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to obtain precise information on the number of geodesics joining two points. More-
over, in the Riemannian case one proves that the Morse index of the action functional
at its critical points is finite, and the Morse Index Theorem can be proven to obtain
extra information on each geodesic, such as the presence of focal points, and also to
obtain relations between the geodesical structure and the topological structure of M
(see e.g. [7]).

When one passes to metric of arbitrary signature, the situation becomes quite
complicated, due to the following main difficulties:

o the Hopf-Rinow Theorem does not hold;
o the action functional is unbounded both from above and from below;
o the Morse index of the action functional at its critical points is infinite.

It can be shown by several examples that all kinds of geodesic pathologies can occur,
such as geodesical disconnectedness or incompleteness, of all causal character, even
in the case of a compact semi-Riemannian manifold (see e.g. References {1, 2, 3, 4,
16, 18, 19]).

The problem of the geodesical connectedness and some related questions for
Lorentzian manifolds, i.e., semi-Riemannian manifolds with metric tensor of index
1, has been studied using global variational methods mostly by V. Benci, D. Fortu-
nato, F. Giannoni and A. Masiello, in a series of articles appeared in the last years
starting from [6, 9]. We refer to [5] and [12] and the references therein for a reason-
ably complete panorama on the results available concerning the variational methods
applied to the study of geodesics in (convex subsets of) Lorentzian manifolds.

A common assumption in all the papers mentioned above is that the Lorentzian
manifold M admitted a global space-time splitting of the form M = M, x R,
where, for all ¢y € IR, My x {tq} is a spacelike submanifold of M and, for all
Zo € Mo, {zo} x R is a timelike submanifold of M. Then, the results proven were
based on hypotheses of metric completeness for My and of growth of the metric
coefficients and their derivatives with respect to the given splitting.

It should be observed that such results cover a great number of physically interest-
ing Lorentzian manifolds; nevertheless, from both a mathematical and physical point
of view, the weak point in the approach is in the fact that the hypotheses of metric
growth are not invariant by change of coordinates, i.e., by what physicists consider a
simple rescaling of the space-time variables.

The first attempt to give intrinsic, i.e., coordinate-free, results of geodesical con-
nectedness for Lorentzian manifolds using global variational methods can be found
in the paper by two of the authors in [10]. In this paper it is used a suitable com-
pleteness assumption discussed below, to replace the completeness of the Riemann-
ian case, and a symmetry assumption. Namely, the Lorentzian manifold M was
assumed to be stationary, i.c., to admit a timelike Killing vector field Y. The con-
servation law for geodesic induced by a Killing vector field was then used to prove



GEODESICAL CONNECTEDNESS OF SEMI-RIEMANNIAN MANIFOLDS 3

an alternative variational principle for geodesics, yielding a functional bounded from
below and satisfying the Palais—~Smale compactness condition.

In this paper we want to extend the techniques and the results of [10] to the case
of a semi-Riemannian manifold of arbitrary index ¥ > 1. Even though some of the
main ideas of [10] are carried over to this general case, we point out that the work
presented is not a simple transliteration to the general case of the results of [10].
Namely, in the case of a metric of arbitrary index, in the construction of the func-
tional framework one has to deal with non-singular matrix operators appearing inside
integro-differential equations. The solutions of such equations contain integrals of
the operators, and so, differently from the Lorentzian case, some singularities may
appear in the operators, obstructing the solubility of certain linear systems.

Moreover, in the technical proof of the lower boundedness for the restricted action
functional (see Section 2 and Lemma 3.1), given the vector valued integrals involved
in the estimates, one is not able to use directly the Holder’s inequality, and sharper
estimates to control the behavior of these integrals are needed.

We generalize the notion of stationarity for Lorentzian manifolds by requiring
that our semi-Riemannian manifold (M, g), where g is a metric tensor of index k,
admits a timelike k-dimensional distribution A, which is generated pointwise by k
(linearly independent) Killing vector fields Y3, . . . , Yi. We recall that a subspace A,
of T, M is said to be timelike if the restriction of g to A, is negative definite. We
also assume the vanishing of the Lic brackets (Y5, Y;] and an intrinsic completeness
condition on M; non trivial examples of such structures are obtained by considering
warped products of Riemannian manifolds.

For instance, the reader may find in [17], Example 2.4, a discussion of two ex-
amples of semi-Riemannian manifolds satisfying the above conditions. In Example
2.4-(1), it is considered a principal fiber bundle P over a Riemannian manifold B,
with structural group G and a warped product of the metric of B and a bi-invariant
metric of G. In this case, the vanishing of the Lie brackets holds precisely when the
structural group G is abelian, i.e., isomorphic to JR* or T*.

An explicit example of a vector bundle over a Riemannian manifold is discussed
in Appendix B.

Given such a structure, we prove the existence and, depending on the topology of
M, the multiplicity of geodesics between two fixed points of M. In order to make
our statements precise, we pass to a technical description of our setup.

We consider a smooth, connected, (k + m)-dimensional semi-Riemannian mani-
fold (M, g), with k, m > 1, whose topology satisfies the second countability axiom
and the Hausdorff separation axiom, and we assume that g is a semi-Riemannian
C™ metric of index v(g) = k. We recall that the index of a bilinear form is the
dimension of a maximal subspace on which the form is negative definite.
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A vector field Y on M is a Killing vector field if the Lie derivative Ly g of the
metric tensor g is everywhere vanishing. Equivalently, Y is a Killing vector field if
and only if the stages of all its local flows are isometries, i.e., if the metric tensor
g of M is invariant by the flow of Y. Hence, the Killing vector fields are seen as
infinitesimal isometries of the manifold M.

In this paper, we will often use the following well known characterization of
Killing vector fields (see [14], Proposition 9.25). If X (M) denotes the Lie algebra
of all C-vector fields on on M, then Y € X (M) is Killing if and only if for every
pair Wi, W2 € X(M) itis:

M (Vn, Y, Wa) = —(Vw,Y, W1},

where V denotes the covariant derivative associated to the Levi-Civita connection
of the metric g. In particular, if z :]a,bj— M is an absolutely continuous curve
and Y is Killing, then

4] (2, ViY(2)) =0, ae..

We make the following symmetry assumption on our manifold M:

(Hpl) M admits k distinguished Killing vector fields Y3, Y2,..., Yi;

(Hp2) the Y;’s generate a k-dimensional timelike distribution A on M, i.e., they are
pointwise linearly independent, and the restriction of the metric tensor g on A
is negative definite;

(Hp3) the Y;’s are pairwise commuting, i.c., the Lie brackets [Y;, Y;] are everywhere
vanishing on M.

