g on A is positive definite.

Let ¢ : A — M be the flow of Y defined on the open subset A of M x R,
ie., forq € Mandt € IR such that (g,t) € A, 1(q,) is the value 7,(t), where 7,
is the maximal integral line of Y satisfying v4(0) = ¢. As we have observed, Y is
complete in Uy, which implies that the open set A contains the product Uy X JR. Since
Y is Killing, then ¥(-, ¢) is a local isometry for all ¢ € IR; moreover, it is easy to see
that the distribution A is y-invariant, which means that ¥;(g,20)(A) = Ay(g,t0)s
where ¥;(q, to) denotes the differential of the map (-, o) at the point g. A function
¢ : M — Ris said to be Y-invariant if it is constant along the flow lines of Y; if
1 is C1, this amounts to saying that (Y, V¢) = 0.

We define Q20 (A) to be the subset of ), consisting of curves with tangent
vector at each point lies in A:

2.38) 0,(8) = {w € O, : 1(t) € Ay, YE € 0,11}

Using the language of sub-Riemannian geometry, we will call horizontal the curves
in 20),. By the same arguments of Proposition 2.2, one checks immediately that,
since (Y,Y') is never vanishing, 2§}, (A) is a smooth submanifold of 2§, and that,
for w € OF2, (A), the tangent space T, Q5 (A) is given by:

@39)  T.02(8) = {V e T, : (VaVY) - (V,VaY) = 0}.

:I‘he set 002 (A) is closed in Q2 with respect to the metric (2.6); namely, if {wg }n
is a sequence in ) (A) that converges to a curve w in Q25), then, since w(t)
is pointwise limit almost everywhere of a(t), it is (¥(t),Y (w(t))) = 0 almost
everywhere, and w € Q) (A).

Observe that, due to the presence of the boundary OUj, the manifolds €2( and
Q@) (A) are not complete. Namely, if 2, is a Cauchy sequence in either of these
spaces, then z,, converges to a curve z whose image may contain points of U}

3. THE ARRIVAL TIME BRACHISTOCHRONE DIFFERENTIAL EQUATION

The aim of this section is to characterize the arrival time brachistochrones in terms
of a differential equation and suitable initial conditions.

We start with the following easy observation, that follows immediately from
Lemma 2.1 and the definition of arrival time brachistochrone:
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Lemma 3.1. A curve o € AQ), (k) of class C? is an arrival time brachistochrone of

energy k between p and vy if and only if, for all ( € T,AD, (k) itis¢(1)=0. O
Based on this fact, we can now prove the following:

Proposition 3.2. Let k > 0 be fixed. A curve o : [0,1) — Uy of class C? joining p

and vy is an arrival time brachistochrone of energy k between p and « if and only if

¢ is a curve that satisfies the second order differential equation:

L 2T, ., 2 (VYY) _
(3.1) V,a _k_ V,,Y E m (Iw 7; Y) = 0,

and whose initial tangent vector &(0) is timelike, future pointing and it satisfies the
condition:

(3.2) (6(0), Y (0(0))" = ~k*(¢(0), 5(0)).

Proof. We start proving that a curve o that satisfies the equation (3.1) and the ini-

tial condition (3.2) belongs to BS) (k). Given such a g, denote by 7, the quantity

—k~*(4(0),Y (c(0)), which is positive by definition; observe that (6(0),6(0)) =
2

\')’Ve introduce the two functions p; and py in C*([0, 1}, IR) given by:
33) pt) = (6(), Y (0(t)), and paft) = %(&(t), &(8)).

By construction, we have:
1
(34) p(0) = —kT;, p3(0) = —57;2;

the curve o belongs to B{?) (k) if and only if py and p; are constant on [0,1]. To
prove this, we multiply the differential equation (3.1) by Y and by &, and we obtain
the system of differential equation:

' p2+28p2 — @ p1 =0,
where @ is the function:

(V:Y,Y)
. P=-2_——‘_,
3.8) k2 + (YY)
Then, an immediate calculation shows that the constant functions p, = —k7, and
pz = —1T,? are the unique solutions of the system (3.5) with initial conditions

(3.4), which proves that o € BS} (k).

We now prove that a curve o € BS!) (k) of class C? is a critical point for the
arrival time functional if and only if ¢ satisfies (3.1). Observe that (3.2) is satisfied
by every curve in B() (k).
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To this aim, given any o € BS), (k) of class C? and any vector field V along
o, with V. € H([0,1],TM) and V(0) = V(1) = 0, we define a vector field
¢ € T, B (k) by setting:

€X)) ((t) = V() + A(t) - Y(a(t)) + u(t) - 6(8),
where ) and y are functions satisfying the boundary conditions:
(3.8) A(0) = p(0) = p(1) =0,
and the differential equations:

iV TY — ko) — (V,T,VsY
(3.9) A’ - <V Y U) ( ) ,

T, (K +(Y,Y))
Y){V;V,6) + kT,C
(3.10) “I = _‘C_ (Y7 >(2V 0) + lAd 4 ,
K7, T,7(k? + (Y,Y))
where the function Cy is:
Cv = (VsV,Y) = (V,V,Y),
and the constant Cy is defined as:
C=X L{Y,YVsV,6) + kT,Cy 5.

o '1; 0 k2 +(Y,Y)

We observe that, using Lemma 3.1, a C2-curve 0 € By (k) is a critical point for 7

if and only if, for every { = W + A - Y vector field i m T,A," (k), with W vector

field along o of class H? such that W(0) = W(l) = 0, and X any function of class

H? on [0,1], itis A(1) = 0. Hence, the curve o is an arrival time brachistochrone if

and only if A(1) = 0, which, using (3.9), is the same as;
Y{VeV, ke + T,Y) — (V,T,V,;Y)

() k2 +{Y,Y)

for all vector field V of class H! along o such that V(0) = V(1) =

Integrating by parts the first term of (3.11) gives:

(3.11) dt =0,

.Y TVsY
3.12 V,Vs -z dt =
L _/ { (k2+(Y Y)) k2+(Y,Y)> &
for all V. Hence, the Fundamental Lemma of Calculus of Variations implies that:
ko —T,Y T.V:Y
3.13 & z ALK =0,
- . (k2+(Y,Y)) Yy "

which is equivalent to (3.1), and we are done. O
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If o € B, (k), we can reparameterize o using its proper time by setting:
t
2:{0, T} — Ui, z(t) = o(=).
e

Then, a curve z parameterized by proper time is an arrival time brachistochrone if
and only if it satisfies the differential equation:

.2 (VYY) | 2 (V.Y,Y)
3.14 Vii- 2V.Y - z
G149 RV e iR vy
and with initial tangent vector z(0) satisfying:
(20, Y (:(0))) = k.

Y=o,

4. LOCALIZED MINIMIZERS OF THE ARRIVAL TIME

Let k& > 0 be fixed and let Uy be the open subset of M defined in (1.10). We
introduce the following smooth functions ¥y : M — R and ¢ : Uy — RR:

4.1 %@=W@J@Hﬁ,mdmm=wég%$?p

Observe that ¢x and V. are positive in U} ; moreover, it is:
Ui = ¥1(0).
The assumption that k2 be a regular value for the function —(Y, Y) implies that the
derivative of W is non vanishing on the boundary of Uj.:
d¥y # 0 on V.

Hence, OU}. is a smooth submanifold of M.

In order to state properly our variational principle, we introduce an operator D
that deforms curves in ), into horizontal curves using the flow of Y.

Let D be the map:

D: Q) +— Q0 (A)
defined by D(0) = w, where

4.2) w(t) = ¢(J(t)’ ro(t))r

and r,; is the unique solution on [0, 1] of the Cauchy problem:
7, Y kT,

3 to=— 00 _ AT )=,

Yy (vyy
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namely,
i k 7;
T.(t) ) (YY)

Using the Killing property of Y it is easily checked that D is well defined, i.e., the
maximal solution of (4.3) is defined on the entire interval [0, 1] and the corresponding
curve w given by (4.2) is horizontal.

The differentiability of D and a formula for the differential dD is established in
the next:
Proposition 4.1. The map D is a smooth deformation retract between the manifolds
Q¢ and Q5 (A).

Proof. The smooth dependence on o of the solution r, of (4.3) proves that D is a
smooth map.
To prove that D is a deformation retract, we consider the map

H:Q®, x [0, +00] — Q%

given by: .
_[He®n,  ifr<n);

4.4) H(o,7r)(t) = { ¢(a(t),:a(t))y if: > rggtg.

Such a map H is clearly continuous, and it is a homotopy between the maps H(-,0),
which is the identity on Q{,, and H(-,00) = D. a

Remark 4.2. Observe that, by the last statement of Proposition 4.1, the spaces 25,
and 020, (A) have the same homotopy type.

We define the following functional on 20 (A):

1 \/ ¢k(w) - (w’ ‘U))
“4.5) n(w)=1(w)—k / dt.
o (Y(w),Y(w))

Observe that every curve w € Q) (A) is spacelike, i.c., (1,1) > 0 almost every-
where, and 7, is well defined in Q02 (A).

It is not difficult to prove that 7, is Lipschitz continuous in Q) (A) and that it is
differentiable at those points w for which the following condition is satisfied:
(4.6) 3 vw > 0 such that ¢y (w) (1, %) > v, 2.e. 0n [0,1).

