On the geodesical connectedness for a class of semi-Riemannian manifolds (2000)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- Subjects: GEOMETRIA DIFERENCIAL; GEOMETRIA SEMI-RIEMANNIANA; GEOMETRIA GLOBAL; GEOMETRIA DE GEODÉSICAS
- Language: Inglês
- Imprenta:
-
ABNT
GIANNONI, Fábio e PICCIONE, Paolo e SEMPALMIERI, Rosella. On the geodesical connectedness for a class of semi-Riemannian manifolds. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf. Acesso em: 10 nov. 2024. , 2000 -
APA
Giannoni, F., Piccione, P., & Sempalmieri, R. (2000). On the geodesical connectedness for a class of semi-Riemannian manifolds. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf -
NLM
Giannoni F, Piccione P, Sempalmieri R. On the geodesical connectedness for a class of semi-Riemannian manifolds [Internet]. 2000 ;[citado 2024 nov. 10 ] Available from: https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf -
Vancouver
Giannoni F, Piccione P, Sempalmieri R. On the geodesical connectedness for a class of semi-Riemannian manifolds [Internet]. 2000 ;[citado 2024 nov. 10 ] Available from: https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf - A bifurcation result for semi-Riemannian trajectories of the Lorentz force equation
- A variational theory for hight rays on Lorentz manifolds
- Shortening null geodesics in Lorentzian manifolds: applications to closed light rays
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- On the finiteness of light rays between a source and an observer on conformally stationary space-times
- New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court
- Preface
- On the relative category in the brake orbits problem
- Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint
- Infinitely many solutions to the Yamabe problem on noncompact manifolds
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
1105933.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas