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ON THE GEODESICAL CONNECTEDNESS FOR A CLASS OF 

SEMI-RIEMANNIAN MANIFOLDS 

FABIO GIANNONL PAOLO PICOONE, AND ROSEU..A SAMPALMIERI 

ABSTRACT. We prove a variational principle for geodesics on a semi-Riemannian 
manifold M of arbitrary index k and possessing k linearly independent Killing 
vector fields that generate a timelike distribution on M. Using such principle and a 
suitable completeness condition for M, we prove some existence and multiplicity 
results for geodesics joining two fixed points of M. 

1. INTRODUCTION 

The geodesics on a Riemannian, or more in general a semi-Riemannian manifold, 
can be characterized by means of ordinary differential equations. However, in order 
to obtain results of existence of geodesics between two fixed points, the general 
theory of differential equations can only be used to develop a local theory, and it 
does not provide sufficient tools to prove global results. For this reason, and also 
for many other applications, it is used a variational characterization for geodesics, 
and to prove results of existence and multiplicity one uses all the machinery and 
techniques from Calculus of Variations, Global Analysis on Manifolds and Critical 
Point Theory. 

The geodesics between two fixed points are stationary points (not necessarily min­
ima) for the length functional in the Riemannian case, or, more in general, for the 
action functional for metrics of arbitrary signature, defined in the space of all curves 
joining the two given points and satisfying suitable regularity conditions. 

For instance, in the case of a Riemannian manifold M, it is proven in the clas­
sical literature that the action functional, which is bounded from below, satisfies the 
Palais-Smale compactness condition precisely when M is complete. This result, to­
gether with the theorem of Hopf and Rinow, can be applied in a number of situation 
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to obtain precise information on the number of geodesics joining two points. More­
over, in the Ricmannian case one proves that the Morse index of the action functional 
at its critical points is finite, and the Morse Index Theorem can be proven to obtain 
extra information on each geodesic, such as the presence of focal points, and also to 
obtain relations between the geodesical structure and the topological structure of M 
(see e.g. [7]). 

When one passes to metric of arbitrary signature, the situation becomes quite 
complicated, due to the following main difficulties: 

• the Hopf-Rinow Theorem does not bold; 
• the action functional is unbounded both from above and from below; 
• the Morse index of the action functional at its critical points is infinite. 

It can be shown by several examples that all kinds of geodesic pathologies can occur, 
such as geodesical disconnectedness or incompleteness, of all causal character, even 
in the case of a compact semi-Ricmannian manifold (sec e.g. References [l, 2, 3, 4, 
16, 18, 19)). 

The problem of the geodesical connectedness and some related questions for 
Lorentzian manifolds, i.e., semi-Riemannian manifolds with metric tensor of index 
1, bas been studied using global variational methods mostly by V. Benci, D. Fortu­
nato, F. Giannoni and A. Masiello: in a series of articles appeared in the last years 
starting from [6, 9]. We refer to [51 and [12] and the references therein for a reason­
ably complete panorama on the results available concerning the variational methods 
applied to the study of geodesics in (convex subsets of) Lorentzian manifolds. 

A common assumption in all the papers mentioned above is that the Lorentzian 
manifold M admitted a global space-time splitting of the form M = Mo x B, 
where, for all to E JR, Mo x {to} is a spacelike submanifold of Mand, for all 
xo E Mo, {xo} x .ll. is a timelike submanifold of M. Then, the results proven were 
based on hypotheses of metric completeness for Mo and of growth of the metric 
coefficients and their derivatives with respect to the given splitting. 

It should be observed that such results cover a great number of physically interest­
ing Lorentzian manifolds; nevertheless, from both a mathematical and physical point 
of view, the weak point in the approach is in the fact that the hypotheses of metric 
growth are not invariant by change of coordinates, i.e., by what physicists consider a 
simple rescaling of the space-time variables. 

The first attempt to give intrinsic, i.e., coordinate-free, results of geodesical con­
nectedness for Lorentzian manifolds using global variational methods can be found 
in the paper by two of the authors in [10]. In this paper it is used a suitable com­
pleteness assumption discussed below, to replace the completeness of the Riemann­
ian case, and a symmetry assumption. Namely, the Lorentzian manifold M was 
assumed to be stationary, i.e., to admit a timelike Killing vector field Y. The con­
servation law for geodesic induced by a Killing vector field was then used to prove 
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an alternative variational principle for geodesics, yielding a functional bounded from 
below and satisfying the Palais-Smale compactness condition. 

In this paper we want to extend the techniques and the results of [10] to the case 
of a semi-Riemannian manifold of arbitrary index k ~ 1. Even though some of the 
main ideas of [10] are carried over to this general case, we point out that the work 
presented is not a simple transliteration to the general case of the results of [10]. 
Namely, in the case of a metric of arbitrary index, in the construction of the func­
tional framework one has to deal with non-singular matrix operators appearing inside 
integro-differential equations. The solutions of such equations contain integrals of 
the operators, and so, differently from the Lorentzian case, some singularities may 
appear in the operators, obstructing the solubility of certain linear systems. 

Moreover, in the technical proof of the lower boundedness for the restricted action 
functional (see Section 2 and Lemma 3.1 ), given the vector valued integrals involved 
in the estimates, one is not able to use directly the Holder's inequality, and sharper 
estimates to control the behavior of these integrals are needed. 

We generalize the notion of stationarity for Lorentzian manifolds by requiring 
that our semi-Riemannian manifold (M,g), where g is a metric tensor of index k, 
admits a timelike k-dimensional distribution I:!., which is generated pointwise by k 
(linearly independent) Killing vector fields Y'1, ... , Y1c. We recall that a subspace t:i,, 
of T ,,M is said to be timelike if the restriction of g to A,, is negative definite. We 
also assume the vanishing of the Lie brackets[~, Y;] and an intrinsic completeness 
condition on M; non trivial examples of such structures are obtained by considering 
warped products of Riemannian manifolds. 

For instance, the reader may find in [17], Example 2.4, a discussion of two ex­
amples of semi-Riemannian manifolds satisfying the above conditions. In Example 
2.4-(1), it is considered a principal fiber bundle P over a Riemannian manifold B, 
with structural group G and a warped product of the metric of B and a bi-invariant 
metric of G. In this case, the vanishing of the Lie brackets holds precisely when the 
structural group G is abelian, i.e., isomorphic to ]Ric or 'JI'Jc. 

An explicit example of a vector bundle over a Riemannian manifold is discussed 
in Appendix B. 

Given such a structure, we prove the existence and, depending on the topology of 
M, the multiplicity of geodesics between two fixed points of M. In order to make 
our statements precise, we pass to a technical description of our setup. 

We consider a smooth, connected, (k + m)-dimensional semi-Riemannian mani­
fold (M, g), with k, m ~ 1, whose topology satisfies the second countability axiom 
and the Hausdorff separation axiom, and we assume that g is a semi-Riemannian 
0 00 metric of index v(g) = k. We recall that the index of a bilinear form is the 
dimension of a maximal subspace on which the form is negative definite. 
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A vector field Y on M is a Killing vector field if the Lie derivative Lyg of the 
metric tensor g is everywhere vanishing. Equivalently, Y is a Killing vector field if 
and only if the stages of all its local flows are isometrics, i.e., if the metric tensor 
g of M is invariant by the flow of Y. Hence, the Killing vector fields are seen as 
infinitesimal isometries of the manifold M. 

