Simultaneous co-clustering and learning to address the cold start problem in recommender systems (2015)
- Authors:
- Autor USP: HRUSCHKA, EDUARDO RAUL - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.knosys.2015.02.016
- Subjects: INTELIGÊNCIA ARTIFICIAL; APRENDIZADO COMPUTACIONAL; MINERAÇÃO DE DADOS
- Language: Inglês
- Imprenta:
- Source:
- Título: Knowledge-Based Systems
- ISSN: 0950-7051
- Volume/Número/Paginação/Ano: v. 82, p. 11-19, jul. 2015
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
PEREIRA, Andre Luiz Vizine e HRUSCHKA, Eduardo Raul. Simultaneous co-clustering and learning to address the cold start problem in recommender systems. Knowledge-Based Systems, v. 82, p. 11-19, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.knosys.2015.02.016. Acesso em: 20 jan. 2026. -
APA
Pereira, A. L. V., & Hruschka, E. R. (2015). Simultaneous co-clustering and learning to address the cold start problem in recommender systems. Knowledge-Based Systems, 82, 11-19. doi:10.1016/j.knosys.2015.02.016 -
NLM
Pereira ALV, Hruschka ER. Simultaneous co-clustering and learning to address the cold start problem in recommender systems [Internet]. Knowledge-Based Systems. 2015 ; 82 11-19.[citado 2026 jan. 20 ] Available from: https://doi.org/10.1016/j.knosys.2015.02.016 -
Vancouver
Pereira ALV, Hruschka ER. Simultaneous co-clustering and learning to address the cold start problem in recommender systems [Internet]. Knowledge-Based Systems. 2015 ; 82 11-19.[citado 2026 jan. 20 ] Available from: https://doi.org/10.1016/j.knosys.2015.02.016 - An optimization framework for combining ensembles of classifiers and clusterers with applications to nontransductive semisupervised learning and transfer learning
- Competitive learning with pairwise constraints
- EACImpute: an evolutionary algorithm for clustering-based imputation
- An evolutionary algorithm for missing values substitution in classification tasks
- Towards improving cluster-based feature selection with a simplified silhouette filter
- Agrupamento de documentos aplicado à computação forense: uma abordagem para aperfeiçoar análises periciais de computadores
- A privacy-aware Bayesian approach for combining classifier and cluster ensembles
- Computação forense via agrupamento hierárquico de documentos
- Extending k-means-based algorithms for evolving data streams with variable number of clusters
- Splitting and merging Gaussian mixture model components: an evolutionary approach
Informações sobre o DOI: 10.1016/j.knosys.2015.02.016 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