Recall that, for W1, W3 € X(M), the Lie brackets [W;, W2] can be written in
terms of the covariant derivative as:
3) [W1, Wa] = Vw, Wa — Vi, Wi;

the equation (3) follows from the vanishing of the torsion of the Levi-Civita connec-
tion of g. We also remark here that the hypothesis (Hp3) implies, by Frobenius The-
orem, that the distribution A is integrable (in the sense of Frobenius), i.e., through
every point p € M there exists an integral submanifold for A (see e.g. [11]).

Remark 1.1. The hypotheses (Hp1), (Hp2) and (Hp3) must be considered as the
multi-dimensional counterpart of the stationarity assumption for a Lorentzian mani-
fold used in [10]. Observe indeed that, if k = 1, then (Hp1), (Hp2) and (Hp3) reduce
to the mere existence of a timelike Killing vector field Y on M.

We now fix two points p and g in M. We denote by C*([0, 1], M; p, q) the set of
curves in M given by:

Cl([07 1]1 M;P,Q) = {z € Cl([ov 1]1M) : Z(O) =p Z(l) = q}-
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The action functional f : C'([0, 1], M; p,q) — R is given by the integral:

1
flz) = % /0 (3, 2) ds.

A classical bootstrap argument shows that the stationary points of the functional f
in C'([0,1], M; p, g) are indeed smooth curves that satisfy the differential equation:

4 Viz=0;

the geodesics in M are precisely the curves satisfying the equation (4). Recalling (2),
we have that, if " is Killing, then for every geodesic z in M the quantity (2, Y (z))
is constant:

ad;(z,y) = (V34,Y) + (2,VY) = 0.

We express this fact by saying that (#,Y) = constant is a natural constraint for
geodesics. Our variational principle for geodesics is based on this conservation law.

Suppose now that M satisfies (Hpl); let Y3,...,Yx be timelike Killing vector
fields on M. We introduce the following space:

N

5 C,,,,:{zeCl([O,l],.M;p,q) : Jey,eq,...,6x € Rsuchthat
(5, Y5) =, Vi=1,...,k}

Observe that, by the previous observation, if z is a geodesic joining p and g then
z E cpvq’

We give the following completeness condition:

Definition 1.2. Let c be a real number. The set C, , is said to be c-precompact
if every sequence {zn}nen C Cpq With f(2,) < c has a uniformly convergent
subsequence in M. We say that the restriction of f to Cp, 4 is pseudo—coercive if Cy, 4
is c-precompact for all ¢ > ‘i:fff.

The pseudo-coercivity for the restricted action functional replaces the complete-
ness condition used in the case of Riemannian manifolds. We have the following
result: o

Theorem 1.3. Suppose that (M, g) satisfies the hypotheses (Hpl), (Hp2) and (Hp3).
Let p,q be two points in M such that Cp 4 is non empty, and such that there exists
c> énf S for which C,, 4 is c-precompact. Then, there exists at least one geodesic in
M jo,i.;ing p and q. In particular, if the last hypothesis holds for each pair p and q,
then M is geodesically connected.
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Observe that it may happen that the set Cp 4 is empty; for instance, if M =
R? \ {(0,0)} is endowed with the Minkowski metric dz? — dy?, Y1 = 3‘% and
p = (-1,0), g = (1,0), then Cp , = 0. Clearly, the hypothesis of non emptiness
for Cy, 4 is essential; for, if Cp,q = 0, then obviously there exists no geodesic joining
p and g. If the vector fields Y; are complete in M, then for every pair of points p
and g, the Cy 4 is non empty (see Remark 5.3). We recall that a vector field Y on a
differentiable manifold is said to be complete if all its integral lines are defined on
the entire real line.

If we assume that the semi-Riemannian manifold M is non contractible, under
the extra assumption of completeness for the Killing vector fields Y;, then we can
prove the analogue of Serre’s Theorem for Riemannian manifolds (see [20]), that is
a multiplicity results for (spacelike) geodesics.

Theorem 1.4. Assume that (Hpl), (Hp2) and (Hp3) are satisfied. Suppose further
that f is pseudo-coercive in Cy, g. If the vector fields Y; are complete fori = 1,. ..,k
and M is non contractible, then there exists a sequence {z, }ne v of geodesics in
M joining p and q such that:

lim f(2,) = +o00.

n—oo

In [18], the authors prove the geodesical completeness for a semi-Riemannian
manifold M satisfying (Hp1), (Hp2), a boundedness condition on the metric coeffi-
cients and a suitable Riemannian completeness property for M.

Theorems 1.3 and 1.4 will be proven in the rest of the paper, which is organized
as follows. In Section 2 we present our functional framework, we introduce the re-
stricted action functional J and we discuss and prove a variational principle for semi-
Riemannian geodesics. In Section 3 we prove that, under the pseudo-coercivity as-
sumption, the functional J is bounded from below; in Section 4 we prove that J sat-
isfies the Palais—Smale compactness condition and we prove Theorem 1.3. Finally,
in Section 5 we develop a Ljusternik—Schnirelman Theory for the critical points of
J and we prove the multiplicity result of Theorem 1.4. For the reader’s convenience,
in Appendix A we present some elementary facts about the local metric structure of
our semi-Riemannian manifold M, that were used in Section 3, and in Appendix B
we discuss a concrete example for our theory.

2. THE FUNCTIONAL SETUP AND THE VARIATIONAL PRINCIPLE

In this section we fix some notation and we prove some preliminary results con-
cerning the variational structure of our problem. We will assume henceforth that that
the hypotheses (Hp1), (Hp2) and (Hp3) are satisfied.

We refer to the textbook [11] for the basic notions of the geometry of infinite
dimensional manifolds.
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For shortness, for all p € M we denote by (:,-) the bilinear form induced by
9(p) on T, M; moreover, let A, denote the k-dimensional vector subspace of T, M
generated by Y1(p), Ya(p), ..., Ya(p). If V C T, M is a vector subspace, we denote
by Vi = {w € LM : (w,v) = Oforallv € V} the orthogonal subspace. A
subspace V' C T, M is said to be nondegenerate if the restriction of g(p) to V is a
nondegenerate bilinear form.

By the hypothesis (Hp2), for all p € M, the space A, C T, M is non degenerate,
hence T,M = A; @ Ay; then any ¢ € T, M can be decomposed uniquely as
¢ = (1 + (2, with {1 € Af and (; € A, By the wrong-way Schwartz’s inequality,
Al is a spacelike subspace of T, M, i.e., the restriction of g(p) to Ay is positive
definite.

This allows to introduce an auxiliary Riemannian metric g, defined on M as
follows

(6) Iry (Z)[C, C-] = <Cv Z)(R) = <Cls C-l) - (C2’ C-Z)y
for every z € M and every (, € T, M. It is straightforward to see that
(7) I(C: C—)I S ((v E)(R)a VC; C_ € TZM

If p and g are any two fixed points in M we denote by Q1.2(M) the space of H*2-
curves in M joining pand q :

Q7 = Qpe(M) = {21 (0,1] - M ‘ z absolutely continuous,

1
2(0)=p, 2(1) = q,/o (2, 2)myds < +oo}.