In this paper, we will often use the following well known characterization of 
Killing vector fields (see [14], Proposition 9.25). If X(M) denotes the Lie algebra 
of all C1-vector fields on on M, then Y E X(M) is Killing if and only if for every 
pair W1, W2 E X(M) it is: 

(1) (Vw1 Y, W2) = -{Vw2 Y, W1), 

where V denotes the covariant derivative associated to the Levi-Civita connection 
of the metric g. In particular, if z :]a, b[i--+ M is an absolutely continuous curve 
and Y is Killing, then 

(2) {z, V zY(z)) = 0, a.e .. 

We make the following symmetry assumption on our manifold M: 
(Hpl) M admits k distinguished Killing vector fields Y1, Y2, ••• , Yk; 

(Hp2) the Y.'s generate a k-dimensional timelike distribution A on M, i.e., they are 
pointwise linearly independent, and the restriction of the metric tensor g on A 
is negative definite; 

(Hp3) the Y.'s are pairwise commuting, i.e., the Lie brackets [Y., Y;] are everywhere 
vanishing on M. 

, Recall that, for W1, W2 E X(M), the Lie brackets [W1, W2] can be written in 
tenns of the covariant derivative as: 

(3) 

the equation (3) folJows from the vanishing of the torsion of the Levi-Civita connec­
tion of g. We also remark here that the hypothesis (Hp3) implies, by Frobenius The­
orem, that the distribution A is integrable (in the sense of Frobenius), i.e., through 
every point p EM there exists an integral submanifold for A (see e.g. [11]). 

Remark I.I. The hypotheses (Hpl), (Hp2) and (Hp3) must be considered as the 
multi-dimensional counterpart of the stationarity assumption for a Lorentzian mani­
fold used in [10). Observe indeed that, if k = 1, then (Hpl), (Hp2) and (Hp3) reduce 
to the mere existence of a timelike Killing vector field Y on M. 

We now fix two pointsp and q in M. We denote by C 1([0, 1],M;p,q) the set of 
curves in M given by: 

C1([0,1],M;p,q) = {z E C1([0,1],M): z(O) =p, z(l) =q}. 
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The action functional f: C1([0, 1],M;p,q) 1--+ JR is given by the integral: 

f(z} = ½ fo1 

(z, z} ds. 

A classical bootstrap argument shows that the stationary points of the functional f 
in C1 ((0, l],M;p,q) are indeed smooth curves that satisfy the differential equation: 

(4) 

the geodesics in Mare precisely the curves satisfying the equation (4). Recalling (2), 
we have that, if Y is Killing, then for every geodesic z in M the quantity (i, Y(z)} 
is constant: 

:8 (z, Y} = (v' iZ, Y) + (z, v' ;tY} = 0. 

We express this fact by saying that (z, Y} = constant is a natural constraint for 
geodesics. Our variational principle for geodesics is based on this conservation law. 

Suppose now that M satisfies (Hpl); let Y1, ... , Yk be timelike Killing vector 
fields on M. We introduce the following space: 

(5) C11,9 = {z E C1([0,1],M;p,q) : 3c1,c21 ••• ,ck E Esuchthat 

(i, Y;) a= Ci, Vi = 1, ... , k} 

Observe that, by the previous observation, if z is a geodesic joining p and q then 
z E C,,,9 • 

We give the following completeness condition: 

Definition 1.2. Let c be a real number. The set C11,9 is said to be c,.prccompact 
if every sequence {Zn}neJV C C11,9 with /(Zn) ~ c has a uniformly convergent 
subsequence in M. We say that the restriction off to C11,q is pseudo-coercive if C11,9 
is c--precompact for all c ~ inf J. 

c,. ... 

The pseudo-coercivity for the restricted action functional replaces the complete­
ness condition used in the case of Riemannian manifolds. We have the following 
result: 

Theorem 1.3. Suppose that (M, g) satisfies the hypotheses ( Hpl ), (Hp2) and (Hp3 ). 
Let p, q be two points in M such that C11,9 is non empty, and such that there exists 
c > inf f for which C11,9 is c-precompact. Then, there exists at least one geodesic in c,.,, 
M joining p and q. In particular, if the la.st hypothesis holds for each pair p and q, 
then M is geodesically connected. 
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Observe that it may happen that the set Cp,q is empty; for instance, if M = 
JR2 \ {(O, O)} is endowed with the Minkowski metric dx2 

- dy2, Y1 = /:u and 
p = (-1, 0), q = (1, 0), then c,,,q = 0. Clearly, the hypothesis of non emptiness 
for c,,,9 is essential; for, if c,,,q = 0, then obviously there exists no geodesic joining 
p and q. If the vector fields Y. are complete in M, then for every pair of points p 
and q, the c,,,q is non empty (see Remark 5.3). We recall that a vector field Y on a 
differentiable manifold is said to be complete if all its integral lines are defined on 
the entire real line. 

If we assume that the semi-Riemannian manifold M is non contractible, under 
the extra assumption of completeness for the Killing vector fields Y., then we can 
prove the analogue of Serre's Theorem for Riemannian manifolds (see (20)), that is 
a multiplicity results for (spacelilce) geodesics. 

Theorem 1.4. Assumt! that (Hpl), (Hp2) and (Hp3) are satisfied. Suppose further 
that / is pseudo-coercive in Cp,q• If the vector fields Y. are complete for i = 1, ... , k 
and M is non contractible, then there exists a sequence {zn}nEIV of geodesics in 
M joining p and q such that: 

lim /(Zn) = +oo. 
n-+oo 

In [18], the authors prove the geodesical completeness for a semi-Riemannian 
manifold M satisfying (Hpl), (Hp2), a boundedness condition on the metric coeffi­
cients and a suitable Riemannian completeness property for M. 

Theorems 1.3 and 1.4 will be proven in the rest of the paper, which is organized 
as follows. In Section 2 we present our functional framework, we introduce the re­
stricted action functional J and we discuss and prove a variational principle for semi­
Riemannian geodesics. In Section 3 we prove that, under the pseud~vity as­
sumption, the functional J is bounded from below; in Section 4 we prove that J sat­
isfies the Palais-Smale compactness condition and we prove Theorem 1.3. Fmally, 
in Section 5 we develop a Ljustcmik-Schnirelman Theory for the critical points of 
J and we prove the multiplicity result of Theorem 1.4. For the reader's convenience, 
in Appendix A we present some elementary facts about the local metric structure of 
our semi-Riemannian manifold M, that were used in Section 3, and in Appendix B 
we discuss a concrete example for our theory. 

2. THE FUNCTIONAL SETUP AND THE VARIATIONAL PRINCIPLE 

In this section we fix some notation and we prove some preliminary results con­
cerning the variational structure of our problem. We will assume henceforth that that 
the hypotheses (Hpl), (Hp2) and (Hp3) are satisfied. 

We refer to the textbook (11] for the basic notions of the geometry of infinite 
dimensional manifolds. 
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For shortness, for all p E M we denote by (·, •) the bilinear form induced by 
g(p) on TpM; moreover, let Ap denote the k-dimensional vector subspace ofTpM 
generated by Y1 (p ), Y2(p ), ... , Yk (p ). If V C TpM is a vector subspace, we denote 
by V .L = { w E TpM : (w, v) = 0 for all v E V} the orthogonal subspace. A 
subspace V C TpM is said to be nondegenerate if the restriction of g(p) to Vis a 
nondegenerate bilinear form. 

