Combining semantic graph features and a common data model to exploit the interoperability of patient databases (2024)
- Authors:
- USP affiliated authors: TRAINA JUNIOR, CAETANO - ICMC ; TRAINA, AGMA JUCI MACHADO - ICMC ; CAZZOLATO, MIRELA TEIXEIRA - FFCLRP ; CONRADO, RAFAEL COMITRE GARCIA - ICMC
- Unidades: ICMC; FFCLRP
- DOI: 10.5753/sbbd.2024.243153
- Subjects: MINERAÇÃO DE DADOS; INTEROPERABILIDADE; BANCO DE DADOS RELACIONAIS; SISTEMAS COMPUTADORIZADOS DE REGISTROS MÉDICOS
- Keywords: Data mining; knowledge graph; electronic health records; common data model; interoperabiliy
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: SBC
- Publisher place: Porto Alegre
- Date published: 2024
- Source:
- Conference titles: Simpósio Brasileiro de Bancos de Dados - SBBD
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
CONRADO, Rafael Comitre Garcia et al. Combining semantic graph features and a common data model to exploit the interoperability of patient databases. 2024, Anais.. Porto Alegre: SBC, 2024. Disponível em: https://doi.org/10.5753/sbbd.2024.243153. Acesso em: 27 dez. 2025. -
APA
Conrado, R. C. G., Gutierrez, M. A., Traina Junior, C., Traina, A. J. M., & Cazzolato, M. T. (2024). Combining semantic graph features and a common data model to exploit the interoperability of patient databases. In Anais. Porto Alegre: SBC. doi:10.5753/sbbd.2024.243153 -
NLM
Conrado RCG, Gutierrez MA, Traina Junior C, Traina AJM, Cazzolato MT. Combining semantic graph features and a common data model to exploit the interoperability of patient databases [Internet]. Anais. 2024 ;[citado 2025 dez. 27 ] Available from: https://doi.org/10.5753/sbbd.2024.243153 -
Vancouver
Conrado RCG, Gutierrez MA, Traina Junior C, Traina AJM, Cazzolato MT. Combining semantic graph features and a common data model to exploit the interoperability of patient databases [Internet]. Anais. 2024 ;[citado 2025 dez. 27 ] Available from: https://doi.org/10.5753/sbbd.2024.243153 - From tables to graphs with ClinicoAtlas: leveraging LLMs to support modeling and mining knowledge graphs
- Assessing large language models for structuring patient records
- Exploratory data analysis in electronic health records graphs: intuitive features and visualization tools
- Establishing trajectories of moving objects without identities: the intricacies of cell tracking and a solution
- Taking advantage of highly-correlated attributes in similarity queries with missing values
- CallMine: fraud detection and visualization of million-scale call graphs
- TgraphSpot: fast and effective anomaly detection for time-evolving graphs
- TGRAPP: anomaly detection and visualization of large-scale call graphs
- Modeling clinical data with attention: a knowledge graph approach with CliniKG
- A symptom-based community-weighted similarity approach for inpatient health condition monitoring
Informações sobre o DOI: 10.5753/sbbd.2024.243153 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3218407.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
