An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology (2024)
- Authors:
- USP affiliated authors: UEYAMA, JO - ICMC ; MATOS, SAULO NEVES - ICMC ; RANIERI, CAETANO MAZZONI - ICMC
- Unidade: ICMC
- DOI: 10.1109/TIM.2023.3342220
- Subjects: APRENDIZADO COMPUTACIONAL; INDÚSTRIA MINERAL; ESTATÍSTICA; MINERAÇÃO
- Keywords: Conveyor belt; light detection and ranging (LiDAR)
- Language: Inglês
- Imprenta:
- Publisher place: Piscataway
- Date published: 2024
- Source:
- Título: IEEE Transactions on Instrumentation and Measurement
- ISSN: 1557-9662
- Volume/Número/Paginação/Ano: v. 73, p. 1-11, 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MATOS, Saulo Neves et al. An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology. IEEE Transactions on Instrumentation and Measurement, v. 73, p. 1-11, 2024Tradução . . Disponível em: https://doi.org/10.1109/TIM.2023.3342220. Acesso em: 11 fev. 2026. -
APA
Matos, S. N., Pinto, T. V. B. e, Domingues, J. D., Ranieri, C. M., Albuquerque, K. S., Moreira, V. da S., et al. (2024). An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology. IEEE Transactions on Instrumentation and Measurement, 73, 1-11. doi:10.1109/TIM.2023.3342220 -
NLM
Matos SN, Pinto TVB e, Domingues JD, Ranieri CM, Albuquerque KS, Moreira V da S, Souza ES, Ueyama J, Euzébio TAM, Pessin G. An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology [Internet]. IEEE Transactions on Instrumentation and Measurement. 2024 ; 73 1-11.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1109/TIM.2023.3342220 -
Vancouver
Matos SN, Pinto TVB e, Domingues JD, Ranieri CM, Albuquerque KS, Moreira V da S, Souza ES, Ueyama J, Euzébio TAM, Pessin G. An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology [Internet]. IEEE Transactions on Instrumentation and Measurement. 2024 ; 73 1-11.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1109/TIM.2023.3342220 - Data-driven soft sensor development for ore type estimation in mineral crushing processes
- Development of a bench system with capacitive sensor, sample compression, and TinyML for iron ore moisture measurement
- Improving soft sensor reliability in the mining industry using incremental learning
- Enhancing operational safety with conformal prediction in soft sensors
- Water level identification with laser sensors, inertial units, and machine learning
- Evaluating conveyor belt health with signal processing applied to inertial sensing
- Memory-based pruning of deep neural networks for IoT devices applied to flood detection
- Artificial neural networks applied to time series for flood prediction
- Cascade proportional-integral control design and affordable instrumentation system for enhanced performance of electrolytic dry cells
- Closing the loop: enhancing industrial productivity through soft sensor
Informações sobre o DOI: 10.1109/TIM.2023.3342220 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3174437.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