By the hypothesis (Hp2), for all p E M, the space [j,.P c TpM is non degenerate, 
hence TpM = a; EB ap; then any ( E TpM can be decomposed uniquely as 
( = (1 + (2, with (1 Ea; and (2 Ea,,. By the wrong-way Schwartz's inequality, 
11; is a spacelike subspace of T pM, i.e., the restriction of g(p) to A; is positive 
definite. 

This allows to introduce an auxiliary Riemannian metric 9<RJ defined on M as 
follows 

(6) 

for every z E Mand every(, ( E TzM. It is straightforward to see that 

(7) 

Ifp and q arc any two fixed points in M we denote by n!:~(M) the space of H 1•2-

curves in M joining p and q : 

n;:! = n;:!(M) = { z: [O, 11- M j z absolutely continuous, 

z(O) = p, z(l) = q, 11 
(z, z)cR) ds < +oo }-

It is well known that n!;~(M) has a natural structure of an infinite dimensional 
Hilbert manifold (see [151) and for z E O!::(M) the tangent space Tzn;:~ can be 
identified with the space of HJ•2 -vector fields along z : 

Tzn;;!(M) = { ( e H1
•
2 ([0, l], TM), ((0) = ((1) = O, ( E TzC•)M Vs}, 

where 

H 1•2([0, l],TM)={ z: [O, lj -TM j ( absolutely continuous, 

11(!1. =< +oo }, 

and 

(8) 

Note that T:rn!;~ is an Hilbert space with respect to the norm IICII•• 
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Let Lr([o, 1], TM), r ~ 1, denote the set of all r-integrable vector valued func­
tions from [0, l] to TM, and, for ( E Lr([0, 1], TM), we define 

ll(l!r = ( fo1 

{(({s),{(s)}cai)i els)~. 

Similarly, one can define the set £00([0, 1), TM) and, for ( E £00([0, 1), TM), we 
set 

The functions 11 · llr, r E (1, +oo], when restricted to the vector space of continuous 
vector fields along a fixed curve z, define Banach norms. 

The semi-Riemannian action functional/ on O!::(M) is defined by: 

(9) /{z) = ½ fo1 

(z{s}, z(s)} ds; 

from (7), it follows that the integral (9) is finite for all z E O!;:(M). The action 

functional is_ smooth on O!::(M), and its differential is given by: 

(10) 

for ( E T:rS'l!:~(M). Its critical points are smooth curves that satisfy (4), hence they 
are geodesics. 

We denote by W the smooth distribution on the manifold n!;~(M) consisting of 
vector fields taJcing values in A: 

(11) W = { (z,() E m!:!(M) I ((s) E A:r(e), Vs E [O, 1) }-

Let Il(z, () = z be the projection of W onto O!:!(M), and for z E O!;!(M}, let 
Wz denote the subspace ofTzi'l!::(M) given by n-1(z). 

We denote by HJ•2([0, 1}, .fl) the Hilbert space of functions z: (0, 1] - R. of 
class H 1•2 such that µ{0} = µ(l} = 0. 

Observe that a pair (z, {) E Tn!:: belongs to W if and only if 

k '= L/Ji 1'<z>, 
i-1 

for some l-'i E H~•2([0, 1}, B), i = 1, ... , k. 
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Finally, we introduce the space Np,q(M) of curves z in n~:~(M) such that the 
scalar product (i, Y.} is constant for each i = 1, ... , k : 

N11,q = N11,q(M) = { z E n!:~(M) (i(s), Y.(z(s)} is constant a.e. on [O, l] 

(12) for each i = 1, ... , k} 

We introduce the space N11,q because it is the natural space in which it is possible to 
prove the Palais-Smale compactness condition for the action functional. The details 
of the proof will be given in section 4. 

The space N11,q can be characterized as the set of the curves z E O!:~ such that 
the derivative of f'(z) vanishes in the directions of Wz : 

Proposition 2.1. It is 

(13) Np,q = { z E n!:!(M) I /'(z)[(] = 0 V( E Wz }. 

Proof. Let (z, () be an element of W, then ( has the fonn 

i=l 

for someµ. E HJ•2 ((0, l], .E), i = 1, ... , k. 
Since Y; is killing, then (i, V .tY.) vanishes identically on [O, 1), hence 

f'(z)[µiY.] = 11 

(i, V.t(µ.Y;)}ds = 11 

(µ,(i, V.tY.(z)} + µ.~(i, Y.(z)}) ds 

(14) = fo1 

µHz, Y.(z}} ds. 

The last integral in (14) vanishes for every µ, E HJ•2((0, l], R.) if and only if 
(i, Y.(z}} is constant ae., and so we get the claim. D 

1n order to prove a variational principle for geodesics, we need to show that N,,,q 
is a regular manifold. 

Proposition 2.2. The set N,,,9 is a C 1-submanifold ofn!:~­

Proof. Let us consider the following map 

F · {11•2 
1-+ L2 ([0 l] Ek) 

• p,q ' ' 

(15) z 1-+ ((i, Y1(z}}, (i, Y2(z)), ... , (i, Yk(z)}) 

and the closed subspace IC of £ 2([0, l], R.1•) made of k-tuples of constant functions 
from [O, l] to E.: 
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It is clear that Np,q = F-1 (K), and the map F defined above is of class 0 1• The 
Gateaux derivative of F is easily computed as 

(16) F'(z)[(] = ( (V .tC, Y.(z)) + (i, V cY.(z)))i, i = 1, ... , k, 

where z E O!::, ( E TzO!:: and V cY.(z) is the covariant derivative of Y. in the 
direction of the vector field(. 

Using a generalii.ation of the Implicit Function Theorem (see Proposition 3.ll.2 
of [111), in order to prove that N11,q is a regular submanifold of O!:: it suffices to 
show that the composite map: 

(17) 

is surjective, where TF(z)L2((0, l],.ll}/TF(z)K is the quotient Banach space and 7r' 

is the canonical projection onto the quotient. 
This is equivalentto J>!Ovingthat, for every z e N11,q and for all he L2((0, l], JR"). 

h = (h1, ... , h1,), the equation in(: 

(18) 

can be solved in T.,O!:!-
Then, let z E N11,q and h E L2((0, 1), B."') be fixed and consider the vector field 

along z 

,. 
( = Ll'i(s)Y.(s); 

i=l 

if µi E HJ•2([0, l], JR) for all i, then ( E T:i:O!::-
Substituting such ( in (18) we obtain a system of k equations of the following 

kind 

(V.t(, Y.(z)) + (i, v,Y.(z)) = ~ + t;. 