By critical point of 1, we will mean a curve w that satisfies (4.6) and dr(w) =
0. Observe also that 7y is invariant by reparameterizations, and so is the space
Q02 (A). By that, we mean that if w € Q) (A) is given and wp is any repa-
rameterization of w of class H! on the interval [0,1], then wo € Q) (A) and
Ti(wo) = T (w).
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In particular, given any w € Q7 (A) satisfying (4.6), there exists a unique repa-
rameterization wy € 4 (A) of w 'for which the quantity ¢y (wo(2)){wo(t), wo(t)))
is constant (positive) on [0 1]. In the proof of the following Lemma we will see that,
if w € D(B{)(K)), then w is parameterized in such a way that dr(w){w, ) is
constant (and positive).

The maps 7, 7y and D are related by the following:
Lemma 4.3. For all o € By}, (k), we have:
@an 7 (D(0)) = 7(0).

Proof. Let o € B} (k) be fixed and let w, denote the curve D(o). We start with
the following calculation, that relates the Riemannian length of 1, with the travel
time 7:

Pk (wtr)<"bm '-ba) =

= —%@,—)@wm + oY, dsplo] + £oY) =
4.8) - ‘% ((6,6) +25,(Y,6) + £2(Y,Y)) =
~ s (618) - <(";;‘Q; ) -
=R (:’(i:)y) (-7 -T Y>) ~T,2=—(5,6)

Then, using (4.2), (4.3), (4.5) and (4.8), we compute easily:

m(w,) = 7(w,) _k/ \/W

(1Y)
4.9 — _ _L. _
(o) +o(1) — k /0 Tk
o T, _
=T(0’)+k/o‘ Wdt—-k/o Wdt—-‘r(d),
which concludes the proof. O

The above Lemma explains the introduction of the functional 7,.. However, in
order to prove the results of existence and multiplicity, it turns out to be more con-
venient to use another functional denoted by Gy, constructed starting from 7, that
will be introduced in Section 5.



THE ARRIVAL TIME BRACHISTOCHRONES IN GENERAL RELATIVITY V.

Remark 4.4. Observe that, from (4.8) it follows that, if w, = D{0) for some ¢ €
B (), then ¢y (w,)(tb,, %, ) is constant along w,. Moreover, if w € Q) (4)
is such that ¢ (w)(1, ) is constant, then there exists o € B, (k) such that w =
D(o). To see this, one can introduce the following map:

(4.10) G: QR —s QP

7Y
given by:
@.11) Gw)(t) = P(w(t), hu(t)),
where

t 1/ (w(0)){1i(0), W(O))
e —k/ ! ,Y)
It is easy to check that if w € Q& (A) is such that ¢ (w)(1i, 1) is constant, then
G(w) € BR (k) and D(G(w)) = w. In particular, D gives a bijection between
BG) (k) and the set:

{w € Q) : ¢x(w){tb, ) is constant a.e. on [0, 1]}

" order to define the concept of localized minimizer for the functional T We
need to give a localized version of the space 20, (A) and of the functional 7. This

is done as follows. For 23,22 € Urand I = [a, b] C [0,1], we define the space
Q8, (A, D) as

o, (A1) = {w e H(L,Uy) : w(a) = 21, w(b) € 1, (R), whorizontal}.

Z1,Ysg
Recall that -y, denotes the maximal integral line of Y such that -y, (0) = z.
Kw e Qf) (A)and I = [a,b] C [0, 1], then the restriction of w to I is an element

of Qs()a) ey (B 1) Conversely, we have the following simple Lemma:

Lemma 4.5. Let q1,q2 € Uy be such that there exists w € Q3 (A) with w(a) =
and w(b) = qa for some 0 < a < b < 1. Then setting I = [a,b], every curve
u€ 9,(,27” (A, I) is the restriction to I of some curve wy € Q3 (A).

Proof. Given any u € Q) a1,/74, (K, I), let 1o = ro(1) € IR be defined by the
relation:

Y(w(b), o) = u(b).
Define w; as follows:

{ w(t), ift € [0,a];
wy(t) = ¢ ul(t), ift €la, b;
Y(w(t),ro), iftelb,1].
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Obviously, u = w; | ;- Tosee that wy € Q5 (A), observe that w) is continuous, and
since both w and u are of class H?, then also w, is of class H!. Clearly, w;(0) = p
and w1(1) € y(IR). Finally, to check that (41,Y) = 0 observe that {,Y) =
(%,Y) = 0, and that d, 4 is an isometry. O

The localized functional 7 (I) on O}, (A, I) is defined by:

¢ ’
(D)) = 7 (b)) - k f VA

- (ny)
We can now define the local minimizers of 7 as follows.

Definition 4.6. A curve w € Q§) (A) is a localized minimizer for the functional 7,
if for every interval I = [a,b] C [0,1] witha and b sufficiently close, the restriction
w|y is @ minimum for the functional ;. (I) in o® (A D).

w(a) Y (b)
By Lemma 4.3, we see immediately that the following result holds:

Proposition 4.7. If o is a localized minimizer for T in B, (k), thenw = D(o) isa
localized minimizer for i, in Q1) (A). .

Conversely (see Remark 4.4), if w is a localized minimizer for Ty, in Q50 (4)
parameterized by ¢)(w)(w,h) = const., then there exists a unique o € B, (k)
which is a localized minimizer for T in By, (k) and such that w = D(o).

Remark 4.8. Using Proposition 4.7, we could try to prove the existence results for the
arrival time brachistochrones by proving the existence of smooth localized minimiz-
ers for the functional 7 in Q5 (A). Towards this goal, two main difficulties arise.
In first place, the square root under the integral sign defining 75 (formula (4.5)) in-
volves many analytical difficulties. This problem will be solved by the introduction
of a smooth functional G, in 2, (A), whose critical points are precisely the critical
points of 7 with a suitable parameterization (see Section 5). The second problem is
the presence of the constraint given by the distribution A. In [8] the authors man-
aged to remove the constraint using the Killing property of Y and the fact that, in the
case of the travel time brachistochrones, the functional to extremize in Q4 (A) was
given by an integral of a Y -invariant function (cf. [8, Proposition 2.11}). In the case
of the arrival time brachistochrones, the reduction to a variational problem in £,
is not possible. Indeed, the critical points of 7 in Q) do not in general belong to
25y (A), and the critical points of 7 in QG (A) are not critical points of 7 in 0,.

'We conclude this section by showing the following crucial property of the func-
tional 7.

Proposition 4.9, Assume that Y is a imelike Killing vector field satisfying (1.11).
Then, for all c € IR there exists two constants D, (c), D2(c) > O such that, for all
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w € 05, (A), the following holds:
(4.12)

(w)<c =3 / \/(w w) dt < Dy(c) and |me(w)] < Da(c).

Proof. Let w € Q) (A) be fixed; we use the local metric structure of a stationary
Lorentzian mamfold (see [7] for details), as follows. We cover the compact image
of w, w([0, 1]), with a finite number of open subsets U;, i = 1,...,r, which are the
domains of local coordinates (z%,...,z},_,,6%) = (x,6%), in such a way that the
following conditions are satisfied:
e there exists a partition 0 = a@p < @) < ... < a, = 1 of {0,1] such that
w([a;,ai-1]) C Usforalli=1,...,r;
e each coordinate map (x*, 6*) nges a diffeomorphism of U; with a product
V; x J;, where V; is identified with a spacelike hypersurface in M and J; is
an open interval in IR;
o B (w(ais)) = O;
e in Uj, the coordinate vector field 3‘37 coincides with Y’;
e in U; the metric g is independent of the variable 8* (because Y is Killing)
and it is written in terms of the coordinates (x, §*) as:

@13) g, 6M[(E,8),(E,0)] = (E E) +2(#(x*),E) 6 — B(x*) 62,
where (, 6) € Ty V; X IR = T(xi g5y M, &' is a smooth vector field on V;
and 8 = —(Y,Y).

In such a coordinate system, the product (Y, (£, ©)) is easily computed as:

<Y; (E’ 9)) = (‘Sl'(xi)! E) —3 ﬁ(xi) e’
hence, we have the following formula for the Riemannian metric gg:
4.14)
gr(x*, 9‘) [(E’ 9),(5, e)] =
2 ) B .
= (3,3) + 55 {66, 2)* - 2(8:(x%), E) © + B(x*) 62.

Since « is an integral curve of Y, by our choice of the coordinate maps @;, we can

write (see (4.1) and (4.5)): .

(4.15)

7 (w) =z':/m 6; dt+

i=1 ic1

o 56 Jk’ﬂ(’;( y ((5) + 208,00, 5) ¢ - ) 0°)7)
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Since w is horizontal, we have:

0= (&, Y (w)) = (8i(x)), x*) - A(x") &,
and therefore

_ {8i(x), %)

4.16 ATA A e

“10 R COR

observe that k% — B(x) = (YY) + k2 > 0.
Then, we compute

Ti(w) =

oY i e \/ BOE) i ey o (005
g’/‘—lli B(x’) ﬁ(x') k2 — ')<x ) + Tﬂ_(J(:T dt

and, by (1.11), a straightforward calculation shows that the following inequalitics

hold:
,B(x)+1 VAL
“"”Z/a‘_ ‘“" —p@)| A 02
2%(— /Hu)zf,,_,mdt
and

k Ay o
w23 [ o L/kﬂ—ﬁ( ) ‘ll (8 ) dt 2

i=1
1
> - -1 1(8;(x*), % dt
( k—V )z-/l‘(-|< (X) l
Now, (4.12) is easily obtained by combining (4.14), (4.15) and (4.16). O

Remark 4.10. The same argument of the proof of Proposition 4.9 shows that 7y is
bounded from below on 20?2, (A).

