Memory-based pruning of deep neural networks for IoT devices applied to flood detection (2021)
- Authors:
- USP affiliated authors: NONATO, LUIS GUSTAVO - ICMC ; UEYAMA, JO - ICMC ; RANIERI, CAETANO MAZZONI - ICMC
- Unidade: ICMC
- DOI: 10.3390/s21227506
- Subjects: ENCHENTES URBANAS; REDES NEURAIS; INTERNET DAS COISAS
- Keywords: deep neural networks; semantic segmentation; random pruning; flood detection; user preference
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by
-
ABNT
FERNANDES JUNIOR, Francisco Erivaldo et al. Memory-based pruning of deep neural networks for IoT devices applied to flood detection. Sensors, v. 21, n. 22, p. 1-18, 2021Tradução . . Disponível em: https://doi.org/10.3390/s21227506. Acesso em: 28 dez. 2025. -
APA
Fernandes Junior, F. E., Nonato, L. G., Ranieri, C. M., & Ueyama, J. (2021). Memory-based pruning of deep neural networks for IoT devices applied to flood detection. Sensors, 21( 22), 1-18. doi:10.3390/s21227506 -
NLM
Fernandes Junior FE, Nonato LG, Ranieri CM, Ueyama J. Memory-based pruning of deep neural networks for IoT devices applied to flood detection [Internet]. Sensors. 2021 ; 21( 22): 1-18.[citado 2025 dez. 28 ] Available from: https://doi.org/10.3390/s21227506 -
Vancouver
Fernandes Junior FE, Nonato LG, Ranieri CM, Ueyama J. Memory-based pruning of deep neural networks for IoT devices applied to flood detection [Internet]. Sensors. 2021 ; 21( 22): 1-18.[citado 2025 dez. 28 ] Available from: https://doi.org/10.3390/s21227506 - Using digital image processing to estimate the depth of urban streams
- An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology
- Artificial neural networks applied to time series for flood prediction
- A river flooding detection system based on deep learning and computer vision
- Activity recognition and bioinspired approaches for robotics in intelligent environments
- Maximizing portfolio profitability during a cryptocurrency downtrend: a bitcoin blockchain transaction-based approach
- Enhancing water level identification with a barcode-patterned panel and machine learning
- FLORAS: urban flash-flood prediction using a multivariate model
- A deep learning workflow enhanced with optical flow fields for flood risk estimation
- MADCS: a Middleware for anomaly detection and content sharing for blockchain‑based systems
Informações sobre o DOI: 10.3390/s21227506 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3049890.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