Recalling that, since Y. is Killing, it is 

(19) 
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if ( satisfies (19), one has: 

k k k 

(V z(, Y.(z)}+ {z, V ,Y.(z)) = (E µ1Y; + L µ;v'21Y;, Y.} - Lµ;{Y;, V zY.) 
j=l j=l j=l 

k k 

= L µ'; (Y;' Y.} + L µ; ( (V z Y;' Y.) - (Y;' V z Y.)) 
j=l j=l 

k k 

(20) = L µ';(Y;, Y.) + L µ; ( - (VY; Y;, z) + (z, VY; Y.)) = 
j=l j=l 

k k 

= Lµ';(Y;, Y.> + Lµ; (~.Y;J,z) = 
j=l j=l 

k 

= (by (Hp3)) = Lµ';(Y;, Y;} =hi+ £!i. 
j=1 

Now, setting 
A= (µ1,µ2, ... ,µk), 

we consider the resulting equation in the entries of the vector µ: 
k 

(21) Lµ1(Y;,Y.) = hi +Ci-
j=l 

ff we set ai; = (Y., Y;), by the linear independence assumption on the set of vector 
fields {Y1, Y2 , ••• , Yk}, we have that the symmetric matrix A = (a.;) is invertible, 
and (21) can be rewritten as 

Aµ' =h+c. 
We can solve explicitly this equation by setting 

P,(s) = 1• A-1(h + c) dr. 

Clearly, p.(O) = 0 and we only need to find a constant vector c such that 

(22) 

Since 

ifwe set 

P,(1) = 0 
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then (22) is satisfied and the proof is concluded. D 

Remark 2.3. Observe that in the proof of Proposition 2.2 we have used the fact 

that the integral (J0
1 A-1ds) gives an invertible matrix. Indeed, by (Hp2), A = 

( a,i) = ( {Y., Yj}) is negative definite and so is its inverse matrix A-1 
. In particular, 

Vs e (0, 1) J; A(r)-1dr is still negative definite and thus invertible. For, given any 
v E JR", we have 

0 > 1• (A(rr1v, v}dr = ((1• A(rr1dr)v, v}. 
0 . 0 

The tangent space Tz..Np,q can now be easily characterized by means of the same 
Implicit Function Theorem as follows: 

Corollary 2.4. If z e .N,,,9 , the tangent space Tz..N,,, 9 can be identified with the set: 

Tz..Np,q = {( e Tz.n!:! j (Vz(,Y.(z)} + (i, VcY.(z)} 

is constanta.e. on [O, l]fori = 1, ... ,k }. 

In what follows the restriction of the acti_on functional / on .N,,,q will be denoted 
byJ: 

J=J I . 
N,.,. 

We can now settle our variational principle for geodesics on semi-Riemannian 
manifolds 

Theorem 2.5. A curve z E fl!:! is a geodesic in M if and only if z E N,,,q and z is 
a critical point for the functional J. 

Proof. If z is a geodesic inn!::, then (i, Y.} i = 1, ... , k is constant and z E .N,,,q. 
Conversely, if z E .N,,,q is a critical point for the functional J, then f'(z) clearly 
vanishes on all vectors ( E Tz..Np,q and it vanishes also on all vectors ( E Tzfl!:: of 

A: • 1 2 
the form E J'iY., with J£i E H0 ' {[O, 1], JR). ,-1 

In order to obtain the thesis, it suffices to show that the space Tzfl!:! is the direct 
A: 

sum of the two spaces { E µ,Y., J£i E HJ•2([0, 1], JR)} and Tz.Np,q, i.e., that every 
i=l 

( E Tzn;:: can be written as 

A: 

(23) ( = I:µ,Y. + (, 
i=l 
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To prove this, we consider an arbitrary ( E Tzfl!:: and we search k functions 
12 - k 

µ. E H0 ' ([O, 1], JR) such that the vector field ( = ( - E µil'i belongs to Tz.Np,q• 
izl 

By Corollary 2.4, one has to find a constant Ci such that 

(Vz(, Y;(z)} + (z, v,Y;(z)} = Ci, 

that is 
k k 

(Vz((-Lµ;Y;),Y;(z)} - {(-Lµ;Y;,Vz'Y;(z)}= 
;=1 

(24) 

;=1 
k k 

= (Vz(,Y.}- Ll'J(Y;,l'i)- LJ';(V.tY;,Y.)-((,V.t'Y;}+ 
j=l j=l 

k 

+ Lµ;(Y;, Vz~) = 
j=l 

k k 

= (Vz(, Ya} - Ll'.i(Y;, Y.} + Lµ;{VY.Y;, .i} + 
j=l j=l 

k 

- Lµ;(i, Vy;"Yi) - {(, V.t"Yi) = 
j=l 

k 

= (V z(, Ya} - L µi(Y;, l'i) - ((, V zl'i) + 
j=l 

k 

+ z: µ;(ll'i, Y;J. z> = Ci-
j=l 

From (Hp3) we obtain the following system of k differential equations that the vector 
µ = (µi, ... ,µk) has to satisfy, namely if A = (Bi;) = ((Y., Y;}), K:, = (c1, ... , ck) 
and L = (l,) = ((Vz(, Y.} - ((, Vzl'i}) one has to solve 

Aµ'= L -K:,. 

Since A is invertible, we can set 

and then 

(25) 
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As µ(O) = 0, in order to get our claim we only have to determine K. in such a way 
that 

µ(1) = fo
1 

A-1(£-.K:)ds = 0. 

By Remark 2.3, the matrix (Jt A-1ds) is negative definite and then invertible, 
therefore, in order to finish the proof, we only need to set: 

(26) K.= (fo
1 

A-1dsr1(fo1 

A-1Lds). 

D 

Observe that the curves in Np,q have less regularity of the curves in C,,,,,. Using 
standard arguments in Sobolev spaces, one sees that the set Cp,q is contained as a 
dense subset of Np,q• Thus. in the statements of Definition 1.2 and Theorems 1.3 
and 1.4 we can replace the space C,,,,, with Np,q• 

3. THE LOWER BOUNDEDNESS CONDITION FOR THE RESTRICTED ACTION 
FUNCTIONAL 

In this section we show that, if Np,q is o-prccompact for some c > inf J, then 
Np,• 

the restricted action functional J is bounded from below in N,,,,,. 
To this aim, for z e N,,,,,, we denote by C{z) e 'JR!' the constant vector: 

C(z) = ( (z, Y1), (z, Y2), ... , (z, YA:)), 

For c E B, we also denote by Jc the c-sublevel of Jin Np,9 : 

Jc = { z e Np,9 : J(z) $ c }· 

The crucial fact for the lower boundedness of the functional J is given by the bound­
edness of the quantity IIC(z)II, which is proven in the following Lemma: 

Lemma 3.1. Suppose that N,,,,, is c-precompact for some c E B.. Then. there exists 
a positive constant H such that IIC(z) II $ H for all z E Jc. 

Proof. Let Zn be a sequence in Jc which is maximizing for the quantity C(z), i.e.: 

lim IIC(.tn)II = sup IIC(z)II, 
n-oo Np,. 

By the c-precompactness, there exists a compact subset K of M containing the 
image of all the curves %,a; the set K is covered by a finite number of local charts 

(Ui,xi,x~, ... ,x!n,tL t~, ... ,t1), i = 1, 2, ... ,N, 

adapted to the k-tuple (Y1, Y2, ••. , Y1:) (see Appendix A). We recall that this means 
that, for each i = 1, 2, ... , N, the sets Ui are open subsets of M with compact 
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closure in M, and ( xi, ... , x:n, ti, ... , ti) : Ui __. JRm x JRk are coordinate 
functions on Ui satisfying the following: 

a . 
(a) Y; = oti. onU',forallj = 1, ... ,k; 

1 
(b) the metric coefficients 9aP = 9ap(x1, ... , xm) only depend on the first 

m-variables for all a, {J = 1, .. . , k + m; 
(c) wpting the metric tensor gin matrix form, we have: 

(21) g = ( ~ ~~ ) , 
where P and Qare (square) positive definite matrices of size m x m and 
k x k respectively. Here, DT denotes the transpose matrix of D. 

