Closing the loop: enhancing industrial productivity through soft sensor (2024)
- Authors:
- Autor USP: MATOS, SAULO NEVES - ICMC
- Unidade: ICMC
- DOI: 10.1109/I2MTC60896.2024.10560702
- Subjects: APRENDIZADO COMPUTACIONAL; TRANSPORTADORES DE CORREIA; PRODUÇÃO MINERAL; INDÚSTRIA 4.0; CONTROLE DE PROCESSOS
- Keywords: soft sensor; process control; mass flow rate; mineral industry
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2024
- Source:
- Título: Proceedings
- Conference titles: IEEE International Instrumentation and Measurement Technology Conference - I2MTC
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
PEREIRA, Paulo et al. Closing the loop: enhancing industrial productivity through soft sensor. 2024, Anais.. Piscataway: IEEE, 2024. Disponível em: https://doi.org/10.1109/I2MTC60896.2024.10560702. Acesso em: 11 fev. 2026. -
APA
Pereira, P., Pinto, T. V. B. e, Matos, S. N., Barbosa, H., Pérez, J., & Pessin, G. (2024). Closing the loop: enhancing industrial productivity through soft sensor. In Proceedings. Piscataway: IEEE. doi:10.1109/I2MTC60896.2024.10560702 -
NLM
Pereira P, Pinto TVB e, Matos SN, Barbosa H, Pérez J, Pessin G. Closing the loop: enhancing industrial productivity through soft sensor [Internet]. Proceedings. 2024 ;[citado 2026 fev. 11 ] Available from: https://doi.org/10.1109/I2MTC60896.2024.10560702 -
Vancouver
Pereira P, Pinto TVB e, Matos SN, Barbosa H, Pérez J, Pessin G. Closing the loop: enhancing industrial productivity through soft sensor [Internet]. Proceedings. 2024 ;[citado 2026 fev. 11 ] Available from: https://doi.org/10.1109/I2MTC60896.2024.10560702 - Cascade proportional-integral control design and affordable instrumentation system for enhanced performance of electrolytic dry cells
- Data-driven soft sensor development for ore type estimation in mineral crushing processes
- Development of a bench system with capacitive sensor, sample compression, and TinyML for iron ore moisture measurement
- Improving soft sensor reliability in the mining industry using incremental learning
- An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology
- Enhancing operational safety with conformal prediction in soft sensors
- Deep Learning and object detection for water level measurement using patterned visual markers
- Comparative analysis of smart contract generation using large language models
- Water level identification with laser sensors, inertial units, and machine learning
- Evaluating conveyor belt health with signal processing applied to inertial sensing
Informações sobre o DOI: 10.1109/I2MTC60896.2024.10560702 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3202013.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
