Exportar registro bibliográfico


Metrics:

Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint (2020)

  • Authors:
  • Autor USP: PICCIONE, PAOLO - IME
  • Unidade: IME
  • DOI: 10.1007/s00526-020-1724-8
  • Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM; PROBLEMAS VARIACIONAIS
  • Language: Inglês
  • Imprenta:
  • Source:
  • PrivadoAcesso à fonteDOI
    Informações sobre o DOI: 10.1007/s00526-020-1724-8 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    Download do texto completo

    Tipo Nome Link
    Privado2998177.pdf
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BENCI, Vieri; NARDULLI, Stefano; PICCIONE, Paolo. Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint. Calculus of Variations and Partial Differential Equations, Heidelberg, Springer, v. 59, n. 2, 2020. Disponível em: < https://doi.org/10.1007/s00526-020-1724-8 > DOI: 10.1007/s00526-020-1724-8.
    • APA

      Benci, V., Nardulli, S., & Piccione, P. (2020). Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint. Calculus of Variations and Partial Differential Equations, 59( 2). doi:10.1007/s00526-020-1724-8
    • NLM

      Benci V, Nardulli S, Piccione P. Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint [Internet]. Calculus of Variations and Partial Differential Equations. 2020 ; 59( 2):Available from: https://doi.org/10.1007/s00526-020-1724-8
    • Vancouver

      Benci V, Nardulli S, Piccione P. Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint [Internet]. Calculus of Variations and Partial Differential Equations. 2020 ; 59( 2):Available from: https://doi.org/10.1007/s00526-020-1724-8

    Referências citadas na obra
    Allen, S.M., Cahn, J.W.: A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta. Metal. 27, 1085–1095 (1979)
    Benci, V.: Introduction to Morse theory: a new approach. In: Matzeu, M., Vignoli, A. (eds.) Topological Nonlinear Analysis. Volume 15 of Progress in Nonlinear Differential Equations and Their Applications, pp. 37–177. Birkhäuser, Boston (1995)
    Benci, V., Cerami, G.: Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc. Var. Partial Differ. Equ. 2, 29–48 (1994)
    Benci, V., Cerami, G., Passaseo, D.: On the number of the positive solutions of some nonlinear elliptic problems. In: Nonlinear analysis, Sc. Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., Pisa, pp. 93–107 (1991)
    Benci, V., Fortunato, D.: Variational Methods in Nonlinear Field Equations: Solitary Waves, Hylomorphic Solitons. Monographs in Mathematics. Springer, Cham (2014)
    Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988)
    Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform system I: interfacial energy. J. Chem. Phys. 27, 258–266 (1958)
    Campanato, S.: Equazioni ellittiche del $${\rm II}$$ ordine espazi $${L}^{(2,\lambda )}$$. Ann. Mat. Pura Appl. (4) 69, 321–381 (1965)
    Eisen, G.: On the obstacle problem with a volume constraint. Manuscripta Math. 43, 73–83 (1983)
    Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems (AM-105), vol. 105. Princeton University Press, Princeton (2016)
    Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition
    Hutchinson, J.E., Tonegawa, Y.: Convergence of phase interfaces in the van der Waals–Cahn–Hilliard theory. Calc. Var. Partial Differ. Equ. 10, 49–84 (2000)
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications, Volume 31 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000). Reprint of the 1980 original
    Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems. Volume 135 of Cambridge Studies in Advanced Mathematics. An Introduction Geometric Measure Theory. Cambridge University Press, Cambridge (2012)
    Massey, W.S.: Homology and Cohomology Theory. An Approach Based on Alexander–Spanier Cochains, Monographs and Textbooks in Pure and Applied Mathematics, vol. 46. Marcel Dekker Inc., New York (1978)
    Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1987)
    Murray, J.D.: Pre-pattern formation mechanism for animal coat markings. J. Theoret. Biol. 88, 161–199 (1981)
    Pacard, F., Ritoré, M.: From constant mean curvature hypersurfaces to the gradient theory of phase transitions. J. Differ. Geom. 64, 359–423 (2003)
    Petrosyan, A., Shahgholian, H., Uraltseva, N.: Regularity of Free Boundaries in Obstacle-Type Problems. Graduate Studies in Mathematics, vol. 136. American Mathematical Society, Providence (2012)
    Presutti, E.: Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Theoretical and Mathematical Physics. Springer, Berlin (2009)
    Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. Volume of 65 CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence (1986)
    Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)
    Van Schaftingen, J.: Symmetrization and minimax principles. Commun. Contemp. Math. 7, 463–481 (2005)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020