Oearly, we can assume that all the coefficients 9aP are bounded, and so is the 
operator norm of each of the three matrices P, Q and D. 

Moreover, by the uniform convergence of the Zn, we can also assume the follow­
ing: 

• (d) there exists a partition of the interval [O, 1], given by a finite sequence 
0 = ao < a1 < ... < ano = 1, such that Zn([Oi-1, ai)) C Ui for all 
i = 1, ... , no and for n sufficiently large; 

moreover, we will also assume, without loss of generality that: 

(28) BUp lt}(r1) - t}(r2)I :S To < +oo, 

and 

(29) 

1: .1:::::tt 
r1,r2EU, 

sup IID(r)II S Do < +oo, 
rEUi 

i=l, ... ,N 

for some positive constant Do. 
Fors E [<Ji-1,lli] we write: 

Zn(s) = (x!a(s}, t~(s)}, 

where 

x!.(s) = (xi (Zn(s)), ... ,x!n(.tn(s))), and t~(s) = (ti (Zn(s)), ... , tl(.tn(s))) . 
If we denote by (·I·) the Euclidean inner product, from (27) we can write: 

(30) 2J(Zn) = f 1a; (in, Zn) ds = 
ial Oi-1 

= f: 1°· ( (Fx!ilx!.) + 2(lli;.lt~) - (Qt~li~)) ds. 
i=l 4 ,-1 
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The condition (Zn, Yj) = C;(Zn) gives: 

(31) C(Zn) = nx:i - Qi~, vi= 1, ... , no; 

and substituting in (30), considering that Q-1 = (Q-1)T, gives: 
(32) 

2J(Zn) = t, 1:
1 

( (J>i!lx!) + (Q-11Ji!IJJi!) - (Q-1C(Zn)IC(,f,.)}) ds. 
Since J(Zn), P, D and Q-1 are bounded, in order to prove that IIC(Zn)II is bounded, 
from (32) it suffices to show that: 

(33) [_
1 

cx:a,x:.> ds 
• 

is bounded on n for all i = 1, ... , k. 
From (31) we get: 

(34) 

and, integrating on 14'-cu a.], we get: 

(35) ,,! = t~(a.) - t~(a.-1) = LG( Q-1 Dx;. ds - ( r' Q-1 ds) C(z,.), 
oi-1 la.,-1 

and so 

(36) C(z,.) = ( r' Q-1 ds)-1 

([' Q-1 Dx;. ds - ,i) . 
J.,_J O.C-t 

Observe indeed that, since Q-1 is positive definite, _then the integral J::_
1 
Q-1 ds is 

also positive definite, hence this matrix is invertible. 
Recalling that C(z,.) is constant, substituting (36) into (32) gives: 

(37) 

2c2: J(z,.) = ~ 1:
1 
(<~lx!a) + (Q-1 Di'.!alDx!a)) ds + 

-( [' Q-1 Dx;. ds - ,,! I ( {°" Q-1 ds)-1 

([' Q-1 Die!. ds - 11~) ). 
a.c-1 la.,-1 a.c-1 

From (28) we get that 11'1~11 is bounded; hence, to prove the boundedness of the 
integrals (33), we only need to prove that, in (37), the sum of the terms which are 
quadratic in ~ is bounded. 

• 

• 
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To prove this, first of all observe that, given the positivity of P, we have: 

(38) • r· (P:ic!il:x!i) ds ~ Vo r· (:ic!il:ic!i) els, Vi, n, Ja,_1 Ja,_1 

far some positive number Vo­
We now consider the sum: 

17 

~ (39) r~ = r• (Q-1 Dx!.I.D:ic!i) ds + J.,_1 

• 

-( 1"' Q-1 .D:ic!i ds I (1"' Q-1 ds)-

11•• q-1 IJx!. ds ). 
••-1 ••-1 a,-1 

HM is a fixed k x k positive definite constant matrix and y : [Bi-l, a;) 1---+ JR.le is 
an L2-function, then, by Jensen's inequality, it is: 

We recall that Jensen's inequality states that, if y : [a, J3) i---+ K. is a continuous 
function with values in the convex subset K. ~ JR" and r.p : K. 1---+ B is a convex 
function, then 

in our ~ to obtain (40), we set r.p(y) = (My I y). 
Now, on the interval [Gi-1, a;], we can write: 

(41) 

where M = q-1(a;_1) is a fixed positive definite matrix and the operator norm 
l!Bdl can be made arbittarily small by reducing the size of the interval [t1i-1,'1i], 
say: 

(42) 
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for some small 61 > 0. From (41), we compute as follows: 

(f' Q-1 d, )-] = (t Mds+ [ B,dr = • a,-1 a;-1 

(43) = ((a; -0;-1)M + t B1 da r' = 
a,-1 

( r 1 1 a, 
= ai - <Ji-1 M + a, -Oi-1 1,_1 B1 •ds = 

1 
(M +B2)-1 , = 

Oi - <Ji-1 

where 

is such that: 
• 

IIB2II $ 61. 

Observe that, if 61 is small enough, then the matrix (l+M-1 B2) is invertible; lance, 
it is: 

l (1 +M-1B2)-1 M-1 ~ 
a. - 0.-1 

= l {1 + Ba)-1 M-1 , 
a. - <Ji-1 

where 

satisfies: 

IIBall $ 62 > 0, 

and 1h ban be made arbitrarily small with 61. Moreover, using the Neumann series 
for the quantity (1 + B3)-1, we get: 

{1 + Ba)-1 = 1 - Ba(l - Ba+ B~ - · · ·) = 1 + B,., 

where: 

(44) • 

• • 

• 
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where 63 can be made arbitrarily small with 61• Then, we can write: 

(45) (1"'' q-1 ds)-1 = 
"'•-1 

= ([~, M d,)-1 

+ a, _
1
a;_, B,. 

By (41) and (45), since Mis constant, we have: 

( f, q-1 Dx;, ds I (f, q-1 ds )-' [, q-1 Dx;, ds) = 

= ( f, MVX:, ds I (f, Md, r [, (M +B1)Dx;, ds) + 

(46) +( 1~~
1 

MDX:. ds I a, !:,_
1 

1~~
1 
(M + B1)Dx;. ds) + 

+( f, B,Dx;, ds I (f, M ds )-l f, (M + B1)Dx;, ds) + 

+( 1:~
1 

B1DX:. ds I a, ~~-l 1:~
1 
(M + B1)DX:. ds ). 

Now, by Holder's inequality, we have: 

(47) . _
1 

. • (1"';-1 

( Dx;. I DX:.)½ ds)
2 

:s 1"'' ( Dx;. I Dx;.) ds. 
Oj Oi-1 Gi Gi-1 

Then, using the o-precompactness, from (46) we have the existence of a positive 
constant ko such that: 

cf, q-1 m,;, w I (f, q-' w )-1 [, q-' m,;, w > ,, 

(48) :S ( 1"'' MDX:. ds I ([' M ds)-:-

1 1~· MDx;. ds) + 
Gi-1 Iii-I G,-1 

+ 61 + 63 . ko. (1"''-\ .vx:i I Dx;. )½ ds):.i :S 
a, - a,-1 a, 

:S (61 + 63) ko 1"'' (Dx;.,Dx;.) ds. 
Gi-1 
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Hweset 

(49) 

from (39) and (40) we obtain 

(50) r~ ~ -61"; (Dx!. I Dx;.) ds, 
fli-1 

Finally, from (29), we obtain: 

(51) 

Now, each interval [Oi-1,0i) can be chosen small enough so that the constant 6 of 
( 49) satisfies: 

110 
6<D2' 

0 

then, from (38) and (51) we see that the term J:.~
1 
(J>x!alX:.) ds dominates r;.. 