5. A NEW VARIATIONAL PRINCIPLE
For all k£ > 0, we denote by 6, the smooth function on M given by:

#le) 1 ’
(Y(g),Y(g9))Y (VYV)R2+(Y.Y))

.1 Oi(q) =



THE ARRIVAL TIME BRACHISTOCHRONES IN GENERAL RELATIVITY p2

where ¢ was defined in (4.1). By (1.11), the functions ¢, and O} are bounded away
from zero in Uj:

¢x(9) 2 3 k2 >0, Oul(9) 2 53 >0

Moreover, we consider the following functional on Q;,‘,Z, (A):

1 3
(5.2) Gi(w) =7(w) +k ( /; O (w) - (1, ) dt)

In this case, since p ¢ (IR) and ©; > 0 in Uy, then the integral [, Ok(w) -
{(,1) dt is strictly positive for all w € Q) (A), and so G is smooth. The trick
of placing the square root outside the integral sign to obtain a smooth functional
with the same critical points (cf. formulas (4.5) and (5.2)) was inspired by a result in
[4], where the authors study lightlike rays between an observer and a source, which
are obtained as the critical points of the arrival time in the space of lightlike curves
joining an event and a timelike curve.

Remark 5.1. By Holder’s inequality, we have:

Te(w) < Gr(w), Yw e QL) (D)

and since B, is bounded away from zero in Uy, for all ¢ € IR, we obtain the existence
of a positive constant D(c) such that:

1
53) Giw)<e = / (,1),, &t < D(c);
[1]

since we are considering horizontal curves, in the integral of (5.3) one could consider
equivalently the Lorentzian product (1, %).

Observe that G}, is bounded from below because 73, is bounded from below on
Q). (see Proposition 4.9 and Remark 4.10).

The following Lemma plays a crucial role in the proof of the relations between the
arrival time brachistochrones of energy k and the critical points of G in Q2 (A):

Lemma 5.2. Let w be a critical point of Gy, in Q2 (A). Then, w is a curve of class
C?, and there exists a positive constant C,, such that

5.4 O (w) (w w) C2 on|o0, 1},
and the following differential equation is satisfied:

Ci.,, (Gk(w)V.,-,u') + (VO (w), w) b — %(w,w) vek(w))+
(5.5



THE ARRIVAL TIME BRACHISTOCHRONES IN GENERAL RELATIVITY 29

Conversely, if w € Q. (A) is of class C* and it satisfies (5.4) and (5.5), thenw is a
critical point of Gy, in Q) (A).

Proof. Let w be a critical point of Gy in €23, (A). Recalling formula (2.12), given
any vector field ¢ € T, Q) (A) of class C!, the derivative dGy(w)[(] is easily
computed as:

(5.6)
_ (Y),c)
G = 7 iy, (i)
1
+ \/fl e ( k)< , ) it _/0 (%(vek(w)9C)(‘b’w) + Gk(w)(u':,V.,-,c)) dt.
b Or(w)(w,w

Let V be a vector field along w, with V(0) = V(1) = 0 which is the restriction to
w of a C™ vector field defined around w([0, 1]). By (2.39), the vector field ((t) =
V(w(t)) — u(t) - Y (w(2)) is in T,Q0) (A) if and only if:

t(VaV,Y) — (V,VyY)
(r.Y)

.7 plt) = dr.
(4]

Setting

Cy = \/ /o 1 O (w)(w,w) dt,

we have:

(5.8)
dGi(w)[V —p- Y] =

- —p()) + E’f; /o ' L (1, 5) (VO (), V) ~ - (Vu(w), V)
% ci.., /0 ' Ox(w) - (18, VeV — WY — uVaY) dt.
I we set Ak(s) = —(s? + sk?) ™1, we have O = A ({Y,Y)), and
(VOx(w), () = 22 ((Y. Y)(V(Y,Y).

Moreover, since Y is Killing, we have:

(VyY, Y) = (V.;,Y, u'J) =0;
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and, since w € Q) (A), itis (1,Y’) = 0. Then, we get:
5.9 -

! V,,',V,Y - V, V,;,Y

deu)lV — -1} =~ | (VaWY) - (V,VuY)

(Y, Y) dt+

1
+o [ (5008078 Y) + Oulu), VaV)) .

w Jo
Since w is a critical point for G, then the above expression vanishes for all smooth
vector field V' such that V(0) = V(1) = 0.

Now, we use covariant integration along w (see formulas (2.9) and (2.10)), and,
by the Fundamental Theorem of Calculus of Variations, it is easy to show that the
vanishing of (5.9) for all V' implies the existence of a parallel vector field Z of class
H' along w, i.e., V. Z = 0, such that:

(5.10) y
Y “* VY k
¥ b Y) e (/ (i, w)Vek(w)) + e,,(w) Ww=2Z.

From (5.10), we obtain immediately that ©;(w)-1 is a continuous vector field along
w; moreover, repeating the argument, since Gx(w) # 0, we prove that 1 is of class
Cl

A straightforward integration by parts of (5.9) and a repeated application of the
Fundamental Theorem of Calculus of Variations shows that, if w is a critical point
of Gy, then it satisfies the differential equation:

& ((an) + ) * og (3 IVe) - Ve @u(w) ) =

which is:

(5.11)
2VsY 2(VsYY)-Y ¥
rY) (vv)

+ L ( (w’ w>vek(w) (Vek(w): u.)) w - ek(w) Vu',u')) =0.

Since (VyY, w) = (Y,1) = 0, multiplying (3.1 1) by w0 yields:
(5.12)
1
—E(Vek(w),w)(w, 1) — B (w) (Vuth, b) = "5& (8r(w){w,w)) =0.

Formula (5.4) follows immediately from (5.12), and then (5.5) follows from (5.1 1),
which concludes the first part of the proof.



THE ARRIVAL TIME BRACHISTOCHRONES IN GENERAL RELATIVITY 31

Conversely, assume that w € Q4 (A) is of class C? and it satisfies (5.4) and
(5.5). Then, w satisfies (5.11) and, arguing backwards, it follows that dGy(w)[¢] = 0
for all { € T,Q5) (A) of the form

(.13) (=V-p-Y,

with V a vector field of class H along w such that V(0) = V(1) = 0. The con-

clusion follows easily from the fact that every vector { € T3}, (A) can be written

in the form (5.13). Namely, if ¢ € T,,Q2(,(A) is given and p is any H”-function
-1

such that #(0) = 0 and p(1) = ({(1),Y(w(1))) - (Y(w(1)),Y(w(1))) ", then

V = — p-Y is the desired vector field along w that vanishes at the endpoints. O

Remark 5.3. For the study of the arrival time brachistochrones, we need a way to
pass from curves w satisfying:

(5.14) $k(w){1@,w) = Ey > 0 (constant)

to curves w satisfying the condition:

(5.15) O (w){1i), ) = Eg > 0 (constant).

This can be done by taking a reparameterization of w of the form:
(5.16) - (t) = w(A(),

where A(0) = 0, A(1) = 1 and:

Ao ayg L N P(w(A)) N2 {ais . —
3= OO %) = Ty, viwpy) ¥ )

1)2_

= By (X
_ (Yt Ym)

Then, A must satisfy the Cauchy problem:

N = ~EE(Y @), Y @), A0 =0,

where Eg has to be chosen in such a way that A\(1) = 1. Hence, we get:
. N ! XN _
2 = B a0 o) ~ 5 o . v

r

1 d
- ‘E‘"/o (Y (w(r)), Y (w(r))




THE ARRIVAL TIME BRACHISTOCHRONES IN GENERAL RELATIVITY k72

Thus, in order to (5.15) be satisfied, the function A = \,, needs to satisfy the Cauchy
problem:

) g dr - w _
6.17) A —( fo (Y(w(r))’y(w(,_)»)(Y( MY (w(A)), A(0)=0.

Observe that the unique solution of (5.17) satisfies A(1) = 1 and A’ > 0 on [0,1};
notice also that the map from B (k) to {w € Q% (A) : wsatisfies (5.15)} sending
oto 5(7) is bijective.

The following theorem relates the brachistochrone curves to the critical points of
G. Let’s consider the map D defined by (4.2), and, for all w € 00, satisfying
(5.14), let 10 be given by (5.16), where A = A, satisfies (5.17).

Theorem 5.4. Let o € B (k) be fixed. The following statements are equivalent:
(1) o is a localized minimizer for T on B (k);
(2) D(o0) is a localized minimizer for 7. on QP (A);
3 ‘1’)-(0\’) is a localized minimizer for Gy on Q32 (A);
@) D(0) is a critical point for Gy, on Qg (A);
() o isan arrival time brachistochrone of energy k (namely, a C?-curve joining
p and vy and satisfying (3.1) and (3.2)).
Moreover, in the above situation, it is (o) = 17(D(0)) = G (5(\/0))

To prove Theorem 5.4 some preliminary results are given.

Lemma 5.5. If wo is a localized minimizer for 1. on Q&) (A), then there exists
» € Qf), (A) localized minimizer for 1y, satisfying (5.14) (and 1, (%) = 7(wp)).