It is well known that 21-3(M) has a natural structure of an infinite dimensional
Hilbert manifold (see [15]) and for z € Q},2(M) the tangent space T2} can be
identified with the space of H;'z-vector fields along z :

T5(M) = {¢ € H**(0,1), TM), ((0) = {(1) =0, { € T M Vs},
where
HY2([0,1),TM)= {z: [0,1] = TM | ¢ absolutely continuous,
[I¢lls =< +oo},

and

1 3
8 IKle = ( /o (VI VECmy ds)

Note that T;2):2 is an Hilbert space with respect to the norm ||¢]]..
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Let L7 ([0,1], TM), r > 1, denote the set of all r-integrable vector valued func-
tions from [0, 1] to T'M, and, for ¢ € L"([0, 1], T M), we define

Il = ( [ (Gete) ctom)tas)*.

Similarly, one can define the set L>([0, 1], TM) and, for ¢ € L*([0, 1], TM), we

set
l{lloo = ess sup \/ (€(8), € (8))emy-

The functions || - ||, 7 € [1, +00], when restricted to the vector space of continuous
vector fields along a fixed curve 2, define Banach norms.
The semi-Riemannian action functional f on Q3:2(M) is defined by:

1
© 16) =3 [ (2(a) 2 ds

from (7), it follows that the intcgral (9) is finitc for all z € £2,,7(M). The action
functional is smooth on 21:3(M), and its differential is given by:

10 r@i= [ (5, V50) d,

for ¢ € T, Q2%:2(M). Its critical points are smooth curves that satisfy (4), hence they
are geodesics.

We denote by W the smooth distribution on the manifold ©21:2(M) consisting of
vector fields taking values in A:

ay  w={(z0 eTALIM)|((s) € Auy, Vs € 0,1]}.
Let II(z,¢) = z be the projection of W onto Q1-2(M), and for z € Q1,2(M), let
W; denote the subspace of T;Q21:2(M) given by I17(z).

We denote by Ha'2([0,1], IR) the Hilbert space of functions z: [0,1] — R of
class H'2 such that u(0) = (1) = 0.
Observe that a pair (z,() € T2}:2 belongs to W if and only if

k
(=) mYi(2),

i=1

for some p; € Hy?([0,1], R),i = 1,..., k.
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Finally, we introduce the space Np,q(M) of curves z in 2:2(M) such that the
scalar product (2, Y;) is constant foreachi = 1,...,k :

Npg =Npg(M) = {z e Qb 2(M) | ((s), Yi(2(s)) is constant a.e. on [0, 1]
(12) for each i = 1,...,k}

We introduce the space Ny, , because it is the natural space in which it is possible to
prove the Palais-Smale compactness condition for the action functional. The details
of the proof will be given in section 4.

The space Np,q can be characterized as the set of the curves z € Q32 such that
the derivative of f/(z) vanishes in the directions of W, :

Proposition 2.1, It is
(13) Noa = {z € M) | 1K1 =0 VC e W,
Proof. Let (2,(¢) be an element of W, then ¢ has the form

(s) =Y mYs

. i=1
for some g; € Hy?([0, 1,R), i=1,..,k.
Since Y] is killing, then (£, V;Y;) vanishes identically on [0, 1], hence

1 1
FEWY = /0 (5, Va(usYo))ds = [0 (s, ViYi(2)) + (2, Ya(2))) ds

1
(14) | witevica) o

0
The last integral in (14) vanishes for every u; € H&’z([o, 1}, R) if and only if
(2,Y;(2)) is constant a.e., and so we get the claim. O

In order to prove a variational principle for geodesics, we need to show that A}, 4
is a regular manifold.

Proposition 2.2. The set N, 4 is a C'-submanifold of 22
Proof. Let us consider the following map
F:Q2 — L*([0,1],R")
(15) z + ((£,Yi(2), (2, Y2(2)), ..., (£, YR(2)))

and the closed subspace K of L2([0, 1], R*) made of k—tuples of constant functions
from [0,1]to R :

K= {(61,62,...,(*), GER,i= 1,...,k}.
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Itis clear that M g = F~1(K), and the map F defined above is of class C1. The
Gateaux derivative of F is easily computed as

(16) F'(2)[{] = ({(Vi(,Ya(2)) + (2, VY2, i = 1, .0k,

where z € 013, ¢ € T.02}2 and VY;(2) is the covariant derivative of Y; in the

direction of the vector field ¢.

Using a generalization of the Implicit Function Theorem (see Proposition 3.1L.2
of [11]), in order to prove that N4 is a regular submanifold of £2}3 it suffices to
show that the composite map:

F'(2) -
(A7) T2 — Tp(,) L3([0,1], R*) v T L3([0,1), R*)/Tr (K,

is surjective, where Tr(;)L?([0, 1], R)/Tr(;)K is the quotient Banach space and 7
is the canonical projection onto the quotient,

This is equivalent to proving that, for every z € N, o and for all h € L%([0, 1], R¥),
h = (hy, ..., ht), the equation in (:

(18) F'()Cl=h+e¢, c=(c1,..nck) €K

can be solved in T,Q1:3.
Then, let z € N}, 4 and b € L2([0, 1], R*) be fixed and consider the vector field
along z

k
¢= mls)Yi(s);

i=1
if s € Hy([0,1], R) for all 4, then ¢ € T,QL2.
Substituting such ¢ in (18) we obtain a system of k equations of the following
kind
(Vz'Cv x(z)) & (21 V(Y,(Z)) =h; + .
Recalling that, since Y; is Killing, it is

(19) (2, V. Yi(2))) = —(¥i(2), V:Yi(2))
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if { satisfies (19), one has:
k

(Vi(, Yi(2)+ (£ VYi(2)) = Z +Zu,v Y;,Ys) - Zu,<}’,,v Y:)

=] j=1 7=1

]
gy
g\

63 + 3 s (955, % - (¥;,V:¥3))

j=1 j—-l
k
20) =Y u%, %) +Z#:(—(VYJG,2)+(Z',V1@K)) =
j=1 _1-1
k
= z (YJa Yt) + ZI‘J ([YHYJLZ>
J= j=1
=(by Hp3)) = Zpgm,x) = hi +¢.
j=1
Now, setting
= (’-‘11”21 ---1"’:)1

we consider the resulting equation in the entries of the vector fi:
K
@1) > WY, V) = hi +ci.