Hence, the inequality (37) implies that the sum of the integrals J:_
1
(~1~) dais 

bounded, whic~ concludes the proof. I;] 

Remark 3.2 Observe -that, if N,,,9 is c-precompact for some c E E. then, by defi­
nition, all the curves z E Jc have image in a compact subset K of M. Hence, by 
continuity, there exists positive constants 111 , l'2 such that: 

(52) l(Ya(z(s)), Y;(z(s)))I =:; 111, i,j = 1, 2, ... , k, 

and, denoting by A(q) the matrix (Oi;(q)) = ((Ya(q), Y;(q)}), 

(53) jdet(A(z(s)))I ~ l"J > 0, 

for all z e JC ands E [O, 1). 

Proposition 3.3. If N,,,9 is c-precompact for some c > inf J, then J is bounded 
N.,., 

from below in N,,,9• 

Proof. Suppose N,,,9 c-precompact and let z E Jc be fixed. For (almost) all s e 
[O, l], we decompose the tangent vector i(s) as: 

i(s) = (1(s) + (2(s), 

with(1(s) E A;c.) and (:l{s) E Az(•>· 
By definition of the Riemannian metric Yea>• we have: 

(54) J(z) = fo1 
{.i, i}ca> ds + 2 fo1 

((2(s),(:is)) ds. 
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Since the first integral in (54) is non negative, it suffices to show the lower bounded­
ness of the second integral in (54). To prove this, we write: 

k 

(2{s) = 1:-X,(s) · ~(z(s}); 
i=l 

and from (52) it is enough to prove that the coefficients -X,(s) are bounded on [O, 1]. 
These coefficients are related to the constants C;(z) = (i, Y;} and to the matrix 
A = (<Ji;) by the system of linear equations: 

le 

C;(z) = L .X,(s) · {~(z(s)), Y;(z(s))}, j = 1, ... , k. 
i=l 

Thus, the boundedness of the -X, 's follows at once from Lemma 3.1 and from (53). 

4. THE PALAIS-SMALE CONDITION FOR THE 

RESTRICTED ACTION FUNCTIONAL 

D 

In this section we will prove Theorem 1.3, using standard critical point theory for 
functionals satisfying the Palnis-Smal~ condition. Observe that the necessity to con­

sider Palais-SmaJe sequences, rather than minimizing sequences for the functional 
J, is the fact that the constraint z E N,,,9 is not weakly closed in O!:!• 

We recall that if (X, h} is an Hilbert manifold and F : X 1--+ JR is a C 1-

functional on X, then F is said to satisfy the Palais-Smak condition at level c E JR 
if every sequence {xn}neJV C X satisfying 

(PSl)c lim F(.zn) = C, 
n-+oo 

(PS2)c lim IIF'(xn)II = 0, 
n-+oo 

has a subsequence converging in X. The norm considered in (PS2) is the operator 
norm in the Hilbert space Tz.X. 

A sequence .Zn in X that satisfies (PSl)c and (PS2)c will be called aPalais-Smale 
sequence ( (PS)c for short) at level c for the functional F. 

Theorem 4.1. If Np,q is c-precompact, then J satisfies the Palais-Smale condition 
at every level c' < c. 

Proof. Let c' < c be fixed and Zn a Palais-Smale sequence at the level c'. Arguing 
as in Lemma 3.1, we obtain a subsequence of Zn, still denoted by Zn, that converges 
weakly to some z E O!::- Now we prove that this convergence is strong by using 
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the fact that J'(Zn) is infinitesimal. Let (n E T.z..n!:~ be any bounded sequence in 
H1•2 ((0, 1], TM), by (23), we can write 

le 

(n = L µiY;(Zn) + (n, 
i=l 

where µ = (µ1, ... , µ1i:) is given by (25) and (26), while (n E T .z..N,,9• 
Since (n is bounded in H1•2 ((0, 1], TM), from (25) and (26), it can be easily seen 

. that also (n is bounded in H 1•2([0, 1], TM), hence: 

(55) lim J'(z.a)[(n)= lim /
1

{Zn,Vi,.(n)ds=0. n-oo n-oo}0 

Recalling that (Zn, Y;) is constant and that (Zn, Vt., Y) = 0, it is 

(56) 

1 k le 1 

1 (Zn, Vz,.(L~Y;))ds = L 1 µ:(Zn, Y;)ds + 
O i=l i•l O 

Ir 1 

+ L r µi(in, Vz,.Y;}ds = o. 
i=l Jo 

Putting together (55) and (56), we obtain: 

(57) 

We need the following technical result; 

Lemma 4.1. In the above notations, there exists a sequence On in T z.. n!:~ that tends 
to O in £ 2([0, 1), TM) and such that: 

(58) 

Proof. The proof is done for the Lorentzian case in [10). The case of a semi• 
Riemannian manifold of arbitrary index is treated analogously. D 

We can now consider the sequence of vector fields 

(59) 

from (58) we deduce that Wn is of class C1 and that 

(60) V .i,.Wn = 0. 

Since llinll2 is bounded and On tends to O in £ 2([0, l], TM), the £ 2-norm llwnll2 of 
Wn is bounded. Then it is possible to find a sequence {sn} C [O, l], and a constant 
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Co such that 

(61) 

Gronwall's Lemma applied to the differential equation (60) and the boundedness 
condition (61) gives the existence of 'Yo > 0 such that: 

lwn(sn)I ~ C-0 • e'lO J; 1.i .. 1 dr, Vs E [O, 1). 

It follows that Wn is bounded in L00
• 

From (59) it follows that Zn is bounded in £ 2, and since zn(O) is fixed these­
quence Zn is uniformly bounded. 

Writing equation (60) in coordinates, it becomes: 

(62) 

where r is a continuous function in Zn (that can be expressed using the Christoffel 
symbols of g), which is linear in the arguments .i,. and Wn. From (62), we obtain that 
w~ is bounded in L2, and thus Wn is bounded in H 1•2• 

It follows that a subsequence of Wn still denoted by Wn, is wealdy convergent in 
H 1•2, and, in particular;wn is convergent in £2 ([0, 1], TM). 

Therefore, there exists a subsequence of Zn that tends to z strongly in 01;:. 
By the L2-convergence. a subsequence of (zn, Y.} converges pointwise to (z, Y.) 

almost everywhere for every i = 1, ... , k, this implies that (.z, Y.) is constant a.c-, and 
then that z E Np,q • □ 

We prove now the completeness of the c-sublevels of J using the c-precompact­
ness condition: 

Proposition 4.3. Let c E JR be fixed. If Np,q is c-precompact, then Jc' is a compkte 
metric subspau of Np,q for all d ~ c. 

