Development of a bench system with capacitive sensor, sample compression, and TinyML for iron ore moisture measurement (2025)
- Authors:
- USP affiliated authors: UEYAMA, JO - ICMC ; MATOS, SAULO NEVES - ICMC
- Unidade: ICMC
- DOI: 10.1038/s41598-025-26782-8
- Subjects: MINERAÇÃO; APRENDIZADO COMPUTACIONAL; ANÁLISE DE DADOS
- Language: Inglês
- Objetivos de Desenvolvimento Sustentável (ODS):
09. Indústria, inovação e infraestrutura
- Imprenta:
- Source:
- Título: Scientific Reports
- ISSN: 2045-2322
- Volume/Número/Paginação/Ano: v. 15, p. 1-14, 2025
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
PINTO, Érica S et al. Development of a bench system with capacitive sensor, sample compression, and TinyML for iron ore moisture measurement. Scientific Reports, v. 15, p. 1-14, 2025Tradução . . Disponível em: https://doi.org/10.1038/s41598-025-26782-8. Acesso em: 11 fev. 2026. -
APA
Pinto, É. S., Matos, S. N., Neiva, M., Santos, G. A., Marcolino, L. S., Ueyama, J., et al. (2025). Development of a bench system with capacitive sensor, sample compression, and TinyML for iron ore moisture measurement. Scientific Reports, 15, 1-14. doi:10.1038/s41598-025-26782-8 -
NLM
Pinto ÉS, Matos SN, Neiva M, Santos GA, Marcolino LS, Ueyama J, Euzébio TAM, Pessin G, Pritzelwitz PV, Segundo AKR. Development of a bench system with capacitive sensor, sample compression, and TinyML for iron ore moisture measurement [Internet]. Scientific Reports. 2025 ; 15 1-14.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1038/s41598-025-26782-8 -
Vancouver
Pinto ÉS, Matos SN, Neiva M, Santos GA, Marcolino LS, Ueyama J, Euzébio TAM, Pessin G, Pritzelwitz PV, Segundo AKR. Development of a bench system with capacitive sensor, sample compression, and TinyML for iron ore moisture measurement [Internet]. Scientific Reports. 2025 ; 15 1-14.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1038/s41598-025-26782-8 - Data-driven soft sensor development for ore type estimation in mineral crushing processes
- Improving soft sensor reliability in the mining industry using incremental learning
- An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology
- Enhancing operational safety with conformal prediction in soft sensors
- Cascade proportional-integral control design and affordable instrumentation system for enhanced performance of electrolytic dry cells
- Closing the loop: enhancing industrial productivity through soft sensor
- Deep Learning and object detection for water level measurement using patterned visual markers
- Comparative analysis of smart contract generation using large language models
- NodePM: a remote monitoring alert system for energy consumption using probabilistic techniques
- Providing adaptive smartphone interfaces targeted at elderly people: an approach that takes into account diversity among the elderly
Informações sobre o DOI: 10.1038/s41598-025-26782-8 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
