TgraphSpot: fast and effective anomaly detection for time-evolving graphs (2022)
- Authors:
- USP affiliated authors: TRAINA, AGMA JUCI MACHADO - ICMC ; CAZZOLATO, MIRELA TEIXEIRA - ICMC
- Unidade: ICMC
- DOI: 10.1109/BigData55660.2022.10020898
- Subjects: RECUPERAÇÃO DA INFORMAÇÃO; VISUALIZAÇÃO
- Keywords: time-evolving graphs; graph mining; graph visualization
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2022
- Source:
- Título: Proceedings
- Conference titles: IEEE International Conference on Big Data - Big Data
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
CAZZOLATO, Mirela Teixeira et al. TgraphSpot: fast and effective anomaly detection for time-evolving graphs. 2022, Anais.. Piscataway: IEEE, 2022. Disponível em: https://doi.org/10.1109/BigData55660.2022.10020898. Acesso em: 26 dez. 2025. -
APA
Cazzolato, M. T., Vijayakumar, S., Zheng, X., Park, N., Lee, M. -C., Fidalgo, P., et al. (2022). TgraphSpot: fast and effective anomaly detection for time-evolving graphs. In Proceedings. Piscataway: IEEE. doi:10.1109/BigData55660.2022.10020898 -
NLM
Cazzolato MT, Vijayakumar S, Zheng X, Park N, Lee M-C, Fidalgo P, Lages B, Traina AJM, Faloutsos C. TgraphSpot: fast and effective anomaly detection for time-evolving graphs [Internet]. Proceedings. 2022 ;[citado 2025 dez. 26 ] Available from: https://doi.org/10.1109/BigData55660.2022.10020898 -
Vancouver
Cazzolato MT, Vijayakumar S, Zheng X, Park N, Lee M-C, Fidalgo P, Lages B, Traina AJM, Faloutsos C. TgraphSpot: fast and effective anomaly detection for time-evolving graphs [Internet]. Proceedings. 2022 ;[citado 2025 dez. 26 ] Available from: https://doi.org/10.1109/BigData55660.2022.10020898 - Establishing trajectories of moving objects without identities: the intricacies of cell tracking and a solution
- TGRAPP: anomaly detection and visualization of large-scale call graphs
- CallMine: fraud detection and visualization of million-scale call graphs
- Exploratory data analysis in electronic health records graphs: intuitive features and visualization tools
- UrbanReleaf: enhancing sustainable urban transformation with a data-driven solution for smart depaving
- Combining semantic graph features and a common data model to exploit the interoperability of patient databases
- A review on recognizing depression in social networks: challenges and opportunities
- Taking advantage of highly-correlated attributes in similarity queries with missing values
- Conquering knowledge from images: improving image mining with region-based analysis and associated information
- A symptom-based community-weighted similarity approach for inpatient health condition monitoring
Informações sobre o DOI: 10.1109/BigData55660.2022.10020898 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3118735_postprint.pdf | Direct link | ||
| 3118735.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