Proof. It suffices to consider the c-sublcvel. Since all the curves in JC lie in a com­
pact set (see remark 3.2), we can assmne that M is complete with respect to the 

Riemannian metric Yea>• This implies that n1:: is a complete Hilbertian manifold­
ff Zn is a Cauchy sequence in JC then Zn converges to some z in 01:: and, up to 
passing to a subsequence, {.i,., Y.} converges pointwise to {.z, Y.} almost everywhere 
for every i = 1, ... , k. Then {Zn, Y.} is constant ae. on [O, 1) and z E Np,q• By the 
continuity of J, it is J(z) $; c and then Jc is complete. D 

We can now prove Theorem 1.3: 
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Proof of Theorem 1.3. Once the Palais-Smale condition, the completeness of the 
sublevels of J and the boundedness property J are proved, the claim is an imme­
diate application of the classical deformation Lemmas for Palais-Smale functionals 
(see [13]). □ 

Remark 4.4. Note that we need the existence of a minimizing Palais-Smale sequence 
in order to obtain the existence of a minimal point for]. Indeed, one cannot use any 
minimizing sequence because our constraint is not closed with respect to the weak 
convergence. 

S. MULTIPLICITY OF GEODESICS 

The goal of this section is to give a proof of Theorem 1.4 by means of the 
Ljustemik-Schnirelman theory for Palais-Smale functionals. 

We recall the following definition: 

Definition 5.1. If X is a topological space and B any subset of X, the Ljustemik­
Schnirelman category catx(B) of Bin Xis the minimal number (possibly infinite) 
of closed. contractible subsets of X that cover B. 

The Ljustemik-SChnirelman ca,tegory of B in X is a homotopical invariant, in the 
sense that catx(B) = cat,,-(x)(F{B)) for every continuous map :F: X ..,__. F(X) 
which is a homotopy equivalence. 

A well known result by Fadell and Husseini (see [8]) states that, if M is DOD 

contractible, then the category of the space O!::(M) is infinite. 
We show now that, if the Y;'s arc complete, then Np,q and O!:: have the same 

homotopy type: 

Proposition 5.2. Suppose that the Killing vector fields Y; an complete, i = 1, ... , k. 
Then. tlure exists a smooth map :F : O~;! ..,__. Np,q which is a homotopy equiva­
lence. 

Proot For all i = 1, ... , k let t/J' : M x JR - M denote the flow of the vector 
field l':· we define a map -r. · nl,2 - nl,2 by· ., .r • . up,q up,q . 

~(z)(s) = t/J'(z(s), cf,i(s)), 

where cf,, : [O, l] - B. is a function to be determined. Observe that, in order for :Fi 
to take values in O!::, the function 'Pi must be of class H1•2 and it must satisfy the 
boundary conditions: 

(63) 

The relation [Y;, Y;] = 0 implies that the flows t/Ji(·, t) and ,P(·, s) commute, and 
so do the maps F. and F;: 

(64) :F, o F; = Fi o Fi, V i,j. 
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Moreover, denoting by dz1Jl1 the derivative of the flow 1J,1 with respect to the first 
variable (which is an isometry by the Killing property of Y.), the commuting relation 
[Y;, Y;] = 0 yields: 

(65) dx,Ji1(x, t)[Y;(x)] = Y;( ,p'(x, t)]. 

The formulas (64) and (65) are easily proven passing in local coordinates (see Ap­
pendix A), as the vector fields Y; can be taken to be coordinate fields. 

Let :F ; O!:~ 1-+ O!:; denote the map: 

:f" = :F1 o :F2 0 • • • :F1,; j 

for z E n~::, let's take w = :F(z). From (64) and (65), we compute easily: 

k 

(66) tb(s} = (dz,p1 o dzt/J2 o · · · o dzt/J")[z(s)] + L <J,,(s) · Y;(w(s)), 
i=l 

and, for all i, using (65) and the isometry property of <lztP, it is: 
k 

(w, Y.) = (z, Y.) + L {Y., Y;)<Pj• 
;=t 

In the notation of Section 3. we denote by A = ( a,j) the Ir: x k matrix with coeffi­
cients~;= (Y;, Y;); moreover, we denote by I, and Z the column vectors: 

4> = ( ~ ) • z = ( l\rn ) 
<Pk (z,Y1,;) 

and by Ca generic column vector with constant entries (Ci) to be determined. Using 
this notation, the conditions (w, Y;) = c; translate into the system of differential 
equations: 

(67) At,'= C-Z. 

Observe that all the solutions I, of (67) arc of class H 1•2• ff we solve (67) with the 
initial condition 4>(0) = 0, and if we set: 

( l )-1 1 
(68) C = 1 A-1 ds · 1 A-1z ds, 

we obtain 4>(1) = 0, i.e. that the boundary conditions (63) are satisfied, and so :Fis 
a well defined map on O!:! with image in Np,q• 
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By standard theorems on the regular dependence on the data for ordinary differ­
ential equations, it follows easily that the maps </>i depend smoothly on z, hence :Fi 
is smooth on n;:;- Moreover, the map 1{i : n}:; x [O, l] .._ n;:; given by: 

1ii(z,u)(s) = ,t,i(z(s),u · </>i(s)) 

is a smooth homotopy between ~ and the the identity map on n:,:~, hence each :F; 
is a strong deformation retract, and so is :F. Observe that, if z e N11,q, then from 
(68) it follows C = Z, and from (67) we obtain•= 0 and F(z) = z, hence Fis 
the identity on Np,q• □ 

Remark S.3. Observe that, from Proposition 5.2 it follows in particular that the 
spaces N,,,4 and C,,,,, are non empty. 

We now prove the upper unboundedness of the restricted action functional J on 
N,,,q. 
Lemma S.4. The restricted action"functional J is unbounded (from above) in N,,,,,. 
Proof Let z E O!:! be fixed and w = J='(z). In the notation of Proposition 5.2, 
recalling that the matrix A is symmetric, from (66) we compute directly: 

(69) 

k k 

(w, w) - (z, z) = 2 I: <1>:(z, Y.) + I: <1>:<t>j(Y., Y;) = 

= 2(•'IZ) + (A~'I~') = 
= (A- 1CIC) - (A-1 ZIZ), 

where ( · I · ) denotes the Euclidean product in B.k. Substituting (68) in (69) and 
integrating on [O, l], we obtain: 

2(J(w)-f(z)) = ( fo1 

A-1z ds I (fo1 

A-1 ds)-l fo1 

A-1z ds) + 

(70) - fo1 

(A-1 Z IZ) ds. 

We use the following construction to build a sequence { Zn}neJV in n:.:!- Let z be 
any fixed curve in O~:~ and a, b e [O, 1) be close enough, so that the corresponding 
points z(a) and z(b) lie in an open set U of M which is the domain of a local 
coordinate system adapted to the k-tuple (Y1, .•• , Yt). We use the same notations 
adopted in the proof of Lemma 3.1 (see also Appendix A); the coordinate functions 
will be denoted (x, t) : U .,...... .EJ:"'+k. We also assume that U has compact closure 
inM. 

Let 'Yn = (Xn, tn) : [a, b] .,...... Ube a sequence of smooth curves satisfying the 
following properties: 
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(1) 'Yn(a) E: z(a), 'Yn(b) = z(b) for all n; 
(2) tn = t. is a fixed curve joining the points t(z(a)) and t(z(b)); 
(3) Xn is bounded in H 1•1(la, b], JRffl); 
(4) Xn is unbounded in H 1•2 (1a, b], JRffl). 

