Cascade proportional-integral control design and affordable instrumentation system for enhanced performance of electrolytic dry cells (2024)
- Authors:
- Autor USP: MATOS, SAULO NEVES - ICMC
- Unidade: ICMC
- DOI: 10.3390/s24165427
- Subjects: INSTRUMENTAÇÃO DE SISTEMAS; ELETRÓLISE; HIDROGÊNIO
- Keywords: electronic instrumentation; cascade control; proportional integral; electrolysis; hydrogen
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MATOS, Saulo Neves et al. Cascade proportional-integral control design and affordable instrumentation system for enhanced performance of electrolytic dry cells. Sensors, v. 24, n. 16, p. 1-16, 2024Tradução . . Disponível em: https://doi.org/10.3390/s24165427. Acesso em: 19 fev. 2026. -
APA
Matos, S. N., Reis, G. de P. dos, Leal, E. M., Figueiredo, R. L., Euzébio, T. A. M., & Rêgo Segundo, A. K. (2024). Cascade proportional-integral control design and affordable instrumentation system for enhanced performance of electrolytic dry cells. Sensors, 24( 16), 1-16. doi:10.3390/s24165427 -
NLM
Matos SN, Reis G de P dos, Leal EM, Figueiredo RL, Euzébio TAM, Rêgo Segundo AK. Cascade proportional-integral control design and affordable instrumentation system for enhanced performance of electrolytic dry cells [Internet]. Sensors. 2024 ; 24( 16): 1-16.[citado 2026 fev. 19 ] Available from: https://doi.org/10.3390/s24165427 -
Vancouver
Matos SN, Reis G de P dos, Leal EM, Figueiredo RL, Euzébio TAM, Rêgo Segundo AK. Cascade proportional-integral control design and affordable instrumentation system for enhanced performance of electrolytic dry cells [Internet]. Sensors. 2024 ; 24( 16): 1-16.[citado 2026 fev. 19 ] Available from: https://doi.org/10.3390/s24165427 - Closing the loop: enhancing industrial productivity through soft sensor
- Data-driven soft sensor development for ore type estimation in mineral crushing processes
- Development of a bench system with capacitive sensor, sample compression, and TinyML for iron ore moisture measurement
- Improving soft sensor reliability in the mining industry using incremental learning
- An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology
- Enhancing operational safety with conformal prediction in soft sensors
- Deep Learning and object detection for water level measurement using patterned visual markers
- Comparative analysis of smart contract generation using large language models
- Water level identification with laser sensors, inertial units, and machine learning
- Evaluating conveyor belt health with signal processing applied to inertial sensing
Informações sobre o DOI: 10.3390/s24165427 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3216294.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
