A variational theory for hight rays on Lorentz manifolds (1997)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.1016/s0764-4442(97)87893-7
- Assunto: ANÁLISE FUNCIONAL
- Language: Inglês
- Imprenta:
- Publisher place: Issy les Moulineaux
- Date published: 1997
- Source:
- Título: Comptes Rendus de l'Académie des Sciences - Series I - Mathematics
- ISSN: 0764-4442
- Volume/Número/Paginação/Ano: v. 324, n. 10, p. 1093-1098, 1997
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GIANNONI, Fabio e MASIELL, Antonio e PICCIONE, Paolo. A variational theory for hight rays on Lorentz manifolds. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, v. 324, n. 10, p. 1093-1098, 1997Tradução . . Disponível em: https://doi.org/10.1016/s0764-4442(97)87893-7. Acesso em: 23 jan. 2026. -
APA
Giannoni, F., Masiell, A., & Piccione, P. (1997). A variational theory for hight rays on Lorentz manifolds. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 324( 10), 1093-1098. doi:10.1016/s0764-4442(97)87893-7 -
NLM
Giannoni F, Masiell A, Piccione P. A variational theory for hight rays on Lorentz manifolds [Internet]. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. 1997 ; 324( 10): 1093-1098.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/s0764-4442(97)87893-7 -
Vancouver
Giannoni F, Masiell A, Piccione P. A variational theory for hight rays on Lorentz manifolds [Internet]. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. 1997 ; 324( 10): 1093-1098.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/s0764-4442(97)87893-7 - Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Bifurcation of Constant Mean Curvature Tori in Euclidean Spheres
- Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index
- A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results
- Shortening null geodesics in Lorentzian manifolds: applications to closed light rays
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- Multiplicity results for mass constrained Allen–Cahn equations on Riemannian manifolds with boundary
- Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods
- Naked singularities formation in perfect fluid collapse
Informações sobre o DOI: 10.1016/s0764-4442(97)87893-7 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