If we set a;; = (Y;,Y;), by the linear independence assumption on the set of vector
fields {Y1,Y2, ..., Yx}, we have that the symmetric matrix A = (a;;) is invertible,
and (21) can be rewritten as

A =h+e

We can solve explicitly this equation by setting
i(s) = / AN h+) dr.
0

Clearly, iz(0) = 0 and we only need to find a constant vector ¢ such that
(22) A1) =

Since

(1) = /0 " A k4 o)ds =0,

_(/01 A'lds)_l fol A~'h ds,

if we set
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then (22) is satisfied and the proof is concluded. 0

Remark 2.3. Observe that in the proof of Proposition 2.2 we have used the fact
that the integral ( fol A“ds) gives an invertible matrix. Indeed, by (Hp2), A =
(ai;) = ((¥;, Y3)) is negative definite and so is its inverse matrix A~*. In particular,
Vs € [0,1] fy A(r)~'dr is still negative definite and thus invertible. For, given any
v € IR*, we have

0> -/0‘(.4(1')'1?, v)dr = ((/o‘ A(r)~ldr)v,v).

The tangent space T, N, can now be easily characterized by means of the same
Implicit Function Theorem as follows:

Corollary 24. If z € Ny o, the tangent space T, Ny, 4 can be identified with the set:
TNpo = {Ce T2 | (Vil,Yi(2)) + (5, VcYi(2)

is constanta.e. on [0,1) fori =1, ..., k}.
In what follows the restriction of the action functional f on A, will be denoted
by J:
J= .
f INP L]

We can now settle our variational principle for geodesics on semi-Riemannian
manifolds

Theorem 2.5. A curve z € 23 is a geodesic in M if and only if z € Ny, q and z is
a critical point for the functional J.

Proof. If z is a geodesic in 32, then (£,Y;) i = 1,..., k is constant and z € Njpq.

Conversely, if z € Np 4 is a critical point for the functional J, then f/(z) clearly
vanishes on all vectors { € T, N}, and it vanishes also on all vectors ¢ € T,91:3 of

k
the form " 4,Y;, with »; € Hy([0, 1], R).
i=1
In order to obtain the thesis, it suffices to show that the space T;21:2 is the direct

k
sum of the two spaces {3 u;Y;, i € Hy2([0,1], IR)} and Ty N,,q, i.c., that every
i=1
¢ € T2 can be written as

k
23) (=) _mYi+{,

i=1

where { € T, Np q.
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To prove this, we consider an arbitrary ¢ € 1232 and we search k functions
_ k

i € Hy?([0,1], R) such that the vector field ¢ = ¢ ~ > 1:Y; belongs to T, 4.

=

By Corollary 2.4, one has to find a constant ¢; such tilat

(Vil, Yi(2)) + (£, VYi(2)) = i,

that is
k k
(Vld =D mYih Ya@) — (=D my¥;, Va¥i(a)) =
=1

Jj=1

k k
= (Vi(,Yi) = D wi(Y5, Vo) = 3 ps(VaY3, Ya) — (G, VaY5) +

=1 Jj=1
k
@) +) (Y5 Vi) =
=1
k k
= (Vi(, V) = D _wi(¥5, V) + Y ps(Vn Y5, 2) +
=1 j=1
k
=D i3 Yy Y5) — (G, Vi) =
j=1
.
=(Vi(,Y5) — D wi{¥5,Y3) - (G, V:X5) +
=1

k
+2pj([Y.-,Y,-], ) =¢.
=1

From (Hp3) we obtain the following system of k differential equations that the vector
b= (I‘i?""”k) has to satisfy, nmely if A= (aiJ) = ((},er))9 K= (Cl,.--, ck)
and L = (I;) = ((V:(, Y;) — (¢, V:Y;)) one has to solve

Ap' =L - K.
Since A is invertible, we can set
W=AYL-K)

and then

(25) p(s) = /0’ A™YL - K)dr.
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As u(0) = 0, in order to get our claim we only have to determine X in such a way
that

u(1) = /o ' AL - K)ds =o.

By Remark 2.3, the matrix ( fol A‘lds) is negative definite and then invertible,
therefore, in order to finish the proof, we only need to set:

1 1
(26) K= / A~lds)™( / AL ds).
0 0
O
Observe that the curves in A, 4 have less regularity of the curves in Cp . Using
standard arguments in Sobolev spaces, one sees that the set C,, 4 is contained as a

dense subset of NV, 4. Thus, in the statements of Definition 1.2 and Theorems 1.3
and 1.4 we can replace the space Cp 4 with Np, o

3. THE LOWER BOUNDEDNESS CONDITION FOR THE RESTRICTED ACTION
FUNCTIONAL

In this section we show that, if A}, 4 is c-precompact for some ¢ > ﬁrnf J, then

the restricted action functional J is bounded from below in NV}, .
To this aim, for z € N, g, we denote by C(z) € IR* the constant vector:

C(z} = ({z,11), (2, Ya),..., (2, Yk)).
For ¢ € R, we also denote by J¢ the c-sublevel of J in N, 4:

J¢ = {z €MNpg:J(2) < c}.

The crucial fact for the lower boundedness of the functional J is given by the bound-
edness of the quantity ||C(z)||, which is proven in the following Lemma:

Lemma 3.1. Suppose that N, 4 is c-precompact for some c € IR. Then, there exists
a positive constant H such that ||C(z)|} < H forall z € J-.

Proof. Let z, be a sequence in J° which is maximizing for the quantity C(z), i.e.:
Jim ||C(za)l| = sup IC)Il-

By the c-precompactness, there exists a compact subset K of M containing the
image of all the curves zy,; the set K is covered by a finite number of local charts

(U‘,z'i,z;, e ,a::'n,t‘i,tg,. .L,t), i=12,...,N,
adapted to the k-tuple (Y1,Y>,...,Y:) (see Appendix A). We recall that this means
that, for each i = 1,2,..., N, the sets U* are open subsets of M with compact
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closure in M, and (z3,...,2%,,%,...,ti) : U' — IR™ x IR* are coordinate
functions on U* satisfying the following:
il .
(@ Y;= 3 onU*, forallj=1,...,k;
J
(b) the metric coefficients gag = gag(21,. .., Zm) only depend on the first
m-variables foralla, 8= 1,...,k +m;
(¢) wyiting the metric tensor g in matrix form, we have:

P DT
where P and Q are (square) positive definite matrices of size m x m and
k x k respectively. Here, DT denotes the transpose matrix of D.
Clearly, we can assume that all the coefficients g, are bounded, and so is the
operator norm of each of the three matrices P, Q and D.
Moreover, by the uniform convergence of the z,,, we can also assume the follow-
ing;

(d) there exists a partition of the interval [0, 1], given by a finite sequence
0=a¢ <ay <...<an, =1, such that z,([a;_1,a;]) C U* for all
i=1,...,np and for n sufficiently large;

moreover, we will also assume, without loss of generality that:

28 sup It;(rl) - t}(rz)l < Tp < 400,
bl
r1,r2€U;
and
29) sup (|D(r)|| < Dy < +o0,
AT

for some positive constant Dg.
For s € [ai_1, a;] we write:

za(8) = (%5(3), t(s)),
where

X(8) = (21(2n(3)); - - -, Zin(2n(5))), and t(s) = (ti(2n(9)),- - -1tk (2a(8))).
If we denote by (-|-) the Euclidean inner product, from (27) we can write:

GO 20G) = 3 [ Ginsia)ds =
=1 781

]

S [ (P + 20 - @) s
§=1Y%i-1
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The condition (2,,Y;) = Cj(2n) gives:
@D C(m) = D5, - Qf,, Vi=1,...,n0;

and substituting in (30), considering that Q! = (Q )T, gives:
(32

2(en) =3 / " ((P1) + (@' DKID) - (@7C(2)(Cl)) ds.
i=18i-1

Since J(z,), P, D and Q! are bounded, in order to prove that [[C(zn)ll is bounded,
from (32) it suffices to show that:

33 [ o as

iz boimdedionn foralli=1 ..., k. '
From (31) we get:

(34) t! = Q@ 'Dx\ — Q71C(za),

and, integrating on [a;—q, a;], we get:

(35 nh =th(a:) —th(ai-1) = " Q~'Dx;, ds - ( Yo dS) C(zn),

and so

ag -1 4 )
Q! ds) ( Q7 'Dx} ds - n:.) .

Gi—1 i1

(36) C(z) = (

Observe indeed that, since Q! is positive definite, then the integral f:_! Qldsis
also positive definite, hence this matrix is invertible.
Recalling that C(z,,) is constant, substituting (36) into (32) gives:

3N

22 () =Y [ ((PRIE) +(QDAIDSL)) ds +

fac] Y Bi-1

a < 4
-(/: Q-‘D:'ct.ds—n:;l( Q-‘ds) (f Q"ch:ds-nf.)).

From (28) we get that ||ni ] is bounded; hence, to prove the boundedness of the
integrals (33), we only need to prove that, in (37), the sum of the terms which are
quadratic in X!, is bounded.
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To prove this, first of all observe that, given the positivity of P, we have:

(38 [ Py aszm [7 iy as, Vim,

a5—1

for some positive number vy.
We now consider the sum:

@9 T.= / " (@ 'Dx|Dx) ds +

—( " QDX ds| (/a( Q! ds) - Q~Dxi ds).

Bi-1 Gi—1

If M is a fixed k x k positive definite constant matrix and y : {@;~1,a;] — RR* is
an L2-function, then, by Jensen’s inequality, it is:

ai -1 8 a; N 35
(40z ( ( M ds) / Myds | Myds) 5/ (Myly) ds.
a;-1 a;—1 Gi—1 Bi-1

‘We recall that Jensen’s inequality states that, if y : [a, 8] — K is a continuous
function with values in the convex subset X C R™ and ¢ : K —— IR is a convex

function, then
A B
7 [ v asz o (5 [ o)

in our case, to obtain (40), we set p(y) = (Myly).
Now, on the interval [a;_), a;], we can write:

(41) Q'=M+B,,
where M = Q~(a;-,) is a fixed positive definite matrix and the operator norm
| B1 || can be made arbitrarily small by reducing the size of the interval [a;—1,a:],

say:

42) | Bl < 61,
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for some small 5, > 0. From (41), we compute as follows:

ag e G ai -1
(/ Q_l ds) ( Mds+ B; ds =
ai-1 1

ai—1 aj—
L -1
43) = ((as - a't'—l)M + Bl ds) =
a;_1
1 1 o -
_ _(M+_ Blds) _
G — a1 Qi — Qi1 Jg;_,
1 -
= ——— (M +By) t
G — G-
where
1 ai
Bg I S——— B] ds
Qi — Gi-1 Ja,_,
is such that:
[|B2]| < é1.

Observe that, if 4, is small enough, then the matrix (1+M ~1B,) is invertible; hence,
itis:

' -1 1
( Q“ds) = ———(A+M'B) ' M =

Gy a; — Gi—)
1 -
T m—ae (1+ Bg)"' M7},
where
B3=M"1B;
satisfies:
i Bsll < é2 >0,

and §; ban be made arbitrarily small with 4;. Moreover, using the Neumann series
for the quantity (1 + B3)~1, we get:

(1+B;3) '=1-B3(1-B3+B3—---)=1+B,,
where:

(44) 1Bl < 6 >0,
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where 43 can be made arbitrarily small with &;. Then, we can write:
-1
i -1 1 -1 1
@45) Q " ds M7 '+ —B;=
8i_1 G; — Gi-1 a; — ai—

) -1
( M ds) + —1——-B4.
@iy G; —ai—)

By (41) and (45), since M is constant, we have:

a

-1 )
( Q-lusc';.dsl( Q“dS) [ @pias) =

-1 Gi-1 -1

-1

a; . a; Q4 .

= (| MDi ds| ( Mds) (M + B)Dx: ds ) +
6.1 61 ai-1

a

4 a4 .
@6 MD%, ds | B / (M + B))Dx! ds ) +
ai—1 a; — Qi) Bio1

L G -1 Qg
o[ mostant (7 wan) [ o mopsian) s

ai—1 Gi-1 Gi—1
+ [ BDX dﬂi—/ " (M + B)D, ds).

a;_1 i~ Gi-1 Ja;_y

Now, by Holder’s inequality, we have:

@7) —1—-(/"‘_1(D*5,|D£.)*ds)25 " (D&, | Dx,) ds.

a; — Gi—1 a4 a1

Then, using the c-precompactness, from (46) we have the existence of a positive
constant kg such that:

ag Qi -1 i
( o-lux;dsn( o-lds) [ aipsgan <

(48) <( " MDx: ds | (f Mds)' ‘ MD5% ds )+
Bi-1

Gi—1 a;—1

rith g ([0 as) s

a; — Gi-1

< (81 +43) ko “ (DX, Dx}) ds.

ai-1
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If we set
(49) 6 = (01 + 83) - ko,
from (39) and (40) we obtain
(50) Ii>—6[ (DX |Dil)ds,
ai_1
Finally, from (29), we obtain:
ai . >
(51) I,2-6D] [ (%, | %) ds.

ai—1

Now, each interval [a;_1,a;] can be chosen small enough so that the constant & of
(49) satisfies:
Vo
d < vk
then, from (38) and (51) we see that the term f:‘.‘_l(PJ'(:,IJ'(:') ds dominates I,