Proof. We prove first that, if p and -y are sufficiently close, with p ¢ Y(R), I =
la, b] C [0,1] is sufficiently small and wy is a minimizer for 7% on Q0 (A, I), then
there exists 1 € Q) (A, I) satisfying (5.14) and such that 7(1) = 7 (wo). Towards
this goal, we can use an open and relatively compact neighborhood U = V' x ], 8]
of wo([a, ]), as in the proof of Proposition 4.9, where the metric g has the form
9l(E,8),(5,0)] = (E,E) + 2(5(x*),Z) © — B(x*) 62, for some smooth vector
field & on the closure V of V and 3 is a smooth positive scalar field on V such that
k? — B(x) > 0in V. Foreach z € U, we write z = (x,8), where x € V and
6 € J, B[. The horizontality of a curve z(t) = (x(t),8(t)) ({2,Y) = 0) is written
as in (4.16).
If we set wp = (xo, 6p) and (cf. (4.15) and (4.16))

5| (5(x), o (8(x),%)?
Tk(x)=£ !< ) x>+ﬂ(kx)\/knﬁ(") PRI

B(x) - B(x) k? — B(x)
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we only need to prove that, if Xy is a minimizer for 73 on the manifold:
Vi %a, %) = {x € H'([a,8], V) : x(a) = X, x(b) = xb}

where x, and x; are given fixed points in V, then there exists X € Q1(V;x,,x3)
and ¢ > 0 such that

(5.18) kz—_%(i—) (BRI %) +(5(2),%)°) = & ac. and 7i(%) = ().

Denote by (-, -), the Riemannian metric in V' given by:

EE), = k_21?ﬁ (ﬁ<5’ =)+ <5’E>2) ’

and, foreachn € IN, let A, : [a,b] — IR* be the unique solution of the following
Cauchy problem:

;1 b 0,5 -l-d) !
A b-a(/,, W t Y (o), Xo(n)), + 2

An(a) =0.

Observe that A, is strictly increasing on [a, b} and A, (b) = 1.
We set ¥ = Xo(An). Since:
(5.19)

2
1 b [, 1 (X0(An), X0 (Mn)),

‘n, .n =T % y —dt A N y
Gmdn)s = Gap (/  Goro) + 2 ) o0, %o0m)), + 2
the sequence yy, is bounded in H, and so there exists y € 21(V'; X4, X3) such that

(5.20) ¥n +— Yy uniformly in [a, ],
b b
s [ Gueydt— [(Gre)dt Vee (bR

(recall that m = dim(M)).
Note that, by the uniform convergence, we also have:

b b
[ (Tm ), dt —> [ (7,0), &, Vo€ L}((a,bl, R™),

namely, ¥, is weakly convergent to y in L also with respect to the metric (-, -),.
In particular, the above property is satisfied for all ¢ € L*({a,b], R™1), hence
(see [2]), we obtain:

622) [\/@,y)ldtsugigf f:\/(yn,yn),dt, Vi, 8] C [a,b.
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Since kB(yn) ! ~ kB(y)~* uniformly and

P {6n).¥m) o, [P L3)Y)
L By T By %

we get:
7(y) < liminf 7 (yn).

But 7 is invariant by reparameterizations, therefore 7x(y,) = 7x(%o). Since xp isa
minimizer, it must be 7x(y) = 7(Xo).

Now, by (5.19), we have:
(5.23)

V{¥a(t),¥n(t)), < bia /: V (X0, %o0), +% dt ae.on[a,b), Vn e IN.

Combining (5.22) and (5.23), a simple contradiction argument shows that

b
(5.24) ((y,y)l)* < ﬁ/; ‘/().(O,J-Co)l dt a.e.on [a,b].

If it were

Vo <5 [ Viomyat= gk [ \fomsa, o

on a set of positive Lebesgue measure (recall that y, = x9(\,)), then we would

have: A
b
v,y dt<liminf/ Vni:¥n ), dt,
/‘l V&) imnf | Vi ¥n)y
and therefore it should be:
(5.25) T(y) < liminf 7, (yn) = 7(xo0),

because [, (8(¥n), ¥n)B(yn) ' dt > S5 (8(y), ), dt and kB(yn)™! ~ KB(y)
uniformly.

But x, is a minimizer for 7, hence (5.25) is impossible, which implies:

#:9), = (b—i—af:\/('xm—'xo)ldz)z, ac. on[a, B,

2

and (5.18) is obtained by taking % = y and &= (5 J /{0, %o}, dt) .
Now, the above argument can be repeated on a finite covering of the interval [0, 1)
consisting of closed intervals [a;,b;], i = 1,...,r, (whose interiors cover [0,1]);
in this way, since 7, is invariant by reparameterizations, we obtain a curve w €
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Q) (A) which is a localized minimizer for 7%, a finite sequence of constants ¢; > 0,
i= 1 ., 7, such that:

oe(w)(, ) =¢;, ae.onlfag,by], i=1,...,7

Moreover, ¢; = 0 if and only if w is constant on [a;, b;]; since p & v(IR) the curve
wo is not constant, which implies that at least one of the ¢;’s is strictly positive.
Hence, possibly by changing the intervals [a;, b;], we can assume that ¢; > 0 for
all i = 1,...,r. Therefore, we obtain a localized minimizer for 73 and a positive
constant ¢, defined as the minimum of the ¢;’s, such that:

(5.26) dr(w){w,w) >c>0, ae.onf0,1]
Finally, we consider the solution X of the following Cauchy problem:

627 { X= (/01 Vérw) i, ) dt) ¢k(w)1(u';,u';)’

A(0) = 0,

which is well defined by (5.26). The desired curve 1 is then given by w()); observe
indeed that 1 is a localized minimizer for 7y, because 7% is invariant by reparame-

terizations, and
1 2
ont@) ) = ([ /ontwrina) o)
by (5.27). This concludes the proof. O

We now consider the function p : [0,1] — [0,1] given by the inverse of the
function X defined by (5.17). The function u can be obtained as the unique solution
of the Cauchy problem:

-1
6:28) { K = ) (fo (¥ (). ¥ (w) &)
u(0)=0.

We have the following:

Lemma 5.6. Let w € Q{2 (A) be a curve satisfying (5.4) and (5.5), and p be the
solution of (5.28). Then, the curve u = w o y satisfies the differential equation:

VY — 2% Y+
2
(5.29) = [¢k(u)v.,u 26 (1) O(’YV;);) <;Y) va] +

+ - [(Tu(, iy - 5 ) V)] =0,



THE ARRIVAL TIME BRACHISTOCHRONES IN GENERAL RELATIVITY 36

where v, is the positive constant |/ ¢x(u) (%, %).

Proof. Hf w satisfies (5.4) and (5.5), and u = w o y, then u satisfies:
. 30)

< (Y Y) (Y, VY )Y+

( Y)
,)20 [Gk(u)( u———u)+(Vek(u),u)u——(u,u)VGk(u)]= .
Now, t(t) = w(u(t))'(¢), and

Cu = \/W ¢k(u)(u,u)

5.31) W)Xy, Y)’

1 . . Oy
= TRy VWD =y

Observe that, by (5.28), o is a real constant. Moreover, by (5.31), setting d,, =
- (o (reu) Yiue)) at) ~, we ger

I‘I=__ du , and p" = 2d"(Y V"‘Y>

Mt I

(vY) (v,vy

Therefore, after multiplying (5.30) by u’, using (5.31) to evaluate C,,, we get:
(532)

2 2(Y,VaY) . K(Y,Y)Ou(u)_ .
R (v,Y) Y- [V"‘“ (Y Y) oy veY) ]
CRE) [(Ver(),4) - %(a, #)VOr(u)| =0.

Since (Y, V(Y) = —(¢, VyY'), we have:

y (Vor(u).¢)  4gu(v) 3
(VOi(u),() = AR AT 5 (Y, VeY) =

((Y Y ) Véi(u) + 4y (w)Vy Y o
3%% ”
and so:
(5.33) VO () = (V.Y )Vu(u) + 461 (u)VyY

(r,y)*
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Finally, substituting (5. 33) in (5.32), and recalling that (VyY u) = —(VuY Y)
and that ¢y (u)(%, ) = a2, we obtain (5.29). ]
Remark 5.7. If u = satisfies (5.29), by (4.8) we have:

= /o (u)(i i) = T,

where ¢ is the unique curve in B{?, (k) such that u = D(o) and 7, is its travel time.
Remark 5.8. From (4.1) we compute easily:

2k2 2k?
(Vér(u),¢) = —mu’, VYY) = m«, VyY),
hence: ok
MR

Then, since (Y, VoY) = —(VyY, ), if u satisfies (5.29) a straightforward compu-
tation (see also Remark 5.7) shows that the following differential equation is satis-
fied:

(5.34)
2VyY - 2W [¢k(u) Vat + m(ﬂ, u) VYY] +
2k (v,Y) N
B ATER A AR

Now we are ready to prove the following variational principle:
Proposition 5.9. Let k > 0 be fixed. Then, a curve o € B, (k) is an arrival time

brachxstochmne if and only if the curve D(c) is a critical point of the functional G,
in Q) (A).

Proof. Let o € B, (k) be fixed, define w = D(c) and &0 = ‘Ei;); since the critical
points of Gy are curves of class C2, we have that o, w and 1 are curves of class C2.
We consider the map F : [0,1] x R — M given by:

F(t,s) =9(o(t).9),
where ¥ is the flow of Y. Denoting by T'(t, s) the vector field along F given by:
OF
at b
sinceY = %@, a standard argument in calculus of connections (see for instance [24,
Proposition 6.9]) shows that:
(5.35) VyT - VrY =0.

