TGRAPP: anomaly detection and visualization of large-scale call graphs (2023)
- Authors:
- USP affiliated authors: TRAINA, AGMA JUCI MACHADO - ICMC ; CAZZOLATO, MIRELA TEIXEIRA - ICMC
- Unidade: ICMC
- DOI: 10.1609/aaai.v37i13.27062
- Subjects: RECUPERAÇÃO DA INFORMAÇÃO; VISUALIZAÇÃO
- Keywords: Anomaly Detection; Graph Mining; Phone Call Network
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: AAAI Press
- Publisher place: Washington
- Date published: 2023
- Source:
- Título: Proceedings
- ISSN: 2159-5399
- Conference titles: AAAI Conference on Artificial Intelligence - AAAI
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
CAZZOLATO, Mirela Teixeira et al. TGRAPP: anomaly detection and visualization of large-scale call graphs. 2023, Anais.. Washington: AAAI Press, 2023. Disponível em: https://doi.org/10.1609/aaai.v37i13.27062. Acesso em: 09 fev. 2026. -
APA
Cazzolato, M. T., Vijayakumar, S., Zheng, X., Park, N., Lee, M. -C., Chau, D. H., et al. (2023). TGRAPP: anomaly detection and visualization of large-scale call graphs. In Proceedings. Washington: AAAI Press. doi:10.1609/aaai.v37i13.27062 -
NLM
Cazzolato MT, Vijayakumar S, Zheng X, Park N, Lee M-C, Chau DH, Fidalgo P, Lages B, Traina AJM, Faloutsos C. TGRAPP: anomaly detection and visualization of large-scale call graphs [Internet]. Proceedings. 2023 ;[citado 2026 fev. 09 ] Available from: https://doi.org/10.1609/aaai.v37i13.27062 -
Vancouver
Cazzolato MT, Vijayakumar S, Zheng X, Park N, Lee M-C, Chau DH, Fidalgo P, Lages B, Traina AJM, Faloutsos C. TGRAPP: anomaly detection and visualization of large-scale call graphs [Internet]. Proceedings. 2023 ;[citado 2026 fev. 09 ] Available from: https://doi.org/10.1609/aaai.v37i13.27062 - TgraphSpot: fast and effective anomaly detection for time-evolving graphs
- Establishing trajectories of moving objects without identities: the intricacies of cell tracking and a solution
- CallMine: fraud detection and visualization of million-scale call graphs
- Exploratory data analysis in electronic health records graphs: intuitive features and visualization tools
- Conquering knowledge from images: improving image mining with region-based analysis and associated information
- UrbanReleaf: enhancing sustainable urban transformation with a data-driven solution for smart depaving
- A symptom-based community-weighted similarity approach for inpatient health condition monitoring
- Taking advantage of highly-correlated attributes in similarity queries with missing values
- Combining semantic graph features and a common data model to exploit the interoperability of patient databases
- FINE: improving time and precision of segmentation techniques for vertebral compression fractures in MRI
Informações sobre o DOI: 10.1609/aaai.v37i13.27062 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3143007_postprint.pdf | Direct link | ||
| 3143007.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