Hence, the inequality (37) implies that the sum of the integrals [% (x:llx;‘) ds is

ai—1

bounded, which concludes the proof. ]

Remark 3.2. Observe that, if NV}, 4 is c-precompact for some ¢ € IR, then, by defi-
nition, all the curves z € J* have image in a compact subset K of M. Hence, by
continuity, there exists positive constants v;, 15 such that:

(52) I(Y.(z(s)),Y,(z(s)))I S. n, "J = 112v-“1k’
and, denoting by A(q) the matrix (a:;(q)) = ((Yi(q), Y;(q))),
(53) |det(A(z(s)))| = va > 0,

forall z € J¢ and s € [0,1)].
Proposition 3.3, If N, 4 is c-precompact for some ¢ > J{/nf J, then J is bounded
Jfrom below in N 4. M

Proof. Suppose N, 4 c-precompact and let z € J¢ be fixed. For (almost) all s €
[0, 1], we decompose the tangent vector 2(s) as:

£(s) = G1(s) + Cas),

with (1(3) € Ai‘(') and Cz(s) € Az(,).
By definition of the Riemannian metric g,, we have:

1 1
(54) O /o (2, Bhmy s+ 2 /0 (Ga(s), Ca(s)) ds.
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Since the first integral in (54) is non negative, it suffices to show the lower bounded-
ness of the second integral in (54). To prove this, we write:

k
Gl) = M) - Yile(o))

and from (52) it is enough to prove that the coefficients \;(s) are bounded on [0, 1].
These coefficients are related to the constants C;(z) = (2,Y;) and to the matrix
A = (ai;) by the system of linear equations:

k
C.‘i(z) = E’\t(s) ) (K(Z(S)), YJ(Z(s)))’ ] = 1, .. -1k-

Thus, the boundedness of the A;’s follows at once from Lemma 3.1 and from (53).
]

4. THE PALAIS-SMALE CONDITION FOR THE
RESTRICTED ACTION FUNCTIONAL

In this section we will prove Theorem 1.3, using standard critical point theory for
functionals satisfying the Palais—Smale condition. Observe that the necessity to con-
sider Palais—~Smale sequences, rather than minimizing sequences for the functional
J, is the fact that the constraint z € Nj,q is not weakly closed in 232,

We recall that if (X, h) is an Hilbert manifold and F : X — R is a Cl-
functional on X, then F is said to satisfy the Palais~Smale condition at level ¢ € R
if every sequence {z, }nev C X satisfying

®SD). lim F(z,) =c,

(PS2). nli_{%o |F'(zn)ll =0,
has a subsequence converging in X. The norm considered in (PS2) is the operator
norm in the Hilbert space T X.

A sequence z,, in X that satisfies (PS1), and (PS2). will be called a Palais—Smale
sequence ( (PS), for short) at level ¢ for the functional F'.

Theorem 4.1. If N 4 is c—precompact, then J satisfies the Palais-Smale condition
ateveryleveld < c.

Proof. Let ¢/ < c be fixed and 2, a Palais-Smale sequence at the level ¢/. Arguing
as in Lemma 3.1, we obtain a subsequence of z,, still denoted by z,, that converges
weakly to some z € Q:,;g. Now we prove that this convergence is strong by using
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the fact that J'(z,) is infinitesimal. Let ¢, € T, )2 be any bounded sequence in
H2([0,1], T M), by (23), we can write

k
Cn = Z p’iy;(zn) + Em

=1

where p1 = (u1, ..., k) is given by (25) and (26), while {, € T, Np 4.
Since ¢, is bounded in H'2([0, 1], T M), from (25) and (26), it can be easily scen
that also {, is bounded in H:2([0, 1], T M), hence:

1

. Y] - T . X ~ =0.

55) Jim J(eu)fG) = lim [ (o, V. Gabds =0
Recalling that (2, Y;) is constant and that (2, V; Y) = 0, it is

1 k k 1
-/;(zmvz,.(Zﬂ'Yt))ds = Z_/o p,(zn,Y,)ds+

i=1 i=1
k 1
(56) + ) / pilin, V3. Yi)ds = 0.
- i=10

Putting together (55) and (56), we obtain:

1
67 lim / (iny V. Ca)ds = 0,
0

n—00

We need the following technical result:

Lemma 4.2. In the above notations, there exists a sequence a, in T, 022 that tends
10 0 in L2([0, 1), T M) and such that:

1 1
(58) /o (bns V3G ds = jo (G Vi Ca) .

Proof. The proof is done for the Lorentzian case in [10]. The case of a semi-
Riemannian manifold of arbitrary index is treated analogously. a

We can now consider the sequence of vector fields
(59) Wy = 2p — g,
from (58) we deduce that w, is of class C! and that
(60) Vi wn =0.

Since || 2|2 is bounded and e, tends to 0 in L2([0, 1], T M), the L2-norm [|w||2 of
Wn, is bounded. Then it is possible to find a sequence {s,} C [0, 1], and a constant
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¢o such that
(61) lwn(sn)l < co, VYneE .

Gronwall's Lemma applied to the differential equation (60) and the boundedness
condition (61) gives the existence of 9o > 0 such that:

wa(sn)] < co - €™ Jolinldr  vg e [0,1].

1t follows that w,, is bounded in L°°.

From (59) it follows that %,, is bounded in L2, and since z,,(0) is fixed the se-
quence 2, is uniformly bounded.

Writing equation (60) in coordinates, it becomes:

(62) Wy, + T'(2n)[2n,wn] = 0,

where I is a continuous function in z, (that can be expressed using the Christoffel
symbols of g), which is linear in the arguments z,, and wy,. From (62), we obtain that
w}, is bounded in L?, and thus wy, is bounded in H2.

It follows that a subsequence of wy, still denoted by w,,, is weakly convergent in
H'2, and, in particular, w,, is convergent in L2([0, 1), TM).

Therefore, there exists a subsequence of z, that tends to z strongly in Q112.

By the L2-convergence, a subsequence of (2,,, Y:) converges pointwise to (2, Y;)
almost everywhere for every i = 1, ..., k, this implies that (2, Y;) is constant a.c., and
then that z € N ,. ]

We prove now the completeness of the c-sublevels of J using the c-precompact-
ness condition:

Proposition 4.3. Let ¢ € IR be fixed. If Ny 4 is c-precompact, then J ¢ is a complete
metric subspace of Ny g forall ¢ < c.