T =
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By (4.2), w(t) = F(t,x,(t)), and so:
w = T(w) + £, Y (w);
thus, using (5.35), we compute:

Vith = V(T + £,Y) = VT + 5,Y + £,V,Y =
(5.36) =Vr4t, YT+ 5,Y + £, V14, vY =
= VrT +2&,VrY +£2VyY + £,Y.

Itis:

(5.37) T(t,s) = de¥p(o(t), 8)[5(2)], and Y(w(t)) = dztp(a(t),s)[Y (c(£))];
and since (Y,Y') is constant along each flow line of Y, for all ¢ it is ¢x(w(t)) =
éx(a(t)).

Considering that d ;4 is an isometry, for all pair of smooth vector fields vy and v,
in M we have:

(5.38) Va pn] (dz¥[v2]) = dgtp [V, v2] -

Putting together (5.36), (5.37) and using (5.38), we get:

(539) Ve =doy [v.-,a +26,V,Y(0) + 12Vy ()Y (o) + f,Y(a)] ;
Now, by (4.8), we have:

(5.40) ¢ (w){w, w) = T,

moreover, the following are easily computed:

(541)  VyuyY(w) = d:9[Vy ()Y (0)];
(542) W =d.¥[6] + £, Y (w) = dY[6 +1,Y(0));
6543) VY = Vayiors,y) (&9 (0)]) = d9[VoY (0) +2,V¥Y];

kT, (VsY,Y)

544) 1, = y Yo =-2k7,
ey C (v,v)
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Patiently substituting (5.39)—(5.44) into (5.34) (that gives the differential equation
satisfied by w = D(c)) yields the following differential equation for o+
(5.45)

27,

V46 — TV Y
(VyY,6) 27, (VsY,Y) L2, V) + k2
et e EmEY VY
T’ (k2 +2(Y,Y)) {(s, a’) k? 2k
" wrEs <Y,Y»( CaoNEATATA ”) V=0

Finally, substituting (6,6) = -7, and (6, Y") = —k7, into (5.45) gives (3.1).
For the converse we observe that the above steps can be done backwards, to prove

that if o satisfies (3.1) and (3.2), then D(o) satisfies (5.4) and (5.5). This concludes

the proof. O

We are finally ready to prove Theorem 5.4:

"Proof of Theorem 5.4. The equivalence between the statements (1) and (2) is an im-
mediate consequence of Lemma 5.5 and the construction of the map D. Observe
that, by the regularity of Gy, a local minimizer for Gy is a critical point of Gy,
and in particular it satisfies (5.4). Then, the equivalence between the statements (2)
and (3) follolvf_l’)y Lemma 5.5, the invariance by reparameterization of 73, the con-
struction of D(o) (see Remark 5.3), and the Holder inequality ap’gggd to the second
summand of 7 in formula (4.5). Moreover, the construction of D(s), formula (5.4)
and the invariance by reparameterization shows that 7,(D(0)) = Gk (D(0)).

We have already pointed out that the statement (3) implies (4). For the converse,
we use the Cauchy problem satisfied by the critical points of G, (see (5.5)) to prove
the local invertibility of the map v — w(1) from T, M to M, where w is the unique
solution of (5.5) satisfying w(0) = q and 1(0) = v. This fact allows to deduce, in
analogy with the Riemannian geodesic problem, that a critical point of G; must be
a local minimizer.

Finally, the equivalence of the statements (4) and (5) is given by Proposition 5.9.
Observe that the equality (o)} = 7(D(c)) is given by Lemma 4.3. ]

6. THE PENALIZED FUNCTIONAL Gj ¢ AND THE PALAIS-SMALE CONDITION

The presence of the boundary U}, implies that the functional G does not sat-
isfy good compactness properties on () (A); moreover, for the same reason its
sublevels fails to be complete subspaces of 23, (A).
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To overcome this problem, we now introduce a penalization argument, which
has been used systematically in the study of unidimensional variational problem in
subsets with convex boundary.

Recalling the definition (4.1) of the function ¥y, for all k£ > 0 fixed we introduce
a family Gy . of functionals, depending on the parameter £ € [0, 1], defined by:

1 at
(6.1) Gre(w) = Gi(w) + ¢ A
Observe that G o = Gk.

Since Gx and ¥; are smooth, then, for all £, Gi . is a smooth functional on

Q52 (A), and its Gateaux derivative is easily computed as:

1
62) dGy.(w)[¢] = dGr(w)[¢] - 2¢ %C—)

For all € > 0, the sublevel of the penalized functional Gy . are complete subsets of
QG2 (A). In order to prove this, we use the following result, which is known as the
Gordan s Lemma, whose proof can be found, for instance, in Reference [16].

We denote by dist(:,-) the distance function on M induced by the Riemannian
metric g, defined in (1.9).

Lemma 6.1. Let {wn}neav be a bounded sequence in Q(‘Z,(A) such that:

su / ' —dt < o0
np o Yr(w,)? )
Then, wy, stays uniformly far from 8Uy, i.e., there exists p > O such that
dist(wn(t),0Ux) > p i
forallt € [0,1] andall n € IN. a
From Lemma 6.1 we obtain the following:
Proposition 6.2. For all € €]0,1] and all ¢ € R, the sublevel
Gi. = {w € QW (A) : Gre(w) < c}
is a possibly empty complete metric subspace of Q) (A).
Proof. Let {wy}n be a Cauchy sequence in Gf ,; since Uy = Ui |J8Ux is com-
plete, then w,, is convergent in H([0, 1], U) to a curve w with image in Uy. Since
Gr,e(wy) is bounded, then, by Lemma 6.1, wy, stays uniformly far from 8Uj, so that

w has image in Uy, and wy, converges to w in (), (A). Moreover, by the continuity
of G ¢, it is G .(w) < ¢, and we are done, g

We recall the definition of the Palais—Smale condition for a C''-functional on a
Hilbert manifold:

dt.
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Definition 6.3. Let (X, k) be a Hilbertian manifold and L : X — IR be a func-
tional of class C! on X. For all z € X, we denote by | - ] the norm on the dual
Hilbert space (T, X)*. A Palais-Smale sequence for L at the level c € R is a
sequence {Zy}, in X such that the following two conditions are satisfied:

(PS1), lm;0 L(z,) =¢;

(PS2), "li.ngo ldL(z,)] = 0.

The functional L is said to satisfy the Palais—Smale condition at the level ¢ if
every Palais-Smale sequence at the level ¢ for L are convergent in X.

Proposition 6.4. For all £ €)0,1] and all ¢ € R, the penalized Gy . satisfies the
Palais—Smale condition at the level c on Q3. (A).

Proof. Let c € IR and £ €]0, 1] be fixed; let w, be a Palais-Smale sequence for
G at the level cin 2{) (A), with respect to the Hilbertian structure (2.6).

Since Gy . (w,) is bounded with respect to n, we have the existence of a constant
D = D(c) > 0(see Remark 5.1) such that:

1
(63) / (tn,tn), dt <D, Vne .
0

Hence, up to passing to subsequences, by Lemma 6.1 it follows that there exists a
curve w : [0,1] — Uk, w € QG (A), such that:

(64)  wp,+— wuniformly and 1, — W% weaklyin L%([0,1],TM).
To prove the proposition, we need to show that the convergence of i, to w is strong
in L2,

Since wy, is a Palais—Smale sequence, for all n € IV there exists a vector field ay,
along w,, such that:

1
65  dGie(wa)l¢] = [0 (m V9_C) &, ¥C € Tu 0, (A),
and
(6.6) a,+— 0 in L%([0,1], TM).

Now, we can write the Riemannian covariant derivative V™ in terms of the Lorentzian
covariant derivative V by a formula of the type:

Vz..( = Vu':,.( + r(wn)[wm C]:

where I'(wy,)[-, -] is bilinear.
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Since wy, is bounded in L and Uy is complete with respect to gs, by (6.3) and
(6.6) for all n € IN we have the existence of a vector field b,, along w,, such that:

/01 (ns V5, )y At = /0 1 ((an,V.a,.C)m+(b,,,g)m) dt,
and
b, — 0 in L'([0,1],TM).

Then from (1.9) and (6.4), for all n € IV we have the existence of vector fields A,
and B,, along w,, such that:

1 (V¥ (wn), ¢)
¥i(wn)3

= fo 1 ((Ans Vi) + (Bn,¢)) dt,

dG k,e (wn)[C] = dGy (wn)[d - dt =

with
Ap+—0 in L*([0,1),TM), Bn+——0 inL*([0,1],TM).

Let V be any vector field along w,, in H([0, 1], M) such that V(0) = V(1) = 0;
we set:

6.7 u(t) = /;‘ (V.,-,,,VY<)Y Y()V v.,,,,y)

Arguing as in the proof of Lemma 5.2, every vector field in Ty, Q) (A) can be
written in the form V —p.Y, where V is as above. Hence, recalling that (V¥,Y) =
0, we get (see (5.9)):

_/1 (Ve V,Y) — (V,Vs,Y)
) (Y Y)

dt+

k

+ C_ l [ <w'"wﬂ)<vek(wn): V) + ek(wn)(wm vw,.V)] di+

(V\I'k(w,.), V)
25/ T Ur(wm)

(6.8)

= /0 [(An, Ve,V —4'Y — pVy, Y)Y + (B, V — uY)] dt,

where C,,, = ( fol Ok (wn) iy, tn ) dt)*. Observe that, from (6.3) and (6.4) it
follows that C,,_ is bounded.
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Combining (6.7) and (6.8) and using Fubini’s theorem, we obtain:
1
/0 [(—C.,,,(Y, Vi Y) + Cu, (Y4, Y, VY)Y, Y)‘l] dt+

1
e [ [t )T V) 4 O 1)

1 (V‘I’k(w,.), V)
b Tp(wa O

= [ Kom Vo) + (8u1)] @t

where o, — 01in L%([0,1], T M) and B3, — 0in L}([0,1], TM).

