Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods (2002)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.1137/S0363012900367242
- Assunto: GEOMETRIA SUB-RIEMANNIANA
- Language: Inglês
- Imprenta:
- Publisher: SIAM
- Publisher place: Philadelphia
- Date published: 2002
- Source:
- Título: Siam Journal on control and Optimization
- ISSN: 0363-0129
- Volume/Número/Paginação/Ano: v. 40, n. 6, p. 1840-1857, 2002
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
GIAMBÓ, Roberto e GIANNONI, Fábio e PICCIONE, Paolo. Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods. Siam Journal on control and Optimization, v. 40, n. 6, p. 1840-1857, 2002Tradução . . Disponível em: https://doi.org/10.1137/S0363012900367242. Acesso em: 10 jan. 2026. -
APA
Giambó, R., Giannoni, F., & Piccione, P. (2002). Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods. Siam Journal on control and Optimization, 40( 6), 1840-1857. doi:10.1137/S0363012900367242 -
NLM
Giambó R, Giannoni F, Piccione P. Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods [Internet]. Siam Journal on control and Optimization. 2002 ; 40( 6): 1840-1857.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1137/S0363012900367242 -
Vancouver
Giambó R, Giannoni F, Piccione P. Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods [Internet]. Siam Journal on control and Optimization. 2002 ; 40( 6): 1840-1857.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1137/S0363012900367242 - Multiple brake orbits in m-dimensional disks
- On the normal exponential map in singular conformal metrics
- Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Maslov index and Morse theory for the relativistic Lorentz force equation
- On the number of solutions for the two-point boundary value problem on Riemannian manifolds
- Maximally-warped metrics with harmonic curvature
- On the Lie group structure of pseudo-Finsler isometries
Informações sobre o DOI: 10.1137/S0363012900367242 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
