KluSIM: speeding up k-medoids clustering over dimensional data with metric access method (2024)
- Authors:
- USP affiliated authors: TRAINA, AGMA JUCI MACHADO - ICMC ; TRAINA JUNIOR, CAETANO - ICMC ; TEIXEIRA, LARISSA ROBERTA - ICMC ; ELEUTÉRIO, IGOR ALBERTE RODRIGUES - ICMC ; CAZZOLATO, MIRELA TEIXEIRA - ICMC
- Unidade: ICMC
- DOI: 10.5220/0012599900003690
- Subjects: MINERAÇÃO DE DADOS; RECONHECIMENTO DE PADRÕES; ALGORITMOS ÚTEIS E ESPECÍFICOS
- Keywords: Dimensional Data; k-medoids; Clustering; Indexing; Metric Access Method
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: SciTePress
- Publisher place: Setúbal
- Date published: 2024
- Source:
- Título: Proceedings
- ISSN: 2184-4992
- Conference titles: International Conference on Enterprise Information Systems - ICEIS
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: hybrid
- Licença: cc-by-nc-nd
-
ABNT
TEIXEIRA, Larissa Roberta et al. KluSIM: speeding up k-medoids clustering over dimensional data with metric access method. 2024, Anais.. Setúbal: SciTePress, 2024. Disponível em: https://doi.org/10.5220/0012599900003690. Acesso em: 28 dez. 2025. -
APA
Teixeira, L. R., Eleutério, I. A. R., Cazzolato, M. T., Gutierrez, M. A., Traina, A. J. M., & Traina Junior, C. (2024). KluSIM: speeding up k-medoids clustering over dimensional data with metric access method. In Proceedings. Setúbal: SciTePress. doi:10.5220/0012599900003690 -
NLM
Teixeira LR, Eleutério IAR, Cazzolato MT, Gutierrez MA, Traina AJM, Traina Junior C. KluSIM: speeding up k-medoids clustering over dimensional data with metric access method [Internet]. Proceedings. 2024 ;[citado 2025 dez. 28 ] Available from: https://doi.org/10.5220/0012599900003690 -
Vancouver
Teixeira LR, Eleutério IAR, Cazzolato MT, Gutierrez MA, Traina AJM, Traina Junior C. KluSIM: speeding up k-medoids clustering over dimensional data with metric access method [Internet]. Proceedings. 2024 ;[citado 2025 dez. 28 ] Available from: https://doi.org/10.5220/0012599900003690 - MIGUE-Sim: speeding up similarity queries with native RDBMS resources
- A novel approach to reduce the financial and computational costs of similarity queries over document collections in NoSQL databases
- Similarity-slim extension: reducing financial and computational costs of similarity queries in document collections in NoSQL databases
- LLMs são bons matemáticos?: Avaliando o desempenho em resolução de exercícios
- Exploratory data analysis in electronic health records graphs: intuitive features and visualization tools
- Cosim-Gres: towards similarity queries optimization inside RDBMS
- Establishing trajectories of moving objects without identities: the intricacies of cell tracking and a solution
- Combining semantic graph features and a common data model to exploit the interoperability of patient databases
- Taking advantage of highly-correlated attributes in similarity queries with missing values
- TgraphSpot: fast and effective anomaly detection for time-evolving graphs
Informações sobre o DOI: 10.5220/0012599900003690 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3194324.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