Integration by parts in (6.9) gives the existence of vector fields H,, and W,, along
wy such that V;, W, = 0 and such that V;,_ H,, is bounded in L([0, 1}, T M), and
satisfying:

(6.10) Oi(wp) iy + Hy, = W,, Vne NN

Integrating (6.10) on [0, 1] we see that W, is uniformly bourided, and therefore W,
is bounded in H([0, 1], TM). By (6.4), O (wy,) is uniformly bounded away from
zero, and thus from (6.10) we see that V,;_ i, is bounded in L*([0, 1], TM). Then,
up to subsequences, 1, is convergent in L2([0, 1], TM) (see [2, Theorem VIL7)),
which concludes the proof. O

6.9)

—2eCy,

We can now use standard techniques from Critical Point Theory to prove the
existence of minima for the penalized functional Gy ¢:

Corollary 6.5. For all € €)0,1}, the penalized functional Gy, ¢ attains its minimum
in Q0 (A).

Proof. Since Gy, is bounded from below, then also Gy . is bounded from below. The
existence of a minimizer is a classical argument in Critical Point Theory. Let’s fix £ €
]0,1]. Thanks to the Palais—Smale condition and the completeness of the sublevels
of the functionals Gi ., if the infimum i, of G, on Q;,‘).,(A) weren’t a critical
value, then it would be possible to find a homotopy between the sublevels G, and

Gi'::’, where > 0 is sufficiently small. This is clearly impossible, because, for
every > 0, G};" = @ while G’;"*E" # 0. Hence, Gy attains its minimum on
Q5 (D). O

»

7. A PRIORI ESTIMATES FOR THE PENALIZED FUNCTIONAL
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AND THE PROOF OF THEOREM 1.1

The goal of this section is to prove that, given a family w, of stationary points for
the penalized functionals G ., with £ €0, 1], there exists a sequence €, 1 0 such
that the corresponding sequence w,,, tends to a curve w which is a critical point for

Gi in O, (A).

Since (V¥,Y) = 0, using the Euler-Lagrange equation for the penalized func-
tional Gy . and the same technique of Lemma 5.2, it is easy to prove the following:
Proposition 7.1. Let ¢ €]0,1) and k > 0 be fixed. If curve w, € Q) (A) is
a critical point for the functional Gk . then it is a smooth curve that satisfies the
differential equation:

@1.1)
Ck (ek(ws) Vi, We + (Vek(wc),wc)ﬁ); - %(@;,wg)vek(wd)i"
_ 2 ) (Y, V.,',,Y) 2¢e ol
I5A%) VoY +2 . Y), + Tr ) V¥ (w:) =0,
L i (fo @k (we) (e, i) dt) 3, -

Lemma 7.2. Let k > O be fixed. Suppose that {w}.c 10,1} s a family of critical
points of G in Q) (A) and c is a positive constant such that:

(72) Gie(we) < €< +00.

Then, there exists a positive constant § = §(c) > 0 such that ¥y (w.(t)) > 4 for all
e€l0,l] andallt € [0,1).

Proof. Since G < Gy, from Remark 5.1 we deduce the existence of a positive
constant D = D(c) such that:

[ )y, @ < D

for all € €]0,1] (recall that w, is horizontal). The completeness of Uy, imply then
the existence of a compact subset K of U}, that contains the image of all the curves
wg.
For all € €]0,1], we consider the smooth function p.(t) = ¥ (w,(t)) on the
interval [0, 1}; let ¢, be a minimum point for p,.
By contradiction, assume that:

(73) lim inf pe(te) = 0,
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and since ¥, is bounded away from 0 on y(IR) (recall (4.1) and the fact that + is an
integral curve of Y), for € small enough it is ¢, €0, 1[. Hence, we have:

(7.4) pe(te) = (VEk(we(te)), the(te)) = 0,

and
(.5)
0 < p(te) = (H¥* (we(te)) e (te)], the(te)) + (VEk(we(te)), Vi, e te)),

where H¥* is the Hessian of ;.. To ease the notation, in all the calculations that
follow we will omit the argument ¢,.

Since 8, = ~ [(Y,Y)(k? + (Y, Y))]—l, the gradient of the functions ¥y and
O, are easily computed as:

2
06 V=YY, ve,=—_L rAhY) ;
(Y)Y +k2(Y,Y))?
thus, by (7.4), we have:
a.n ~

(Vek(wz)| ‘U'Je) =0, (Vu':,y(wz); Y(wc» = _(VY(w.)Y(wE)v we) =0.
Combining (7.1), (7.5) and (7.7) gives:

7.8)
0<p; =
2C,,
kO (we )(Y (we), Y (we))
<V\I’k(wc); Vek(“’e)) .. 2eCy,
+ 26 (w,) (the, the) kg (we)3
- ]

where Cy,, = ( _[01 O (w,) (v, 1) dt) .

Now, by the compactness of K, there exist positive constants d; and d» such that
the following inequalities are satisfied:

= (HY* (w,) b, e ) + (V¥ (we), Vi, Y (we))

(V\Ilk(we), V¥, (w._-)),

l(Hwk(wz)[we],we> | < dl : (’be,w5>m = dl : <ﬁ’s, ‘b:)’

2[(VEk(we), Vi, Y (we))| < dz - 1/ (e, vc)-
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Therefore, since O = (—(Y,Y )¥)~1, (7.6) and (7.8) give:

19
0 < dy{tir, 1) + da{tire, 10 )} Cu, W () +

() (Y (), ¥ (a0e)) (V9 (a0c), V(1) e ) (K2 + (Y (w0, ¥ (w0)))
2((}'(%), Y (we))? + k2(Y (), Y(we))) 2

(V¥k(we), VEi(we)).

__2eC,,

Now, if we multiply both sides of (7.1) by 1, we obtain the existence of a constant
E. such that:

Ok (w,) (e, 1) — E., on[0,1], Ve €]0,1].

—f =
i(we)?

Integrating the above formula on [0, 1} gives:

kC, /“ dt
— £ | = E,,
2 0 ‘I'k(‘u-’c)2 ¢

therefore, for all ¢ € [0, 1], and in particular for t = ¢, it is:

k
2C,,

k T € _kCy, 1 &
(7.10) 20'”‘ Gk(wc)(w;,wc) - ‘Ilk(we)z = D) -~ & [) W.
Now, since ¥ (w,(t.)) = min ¥;(w,), it is
1 bood
11 —_— > s
e Te(we (@) _-/o T, ?
solving (7.10) for C,,, , we obtain:

C, e -—e/l—dt +
R\ Te(we)? TSy alwe)?

-4 ;_8/1_;“_4*29( )i, 1)
E\ Oe(we)? Sy Ta(we)? k\1e)\10er We /s

and so, by (7.11), we get:

Cu, < %\/ek(we(te))(wc(tz)’ wz(tz»'
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Recalling the definition of 6y and ¥y, by (7.9) we have:
(7.12)
o= sy st ) ]
- o (T (), Vs )+
B (Y(w.),Y (we))(k? + 2(Y (we), Y(w.)))
2(Y (we), ¥ (we)) (k2 + (¥ (we), ¥ ()

where the expressnon above is computed at ¢ = ¢,.

But (Y, Y) < L and (V¥, VT,) > vy > 0 for some vy independent of &;
moreover

(VOL(we), VEk(w,)){the, e ),

(Y, Y)(A% +2(Y,Y))
2, Y) (k2 +(¥,Y))

— +00 as k* + (YY)~ 0.

Therefore, if ¥x(we(t.)) — 0, by (7.12) there exists a positive constant ag > 0 such
that:

2eCy,
k¥ (w,)3
This is a contradiction, because (tie,the) > 0 and Cy, (V¥ (we), V¥k(we)) is
strictly positive. So the proof is concluded. 0

0< “ao(d’n we) - <V\I’k(we)1 V‘I’k(we»'

Let’s assume now that, for all € €0, 1], we is a critical point for Gy in Q4),(A)
such that:

(7.13) sup Gx,.(we) < +o00.
€

Such a family is given for instance, by a family of minimum points for Gy .; observe
indeed that, for all € €]0, 1], we have
mm Gre £ min G, < +00.

agl(a) agl(a)
Given such a family w,, we now prove that we can pass to the limit as & tends to 0,
obtaining a critical point for the functional Gy:
Proposition 7.3. There exists a sequence {€n }n C]0, 1] tending to zeroasn — oo
and a smooth curve w € Q5. (A) such that w,, tends to wo in C2([0,1], M).
Moreover, such a curve wy is a critical point for the functional Gy, in Q3 (A).
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Proof. By Remark 5.1, since Gx(w,) < Gi (we) < sup, Gi(w.) < +00, then
there exists a constant dg € IR* such that:

1
(7.14) / (e, e, dt < do < +00.
0

Then, by the completeness of Uy, there exists a compact set K C Uy such that
w,([0,1]) C K for all . Moreover, by Lemma 7.2, since

(7.15) Vi(we(t)) 26 >0,

then K C U;.