Proof. 1t suffices to consider the c-sublevel. Since all the curves in J* lie in a com-
pact set (see remark 3.2), we can assume that M is complete with respect to the
Riemannian metric g.x,). This implies that 213 is a complete Hilbertian manifold.
If 2, is a Cauchy sequence in J€ then z, converges to some z in Q32 and, up to
passing to a subsequence, {Zy, Y;) converges pointwise to {2, ¥;) almost everywhere
forevery i = 1,..., k. Then (%,,Y;) is constant a.e. on [0,1] and z € N}, 4. By the
continuity of J, it is J(z) < c and then J€ is complete. a

We can now prove Theorem 1.3:
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Proof of Theorem 1.3. Once the Palais-Smale condition, the completeness of the
sublevels of J and the boundedness property J are proved, the claim is an imme-
diate application of the classical deformation Lemmas for Palais—Smale functionals
(see [13]). a

Remark 4.4. Note that we need the existence of a minimizing Palais—-Smale sequence
in order to obtain the existence of a minimal point for J. Indeed, one cannot use any
minimizing sequence because our constraint is not closed with respect to the weak
convergence.

5. MULTIPLICITY OF GEODESICS

The goal of this section is to give a proof of Theorem 1.4 by means of the
Ljusternik—Schnirelman theory for Palais-Smale functionals.

We recall the following definition:

Definition 5.1. If X is a topological space and B any subset of X, the Ljusternik—
Schnirelman category catx(B) of B in X is the minimal number (possibly infinite)
of closed, contractible subsets of X that cover B.

The Ljusternik—Schnirelman category of B in X is a homotopical invariant, in the
sense that catx (B) = caty(x)(F(B)) for every continuous map F : X s F(X)
which is a homotopy equivalence.

A well known result by Fadell and Husseini (see [8]) states that, if M is non
contractible, then the category of the space Q1:2(M) is infinite.

We show now that, if the Y’s are complete, then A}, o and Q12 have the same
homotopy type:

Proposition 5.2. Suppose that the Killing vector fields Y; are complete, i = 1, ... k.
Then, there exists a smooth map F : QL3 — N, o which is a homotopy equiva-
lence.

Proof. Foralli =1,...,klet ¢ : M x IR — M denote the flow of the vector
field Y;; we define a map F; : 1.2 — QL2 by:

Fi(2)(s) = ¥*(2(s), ¢i(s)),
where ¢; : [0, 1] — R is a function to be determined. Observe that, in order for F;

to take values in 212, the function ¢; must be of class H1:2 and it must satisfy the

boundary conditions:

(63) $:(0) = ¢i(1) = 0.
The relation [Y;,Y;] = 0 implies that the flows 1%(-,t) and ¥(-, ) commute, and
so do the maps F; and F;:

64 FioFs=FjoFi, Vij.
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Moreover, denoting by d. " the derivative of the flow y* with respect to the first
variable (which is an isometry by the Killing property of Y;), the commuting relation
[¥;, Y;] = 0 yields:

(65) A9 (2, 8)[Y;(2)] = Y;(¥' (=, 1))].

The formulas (64) and (65) are easily proven passing in local coordinates (see Ap-
pendix A), as the vector fields Y; can be taken to be coordinate fields.
Let F : 2,2 — Q12 denote the map:

F=F10Fp0 - Fg;

for z € 212, let’s take w = F(z). From (64) and (65), we compute easily:

k
(66)  t(s) = (de¥' 0 dgpp? 0+ 0 dzyF)[2(s)] + D ¢i(s) - Yi(w(s)),

i=1

and, for all 4, using (65) and the isometry property of d. 47, it is:

k
(0, Y;) = (£, Y3) + (¥, Y;)45
J=1

In the notation of Section 3, we denote by A = (a;;) the k x k matrix with coeffi-
cients a;; = (Y;, Y;); moreover, we denote by @ and Z the column vectors:

¢1 <z.l Yl)
o ¢>2 z= (2,.Y2)
¢.k (21.Yk)

and by C a generic column vector with constant entries (¢;) to be determined. Using
this notation, the conditions {1, Y;) = ¢; translate into the system of differential
equations:

(67) AY =C-2Z.

Observe that all the solutions ® of (67) arc of class H1:2. If we solve (67) with the
initial condition ®(0) = 0, and if we set:
1
. / A~1Z ds,
)

1
(68) C= ( / Al ds)
0

we obtain $(1) = 0, i.. that the boundary conditions (63) are satisfied, and so F is

a well defined map on Q212 with image in N .

-1
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By standard theorems on the regular dependence on the data for ordinary differ-
ential equations, it follows easily that the maps ¢; depend smoothly on z, hence F;

is smooth on 2}/2. Moreover, the map H; : 212 x [0, 1] — Q12 given by:

Hi(zvg)(s) = 'l’i(z(s)’o ) ¢t(3))
is a smooth homotopy between F; and the the identity map on 212, hence each F;
is a strong deformation retract, and so is F. Observe that, if z € N}, ,, then from
(68) it follows C = Z, and from (67) we obtain & = 0 and F(z) = z, hence F is
the identity on NVp 4. ]

Remark 5.3. Observe that, from Proposition 5.2 it follows in particular that the
spaces N}, , and C,, 4 are non empty.
We now prove the upper unboundedness of the restricted action functional J on
»e-
Lemma 5.4. The restricted action functional J is unbounded (from above) in Ny, 4.

Proof. Let z € Q12 be fixed and w = F(z). In the notation of Proposition 5.2,
recalling that the matrix A is symmetric, from (66) we compute directly:

k Tk
2 dinY)+ ) $lgi(Y,Y;) =
i=1 ig=1
2(2'|12) + (A%'|2') =
(4-'clc) - (47'2)2),
where (- |-) denotes the Euclidean product in IR*. Substituting (68) in (69) and
integrating on [0, 1], we obtain:

2(J(w) - f(z)) = (/olA‘Istl (/OIA-I ds)—l./olA’lst)+

1
(70) - / (4-1Z |2) ds.
0

(w, w) i (7:" 2)

(69)

I

We use the following construction to build a sequence {2 }neav in Q12. Let z be
any fixed curve in 212 and a,b € [0, 1] be close enough, so that the corresponding
points z(a) and z(b) lie in an open set U of M which is the domain of a local
coordinate system adapted to the k-tuple (Y7,...,Y:). We use the same notations
adopted in the proof of Lemma 3.1 (see also Appendix A); the coordinate functions
will be denoted (x,t) : U — JR™**. We also assume that U has compact closure
in M.

Let 7 = (Xn,ts) : [a,b] — U be a sequence of smooth curves satisfying the
following properties:
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(1) n(a) = z(a), yn(b) = z(b) for all n;

(2) t, = t. is afixed curve joining the points t(z(a)) and t{z(b));
(3) x, is bounded in H"!([a, ], R™);

(4) xy, is unbounded in H 2([a, b}, R™).

