An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology (2024)
- Authors:
- USP affiliated authors: UEYAMA, JO - ICMC ; MATOS, SAULO NEVES - ICMC ; RANIERI, CAETANO MAZZONI - ICMC
- Unidade: ICMC
- DOI: 10.1109/TIM.2023.3342220
- Subjects: APRENDIZADO COMPUTACIONAL; INDÚSTRIA MINERAL; ESTATÍSTICA; MINERAÇÃO
- Keywords: Conveyor belt; light detection and ranging (LiDAR)
- Language: Inglês
- Imprenta:
- Publisher place: Piscataway
- Date published: 2024
- Source:
- Título: IEEE Transactions on Instrumentation and Measurement
- ISSN: 1557-9662
- Volume/Número/Paginação/Ano: v. 73, p. 1-11, 2024
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
MATOS, Saulo Neves et al. An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology. IEEE Transactions on Instrumentation and Measurement, v. 73, p. 1-11, 2024Tradução . . Disponível em: https://doi.org/10.1109/TIM.2023.3342220. Acesso em: 27 dez. 2025. -
APA
Matos, S. N., Pinto, T. V. B. e, Domingues, J. D., Ranieri, C. M., Albuquerque, K. S., Moreira, V. da S., et al. (2024). An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology. IEEE Transactions on Instrumentation and Measurement, 73, 1-11. doi:10.1109/TIM.2023.3342220 -
NLM
Matos SN, Pinto TVB e, Domingues JD, Ranieri CM, Albuquerque KS, Moreira V da S, Souza ES, Ueyama J, Euzébio TAM, Pessin G. An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology [Internet]. IEEE Transactions on Instrumentation and Measurement. 2024 ; 73 1-11.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1109/TIM.2023.3342220 -
Vancouver
Matos SN, Pinto TVB e, Domingues JD, Ranieri CM, Albuquerque KS, Moreira V da S, Souza ES, Ueyama J, Euzébio TAM, Pessin G. An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology [Internet]. IEEE Transactions on Instrumentation and Measurement. 2024 ; 73 1-11.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1109/TIM.2023.3342220 - Artificial neural networks applied to time series for flood prediction
- Memory-based pruning of deep neural networks for IoT devices applied to flood detection
- Evaluating conveyor belt health with signal processing applied to inertial sensing
- Water level identification with laser sensors, inertial units, and machine learning
- Cascade proportional-integral control design and affordable instrumentation system for enhanced performance of electrolytic dry cells
- Closing the loop: enhancing industrial productivity through soft sensor
- Activity recognition and bioinspired approaches for robotics in intelligent environments
- Deep Learning and object detection for water level measurement using patterned visual markers
- Maximizing portfolio profitability during a cryptocurrency downtrend: a bitcoin blockchain transaction-based approach
- Enhancing water level identification with a barcode-patterned panel and machine learning
Informações sobre o DOI: 10.1109/TIM.2023.3342220 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3174437.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