By the Ascoli-Arzel4’s Theorem, from (7.14) and the compactness of K it fol-
lows that there exists a sequence {en}, C]0, 1] such that w, is uniformly conver-
gent to an absolutely continuous curve wy joining p and v in K C Uy; by continuity,
\Ifk(wo(t)) > 6 forallt.

We consider the following facts:

(1) Ok (we,) and Vi (w,,,) are bounded away from 0 by (7.15), and O (w,, )~}
and ¥x(w,, )~ are bounded in L*([0, 1}, R);

(2) e, is bounded in L2([0, 1}, T M) by (7.14);

3) (Y(we,),Y ()" is bounded in L= ([0, 1], IR), while the vector ficlds
V6i(w,,), V¥(w,,) and Y (w,,) are bounded in L>°([0,1],TM) by
(1.11) and the compactness of K; in particular, we have:

q 2¢, _ - roo
(7.16) nh_{xgo mv\h(w,") =0 inL°%([0,1],TM).

(4) by the previous two facts, V., Y (w,,.) is bounded in L2([0,1], TM);

5) Cu., = ( Jo Ok (we, )(ten, e )y dt)* is bounded by (7.14) and the
boundedness of 6 (w,,, ).
Using the facts above, by analyzing the differential equation (7.1) satisfied by the
w,,,, we obtain that the second derivative V;, ., is bounded in L([0, 1}, TM).
Then, (., , e, ),, is bounded in L*([0, 1], JR) and, again by (7.1), we obtain that
w,,, is bounded in W1:>°([0, 1}, M).

Using this new information and arguing similarly, we have that w,, is bounded
in W%32([0, 1], M), which implies that, up to subsequences, w,, converges to wp in
C({0, 1], M). Then, using again the differential equation (7.1), we finally conclude
that . _ converges in C2([0, 1], M), and we can pass to the limit as ¢ — 0 in (7.1)
using (7.16), obtaining that wy satisfies the differential equation (5.5). Arguing as
in Proposition 7.3, we see that wy also satisfies (5.4); this can be easily checked by
multiplying equation (5.5) by 1. Hence, by Lemma 5.2, w is a critical point of Gx
in QG2 (A), and we are done. O



THE ARRIVAL TIME BRACHISTOCHRONES IN GENERAL RELATIVITY 49

We can now prove Theorem 1.1:

Proof of Theorem 1.1. For all € €0, 1], let w, be a minimal point for the functional
Gy,e, which exists by Corollary 6.5. The family {w,}. satisfies (7.13) . Observe
indeed that, for all w € Q0 (A) and for all € €10, 1}, itis Gk . (w) < G 1(w). By
Proposition 7.3, we can find a sequence w,_, tending to a smooth curve wy that is a
critical point for Gy in Q{2 (A). Let g be the unique curve in B (k) such that

D(00) = wo; by Theorem 5.4, such a g gives an arrival time brachistochrone of
energy k between p and -y, which concludes the proof. 0O

8. LIUSTERNIK-SCHNIRELMAN THEORY AND THE PROOF OF THEOREM 1.2

The goal of this section is to give a proof of Theorem 1.2 by means of the
Ljusternik—Schnirelman theory for functionals satisfying the Palais-Smale condi-
tion. We use well known techniques from Critical Point Theory, which are repeated
here for the reader’s convenience.

We recall the following definition:

Definition 8.1. If X is a topological space and B any subset of X, the Ljusternik—
Schnirelman category catx (B) of B in X is the minimal number (possibly infinite)
of closed, contractible subsets of X that cover B. We denote by cat(X) = catx (X).

Clearly, the Ljusternik—Schnirelman category is increasing with respect to the

inclusion, i.e., if A and B are subsets of X, then:

8.1 ACB = catx(A) < catx(B).

Moreover, the Ljusternik—Schnirelman category is a homotopical invariant, i.c., if A
and B are homotopical subsets of X, then catx (A) = catx (B).

Itis not difficult to see that, since Y is complete and v is contractible in M, then,
for any fixed point g € v, the three spaces €254, Q5 and ) (A) have the same
homotopy type. Namely, we have already observed in Remark 4.2 that Q) and
Q02 (A) have the same homotopy type.

In particular, it follows that, for every subset B C 00} (A), we have:

catagy (ay(B) = catagy (B)-

Moreover, given any curve z € §2),, one can consider the curve Z € {2y 4 given by:

Z(t) = ¥(2(t), 42(2)),
where
¢:(t) = (v (g) =77 (2(1))) - .
Observe that the map v~ ! is well defined and continuous on y(IR) because 7 is
injective. Moreover, the evaluation map z — z(1) is continuous in £2{}), so the
map z — ¢, € C([0, 1], R) is continuous in ).
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The map M : QG x [0,1] — QG given by:
H(z,r)(t) = ¥(2(t), ¢:(2) - 7),

is clearly continuous; moreover it satisfies #(z,0) = z, H(z,7) = zforallz € Qp 4
and all r € 0,1}, and H(z,1) = Z, and so it is a strong deformation retract of ),
onto (2, ;. In particular, the map #(-, 1) is a homotopy equivalence between 20,
and €, , and the two spaces have the same homotopy type.

A well known result by Fadell and Husseini (see {3]) states that, if Uy is not
contractible, then the category of the space 2,4, and 5o also the category of 20, is
infinite:

cat(Qg?.,) = cat(Qy, o) = +o0;
moreover, there exists a sequence K, of compact subsets of 0, such that:
8.2) nliqngocatng!'(K,.) = +00.

By Remark 4.2, we can assume that K, C Q{2 (A) foralln € IV.

We denote by I',, n € IN, the collection of all compact subsets of
having category strictly larger than to n:

%(4)

(1
p"y

(8.3) Tn= {B compact subset of Q) (A) : catna a)(B) Z2n+ 1}.

Observe that, by (8.2), 'y, # @ foralln € IV.
For allc € R and ¢ € [0,1], we denote by G, the closed c-sublevel of the
functional Gy . in ), (A):
fe={we ) Grew) <chi
clearly
Gi.CG;, VceR,Veelol].

A well known argument in Critical Point Theory shows that,if L : X — RisaC!-
functional defined on the Banach manifold X, satisfying the Palais—Smale condition
at the leyel ¢ € IR and such that the sublevel L€ is complete, then, the category
catx (L) is finite.

In the following preliminary Lemma we show that, for all ¢ € IR, the category
caty) Gi.) = catom a) (G% ) is bounded uniformly with respect to €.
Lemma 8.2. Forall c € IR there exists N = N(c) € IN such that:
(84) catyay (Gk.e) < N(c),

foralle € [0,1].
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Proof. We will show that, for all ¢ € IR, there exists ¢ € IR and, forall € € [0,1],a
homotopy between the sublevel G , and a subset of the sublevel L', where L is a
suitable smooth functional satisfying the properties described above.

By the completeness of Uy, for all ¢ € IR there exists a compact subset K, C Uy
containing the images of all the curves in G; . forall € € [0,1]. Indeed, as we have

already observed at the beginning of the proof of Proposition 7.3, all such curves w
have bounded energy:

1
/0 (W, 1), dt < dp < +oo.
For § > 0, we denote by Vj the closed subset of U, given by:
(8.5) Vs = {2: € Uy : Yi(x) > 5}.

Let now & > 0 be small enough and H : [0,1} x (Ux N K.) — K, be a map of
class C! satisfying:

(1) H(0,z) =z, forallz € Uy N K,;

@ H(r,Vs) C V3, foralir € [0,1];

3) HQ,UxNK,.) C V.
Such a map is built (up to considering a larger K.) by using the flow of the vector
field V¥, which is bounded away from 0 in the compact set K N 8Uj.

Finally, we consider the map H : [0,1] x Gf — Q&) defined by:

(8.6) H(r,w)(t) = H(r - t,w(t)), Vrtelo,1]

Clearly, H is continuous; moreover, by the construction of H, the map #(0, -) is the
identity on G§. By construction, the curves in (1, G§) have image in the set Vj,
and so they stay uniformly far from OUy.

Since the curves in G}, have image in a fixed compact set, it is easy to see by a
direct computation that the map H has bounded partial derivatives, and so the map
M(1,-) is Lipschitz continuous on G§. It follows that there exists a real number ¢’
such that:

sup Gi(w) <.
weM(1,G%)

We denote by Ay 5, the set of curves in Gi’ having image in Vj:
Arse = {weGf :ult) € Vi, vt };

we have just proven that:
H(1,G%) € Axse-
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Let’s consider the functional L : 5, ~— IR given by:
)
8.7 Lw)=G + — dt,
€3 )= 6uw)+ [ i
where r : [0, +oo[—— IR* is a smooth function satisfying:

r(0)=1, 7(0)>0, and r(s)=0 if se [g,+oo[.

Now, the same proofs of Propositions 6.2 and 6.4 can be repeated verbatim to show
that L is a smooth functional on 0, (A) that satisfies the Palais-Smale condition at
every level c, and whose sublevels are complete. It follows that, for all ¢ € R, there
exists a natural namber N(c’) such that:

(8.8) catga (L) = N(¢') < +00.

Since the function r vanishes identically on the images of the curves in Ay 5, then
Ay, C L€, and, in particular,

chy A
(8.9) catnl('xl_), (Arse) < catnm (L) = N(c).

