Data-driven soft sensor development for ore type estimation in mineral crushing processes (2026)
- Authors:
- USP affiliated authors: UEYAMA, JO - ICMC ; MATOS, SAULO NEVES - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.engappai.2026.113755
- Subjects: PETROLOGIA; BRITAGEM; MINERAÇÃO; APRENDIZADO COMPUTACIONAL
- Keywords: Soft label; Mining engineering; Soft sensor
- Agências de fomento:
- Language: Inglês
- Objetivos de Desenvolvimento Sustentável (ODS):
09. Indústria, inovação e infraestrutura
- Imprenta:
- Source:
- Título: Engineering Applications of Artificial Intelligence
- ISSN: 0952-1976
- Volume/Número/Paginação/Ano: v. 167, p. 1-14, 2026
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MATOS, Saulo Neves et al. Data-driven soft sensor development for ore type estimation in mineral crushing processes. Engineering Applications of Artificial Intelligence, v. 167, p. 1-14, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.engappai.2026.113755. Acesso em: 11 fev. 2026. -
APA
Matos, S. N., Pinto, T. V. B. e, Duarte, R., Albuquerque, K. S., Fonseca, A. G., Ranieri, C. M., et al. (2026). Data-driven soft sensor development for ore type estimation in mineral crushing processes. Engineering Applications of Artificial Intelligence, 167, 1-14. doi:10.1016/j.engappai.2026.113755 -
NLM
Matos SN, Pinto TVB e, Duarte R, Albuquerque KS, Fonseca AG, Ranieri CM, Marcolino LS, Pessin G, Ueyama J. Data-driven soft sensor development for ore type estimation in mineral crushing processes [Internet]. Engineering Applications of Artificial Intelligence. 2026 ; 167 1-14.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1016/j.engappai.2026.113755 -
Vancouver
Matos SN, Pinto TVB e, Duarte R, Albuquerque KS, Fonseca AG, Ranieri CM, Marcolino LS, Pessin G, Ueyama J. Data-driven soft sensor development for ore type estimation in mineral crushing processes [Internet]. Engineering Applications of Artificial Intelligence. 2026 ; 167 1-14.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1016/j.engappai.2026.113755 - Development of a bench system with capacitive sensor, sample compression, and TinyML for iron ore moisture measurement
- Improving soft sensor reliability in the mining industry using incremental learning
- An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology
- Enhancing operational safety with conformal prediction in soft sensors
- Cascade proportional-integral control design and affordable instrumentation system for enhanced performance of electrolytic dry cells
- Closing the loop: enhancing industrial productivity through soft sensor
- Deep Learning and object detection for water level measurement using patterned visual markers
- Comparative analysis of smart contract generation using large language models
- NodePM: a remote monitoring alert system for energy consumption using probabilistic techniques
- Providing adaptive smartphone interfaces targeted at elderly people: an approach that takes into account diversity among the elderly
Informações sobre o DOI: 10.1016/j.engappai.2026.113755 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