Finally, we denote by z, the sequence in Q12 defined by:
zn(8) = 2(s) ifs€[0,a]U[b,1] and z,(s) =v.(s) fors€]la,b|

By construction, the sequence {z, },csv is made of curves having image in a fixed
compact subset of M; moreover it is bounded in H:}([0, 1], M). It follows that the
family of functions (2, Y;) is bounded in L1([0, 1], R); denoting by Z,, the column
vector with entries (z,,, Y;), we have:

1 1 -1 4
(71) ‘(/0 A"1Z, ds| (/O Al ds) ./OA'IZ,. ds)

for some ag > 0.
Moreover, by the properties (2) and (4) of v,,, it follows easily:

72) Jim f(zn) = +oo.

< ag < +00,

Setting wn = F(zn), since A~! is negative definite, formulas (70), (71) and (72)
imply immediately that:

(73) nli_{I;o J(wn) = 400,
and we are done. a

The proof of Theorem 1.4 is based on the following result of the classical Ljusternik
Schnirelman theory on infinite dimensional manifolds (see e.g. [12, 13]):

Theorem 5.5. Let M be a Hilbert manifold and F : M — R be a C*-functional
on M. Suppose that the following hypotheses are satisfied:

(1) F is bounded from below;
(2) F satisfies the Palais—Smale condition at every level ¢ > %f F;

(3) forallc> li]{.f F, the sublevel F¢ is a complete metric subspace of M.

Then, there exists at least catpe(M) critical points of F in M. Moreover, if the
category catys(M) = +00, there exists a sequence Ty, of critical points of F in M
such that:

lim F(z,)=supF. O
n—0o0 M
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Proof of Theorem 1.4. By a well known result of Fadell and Husseini (see [8)), if M
is non contractible, then the category of the space §22(M) is infinite. By Proposi-
tion 5.2, it is:

cat(N, o (M)) = cat(Qp,q(M)) = +00.
Hence, the proof follows at once from Theorem 5.5, whose hypotheses are proven in
Theorem 4.1, Proposition 4.3 and Lemma 5.4. a

APPENDIX A. ABOUT THE LOCAL STRUCTURE OF (M, g)

In this section we describe the local metric structure of a (m 4+ k)-dimensional semi-
Riemannian manifold (M, g) satisfying the hypotheses (Hp1), (Hp2) and (Hp3) in-
troduced in Section 1.

Given k non zero vector fields Y1,...,Y: on M satisfying [Y;,Y;] = 0 for all
i, = 1,...,k, by standard results in Differential Geometry (see e.g. [11]) around
every point pg of M there exists a neighborhood U and a coordinate system on U
given by functions:

(I],...,zm,h,...,tk) : U —s R™MYE
such that, on U, it is: =
Yi:ﬁ’ ‘i=1,...,k.

We can also choose the functxons z; in such a way that the subspace X(po) of Tp, M
generated by the vectors 5—- | o> i spacelike, i.e., the restriction of the metric tensor g
to X(po) is positive definite. Since such condition is open (it is given by the positivity
of a finite number of determinants in the coefficients of the metric tensor g), by
restnctmg the neighborhood U, we can assume that the distribution generated by the
T ’s is spacelike on U. We will say that such a coordinate system is adapted to the
k—tuple Yoo Y.

Using these coordinates, we can therefore write the metric tensor ¢ in matrix

form:
_( P DT
9= D __Q ?

where P is a m x m positive definite matrix, Q is a k x k positive definite matrix,
D is a k x m matrix and D7 is its transpose.
Ifg € Mand (§,7) € R™ x IRk is a tangent vector in T, M, then:

9(DU& ), (6,7 = (P(9)€1€) + 2(D(g) €| 7) — (Qg) T | 7),
where (- | -) denotes the Euclidean inner product.
It is an easy observation that the Killing property of the vector fields Y, i =
.,k is expressed by the fact that the metric coefficients gij of g with respect
to any coordinate system adapted to the k-tuple Y3, ...,Y) do not depend on the
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variables t;. Namely, denoting by rj, i = 1,...,m + k, any coordinate system such
that % = Y;_p, fori > m, and Writing g= (g,-j), 9ij = (58:., %.), itis:

99i5 _ 9 o,_

APPENDIX B. AN EXAMPLE

In this appendix we give an example to illustrate our abstract theory.

We consider a manifold M given by a global splitting Mo x JR* (or Mo x T,
with T* = S! x §! x --- x S? the k-dimensional torus) where M is a closed
m-dimensional submanifold of the Euclidean space IR™. We denote by (- |- ) the
Euclidean scalar product. We consider the following semi-Riemannian metric on

M.
4 9(x,£)[(¢,7), (& )] = (PEIE) + 2(DElr) — (Q7l7),

where x € My, t € IR (or TT*), £ € Ty Mg and 7 € R*.

Here, P = P(x) and Q(x) are (square) positive definite matrices of size m x m
and k x k respectively, and D = D(x) : T Mo — IR is a matrix operator. We as-
sume that P, Q and D depend smoothly on x; moreover the following boundedness
assumptions are made:

sup |Q(x)| =N <400, sup Q7 (X)|| =¥ < +oo,
xEMp xEMo

sup |P~}(x)|| =Py < +oo, and sup ||[D(x)|| = Do < +o0.
xEMo xEMo

Finally, we make the assumption that the following inequality be satisfied:
(75) v’ND} < P,.

Let us consider the timelike Killing vector fields on M defined by ¥; = -, i =
1,..., k. Being coordinate vector fields one has that [Y;,Y;] = 0 fori,j = 1,..., k.
So, the hypotheses (Hp1), (Hp2) and (Hp3) of Theorem 1.3 are satisfied.

As to the c-precompactness hypothesis, if z, = (Xn,tn) is a sequence in J¢,
then, arguing as in the proof of Lemma 3.1 (see formula (37)), we prove easily that:

262 J(an) = [ ((Paltn) + (@7 D)) s+

a6 - ([Q"Dxn ds 1] (/OIQ" ds)-1 (/OIQ"D*n ds—n) )
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where 1 = t,(q) — t»(p). Using the inequality (75), from (76) and the boundedness
of ||@~1|| we obtain that the integral:

1
[ alsa) as

is bounded. From the completeness of M, it follows that x,, is uniformly convergent
to a curve £ € H'2([0, 1], M,). Moreover, ., is bounded in H*2([0, 1], My).

From the equality:

tn = Q™ 'Dkn — Q71C(2m)

(see formula (34)) it follows in first place that C(zy,) is bounded (integrating over
{0,1]), and then that t,, is bounded in H'2([0, 1], IR*). Hence, t, has a uniformly
convergent subsequence, and so does z,.

Thus, Cy, 4 is c-precompact for all ¢ € R.

By Theorem 1.3, the manifold M is geodesically connected; moreover, by Theo-
rem 1.4, if My is not contractible, then, there exist infinitely many geodesics z,, of
arbitrary large f(2,), joining every pair of points p and q.
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