Thus, by the homotopical invariance and the monotonicity of the Ljusternik-Schnirel-
man category, we have:

(8.10) catgq (Gi,) < catgm (GE) = catge) (H(1, G)) < catge) (Axse)s
which concludes the proof. g

A well known minimax argument in Critical Point Theory shows that the numbers:
8.11 = i
(8.11) Cm = Jof [:gg Gk, (z)]

are critical values for the functional Gy . for all m € IV and all € €]0,1). Observe
that, by the definition (8.3) of I'y,, each ¢Z, is well defined and finite. Also, since

& — Gj,.(w) is increasing on [0, 1] for allw € )., it follows easily that:

(8.12) 0<c,<cl,, Veelo1],VmeN.
Since Iy, is non empty for all n, from (8.11) and Lemma 8.2 it follows that Gkr,e

has arbitrarily large critical values for all £ € ]0, 1}; in order to prove Theorem 1.2,
we need to prove that the same claim is true for the functional G = G0

Lemma 8.3, In the notations of Lemma 8.2, for all ¢ € R, if m > N(c) then
(8.13) &, 2 e, Ve €lo,1].
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Proof. Lete €]0,1] and ¢ € IR be fixed. By contradiction, suppose that there exists
m > N(c) and B € T, such that:

sup Gr(z) < c.
zEB

Then, it would be:
B C Gi,

and, by the monotonicity of the Ljusternik-Schnirelman category and Lemma 8.2, it
would be:

8.14) catnm(A)(B) < catnm(A)(Gi’e) < N(e).

The inequality (8.14) contradicts the fact that B € I',,, and concludes the proof. [J
We are ready for the proof of Theorem 1.2:

Proof of Theorem 1.2. Let {e,}» C|0, 1] be any decreasing sequence converging to
0 and let Gy ., be the corresponding sequence of functionals on Q0 (A).

For all m € IV, we define:
8.15) | Cm = liminfcfn.

By (8.12), the €y, are well defined (finite), and they form a non decreasing sequence.
By Proposition 7.3, for all m € IV, ,, is a critical value for Gj..
Finally, by Lemma 8.3, the sequence Z,, is unbounded, hence G has arbitrarily
large critical values. Let wy, be a sequence of critical points of Gx in Q02 (A)
such that Gg(w,) = ©m and, for each m € NN, let g, be the unique curve in

B{) (k) such that D(0,,) = wy,. The conclusion follows then immediately from
Theorem 5.4. O

APPENDIX A. THE ARRIVAL TIME BRACHISTOCHRONES
IN THE EXTERIOR SCHWARZSCHILD’S SPACETIME

We now present an explicit calculation of the arrival time brachistochrones in the
exterior Schwarzschild spacetime, that is the relativistic model for the gravitational
field outside a star static and spherically symmetric (see [1, 12, 17]). We will prove
that any event p and any observer -y can be joined by an arrival time brachistochrone
of arbitrary (positive) energy. We emphasize that, by a result of [20], the same result
does not hold for the travel time brachistochrones.

We consider polar coordinates (r, ¢, 8) in IR3, The exterior Schwarzschild space-
time is given by a product manifold M = Mg x R, where My C IR? is the open
subset given by the region outside the sphere of radius 2m:

Mo ={(r,¢,0): r > 2m},
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and the metric g on M is:
(A.1) g=B(r)"1dr? + r2dQ? - g(r)dt?,

where
2m

Blr)=1-—

and d0? = sin® 9 d¢? + d6? is the standard Rnemannian metric induced on the unit
sphere of IR® by the Euclidean metric. The positive constant m represent the mass
of the star.

We consider the timelike Killing vector field Y = g;; its orthogonal distribution
A is completely integrable, and its integral submanifolds are the spacelike surfaces
given by the time slices Mo x {tp}. Please note that, differently from the previous
sections, we are now using the letter ¢ to indicate a the global coordinate function
on M. The curve parameter will now be denoted by the letter s. Observe also that
(Y,Y) = -3, where (-, -) denotes the metric (A.1).

Fix any positive constant k; the potential well U;, defined in (1.10) is given by:

U = {(r, $,0,):1— 2™ k’}.
If k2 > 1, then U coineides with the entire mamfold M;if 0 < k2 < 1, then
Up = {(r,¢,0,t) 11— k2 < LY 1}

As we have observed, a curve z = (x,t) in M, w1thx € Mpandt € R, is
horizontal with respect to the distribution A if and only if its image stays inside a
time slice Mg % {tp}, i.e., if and only if t=0. Consequently, by Theorem 5.4,
the arrival time brachistochrones in the exterior Schwarzschild spacetime are curves
o = (r,¢,0,t) such that x = (r, ¢, 6) is a critical point for the functional

Gi(r, ¢,6) = /o 1 ﬁ(r)(kzl- ) [ B(lr) 2 4 r2 (sinzoei:’w'z)] ds,

parameterized by:
ﬁ(f) 1
—B(r) |B(r)
and ¢ satisfies £ = —B(r)~k T,.
By the radial symmetry of the Schwarzschild metric, we can restrict our attention

to the equatorial plane 8 = Z; in this case, the spatial part x = (r, ¢, §) of the arrival
time brachistochrones are charactenzed as the critical points for the functional:

72 +r2 ¢2)

2 412 (sm o¢2+02)] C (constant),

(A2) Gi(r,¢) =

/ »ﬁ(r)(k2 B(r)) (ﬂ()
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that are parameterized by:

pﬂT(rﬂ)(}") ( ﬁ(l ) 2 4r ¢2) = C (constant).
The functions ¢y and B}, defined respectively in (4.1) and (5.1) are now given by:
8 1
K2 —p’ Bk - )’
If (r, ¢) is a critical point for the functional Gy, of (A.2), then it satisfies:
N sa2
;f(kzk )5[;2 ( +r2¢2) p ds+
+/ — (-——ﬁ’pf‘z + 22 4 orpd? + 2r2q'$<i>) ds =0,
B( k"’ -8\ & B

for all p and @ smooth functions on [0, 1] vanishing at 0 and 1. Then, integration
by parts and the Fundamental Theorem of Calculus of Variations give the following
system of differential equations satisfied by (r, ¢):

d 27 2ﬁ—k2—~1 . 28 — k?)4'r2 .
(ﬁ2(k2r )) + (ﬂ3(k2 _ﬂ)2) ﬂ‘r2+ (ﬁw;T)‘ﬂg- _2.,.] ¢2 =0,

2r%¢ = L (constant),

o = O, =

which is also written as:
(A.3) 2% 2 2ﬂl (2ﬂ kz)ﬂ' 2
7 T 2 B 12 _
~Fe—p * e 10+ |Gy o] d =0

2r3¢ = L (constant).
Now, as in (5.28), we define u to be the unique solution of the Cauchy problem:

-1
(A4) Sl ) (/ a(r(s») ’

n(0) =
The brachistochrone differential equation is the equation satisfied by the pair

(riudr) =(rop,pop)
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(see Lemma 5.6), which is given by:
(A5)
2 (; ! ﬂ”ﬁ) 1 2R -1-5) [@6-K)BT]
1 u ﬁz(kz = ﬂ) /33(k2 _ﬂ)z [ ﬁz(kz N ﬂ)z

21‘1] é? = 01

2r¥ %— = L (constant).

By (A.4), we get:

T B'(r1)f
u - ﬁ(rl) ﬁ(r1)2 ’
and, by (A.4) and (A.5) we have:

2r2¢,8(r,) = L (constant).

Therefore, up to replacing (r1, ;) by (r,¢) and L by L, we see that the arrival
time brachistochrones in the equatorial plane § = % of the exterior Schwarzschild
spacetime are characterized by the differential equations:>

(A-6) .9 .2/1.2 23 3102
(.. g'r )+2r (k2 -1-5) [@B-K)BT

2
“RE-p\ T s BRE-pE | PG - B2

—21‘] $=0,

2r%8¢ = L (constant).

We now prove that, for £ > 0 suitably fixed, the following subset of M:

M, ={(r6,6,t) e M:B(r) 2 ¢}

satisfies a convexity property, analogous to a similar condition employed in the proof
of Lemma 7.2. More precisely, we prove that if (r, ¢) satisfies (A.6), with 8(r(0)) =
€ and 7*(0) = 0, then the following inequality holds:

d2
AT 3e2l,_Br(s) <o.

Geometrically, the above condition means that every arrival time brachistochrone in
, the exterior Schwarzschild spacetime having image in M, and both endpoints in the
interior of M, never reaches the boundary dM..

30bserve that in Reference {20] the author only writes the differential equations satisfied by the travel
time brachistochrones.
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Now, a simple computation shows that (A.7) is equivalent the following inequal-
ity:
(28-k%H)B'r
B (k2 - B)
at the points where 8 = ¢. This is certainly true for & sufficiently small, because 4'r
tends to 1 as € goes to 0, while

<2,

. 28 — k?
P )

Thanks to the above convexity property it is possible to prove, essentially by the
same arguments in the proof of Theorem 1.1, that any event and any observer of the
exterior Schwarzschild spacetime can be joined by an arrival time brachistochrone
of any fixed positive energy. Note that, as it was pointed out in [20], that this is not
true for the travel time brachistochrones.

Finally, we observe that it is possible to extend the results of Theorem 1.1 and
Theorem 1.2 to the case of a potential well with boundary, as long as the above
convexity property is satisfied.

—00.
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