Finally, we denote by Zn the sequence in O!;; defined by: 

Zn(s) = z(s) ifs E IO, a] U [b, 1] and Zn(s) = 'Yn(s) for s E ]a, b[. 

By construction, the sequence {zn}nel'I is made of curves having image in a fixed 
compact subset of M; moreover it is bounded in H1•1([0, 1], M). It follows that the 
family of functions (Zn, Y;} is bounded in £ 1([0, 1], B.); denoting by Zn the column 
vector with entties (Zn, Y;}, we have: 

(71) 

for some ao > 0. 
Moreover, by the properties (2) and (4) of 'Yn, it follows easily: 

(72) fun /(zn) = +oo. 
n--+oo 

Setting Wn = .r(zn), since A-1 is negative definite, formulas (70), (71) and (72) 
imply immediately that: 

(73) fun J(wn) = +oo, 
n--+oo 

and we are done. □ 

The proof of Theorem 1.4 is based on the following result of the classical Ljustemik 
Schnirclman theory on infinite dimensional manifolds (see e.g. (12, 131): 

Theorem 5.5. Let M be a Hilben manifold and F : M ............. R be a C 1-functional 
on M. Suppose that tM following hypotMses are satisfed: 

(1) Fis bounded from below,· 
(2) F satisfies tM Palais-Smale condition at every level c ~ inf F; 

M 
( 3) for all c ~ uj F, tM sublevel Fe is a complete metric subspace of M. 

Then, there exists at least catM(M) critical points of F in M. Moreover, if the 
category catM(M) = +oo, there exists a sequence Xn of critical points of Fin M 
such that: 

fun F(xn) = sup F. 
n--+oo M 

□ 
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Proof of Theorem 1.4. By a well known result ofFadell and Husseini (see [8]), if M 
is non contractible, then the category of the space n}:~(M) is infinite. By Proposi­
tion 5.2, it is: 

cat(Np,q(M)) = cat(n;:!(M)) = +oo. 
Hence, the proof follows at once from Theorem 5.5, whose hypotheses are proven in 
Theorem 4.1, Proposition 4.3 and Lemma 5.4. D 

APPENDIX A. ABOUT THE LOCAL STRUCTURE OF (M,g) 

In this section we describe the local metric structme of a ( m + k }-dimensional semi­
Riemannian manifold (M,g) satisfying the hypotheses (Hpl), (Hp2) and (Hp3) in­
troduced in Section 1. 

Given k non zero vector fields Y1, ... , Y1c on M satisfying [Y., Y;] = 0 for all 
i,j = 1, ... , k, by standard results in Differential Geometry (see e.g. (11]) around 
every point Po of M there exists a neighborhood U and a coordinate system on U 
given by functions: 

such that, on U, it is: 

Y; = !i, i = 1, ... , k. 

We can also choose the functions x; in such a way that the subspace :E(po) of T pgM 
generated by the vectors /z; IJJo, is spacelike, i.e., the restriction of the metric tensor g 

1 

to :E(po) is positive definite. Since such condition is open (it is given by the positivity 
of a finite number of determinants in the coefficients of the metric tensor g), by 
restricting the neighborhood U, we can assume that the distribution generated by the 
/z; 's is spacelike on U. We will say that such a coordinate system is adapted to the 
k-tuple Y1, •.. , Y1c. 

Using these coordinates, we can therefore write the metric tensor g in matrix 
form: 

g= ( ~ ~~ ). 
where P is a m x m positive definite matrix, Q is a k x k positive definite matrix, 
D is a k x m matrix and DT is its transpose. 

H q EM and ({,r) E lJ!R x JRlc is a tangent vector in T9M, then: 

g(q)l(e, T), ({, T)l = (P(q) {I{)+ 2(D(q) {Ir) - (Q(q) r Ir), 
where ( • j •) denotes the Euclidean inner product. 

It is an easy observation that the Killing property of the vector fields Y;, i = 
1, ... , k is expressed by the fact that the metric coefficients g,; of g with respect 
to any coordinate system adapted to the k-tuple Y1, ... , Y1c do not depend on the 
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variables ti. Namely, denoting by Ti, i = 1, ... , m + k, any coordinate system such 

that i¾; = ~-m for i > m, and writing g = (9i;), 9i; = (-Jk, .Jk), it is: 

{}gi. {} {} fJt: = (V £;YA:, a,,)+ (V ~.Y11:, 8r,} = 0. 

APPENDIX B. AN EXAMPLE 

In this appendix we give an example to illustrate our abstract theory. 
We consider a manifold M given by a global splitting Mo x JRk (or Mo x 'Jl'k, 

with 'Jl'k = S1 x S1 x ... x S1 the k-dimensional torus) where Mo is a closed 

m-dimensional submanifold of the Euclidean space EN. We denote by ( • I • ) the 
Euclidean scalar product. We consider the following semi-Riemannian metric on 
M. 

(74) g(x, t)[(e, r), (e, r)] = (Pele)+ 2(Delr) - (Qrlr), 

where x E Mo, t E JRk (or 'Jl'lc), { E TxMo and TE Ric. 
Here, P = P(x) and Q(x) are (square) positive definite matrices of size, m x m 

and k x k respectively, and D = D(x) : TxMo 1----+ E,k is a matrix operator. We as­
sume that P, Q and D depend smoothly on x; moreover the following boundedness 
assumptions are made: 

sup IIQ(x)II = N < +oo, sup IIQ-1(x)II = v < +oo, 
xE.Mo xEMo 

sup IIP-1(x)II = Po < +oo, and sup IID(x)II = Do < +oo. 
xEMo xE.Mo 

Finally, we make the assumption that the following inequality be satisfied: 

(75) v2N~<Po. 

Let us consider the timelilce Killing vector fields on M defined by ~ = ¾, i = 
1, ... , k. Being coordinate vector fields one has that~. Y;] = 0 for i,j = 1, ... , k. 
So, the hypotheses (Hpl), (Hp2) and (Hp3) of Theorem 1.3 are satisfied. 

As to the c-precompactness hypothesis, if z,. = (Xn, tn) is a sequence in Jc, 
then, arguing as in the proof of Lemma 3.1 (see formula (37)), we prove easily that: 

2c ~ J(zn) = fo1 

( (PxnlXn) + (Q-1 DxnlDXn)) ds + 

(76) - ( 11 Q-IDXn ds - 11 I (11 Q-1 ds )-1 (11 Q-1nx,. ds - 11) ), 
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where TJ = tn(q) - tn(p). Using the inequality (75), from (76) and the boundedness 
of IIQ-1 II we obtain that the integral: 

fo
1 

(Xn l:xn) ds 

is bounded. From the completeness of Mo it follows that Xn is uniformly convergent 
to a curve x E H1•2 ([0, 1],M0 ). Moreover, Xn is bounded in H1

•
2([0, 1],Mo). 

From the equality: 
tn = Q-1 D-xn - Q-10(.tn) 

(see formula (34)) it follows in first place that C(.tnl is bounded (integrating over 
(0, 1]), and then that tn is bounded in H1•2([0, 1],.R ). Hence, tn has a uniformly 
convergent subsequence, and so does .z,,. 

Thus, c,,,q is c-precompact for all C E .R 
By Theorem 1.3, the manifold M is geodesically connected; moreover, by Theo­

rem 1.4, if Mo is not contractible, then, there exist infinitely many geodesics Zn, of 
arbitral)' large /(z.a),joining every pair of points p and q. 
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