Transfer learning with cluster ensembles (2012)
- Authors:
- Autor USP: HRUSCHKA, EDUARDO RAUL - ICMC
- Unidade: ICMC
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher: Microtome Publishing
- Publisher place: Brookline
- Date published: 2012
- Source:
- Título: JMLR: Workshop and Conference Proceedings
- ISSN: 1938-7228
- Volume/Número/Paginação/Ano: v. 27, p. 123-133, 2012
- Conference titles: International Conference on Machine Learning - ICML
-
ABNT
ACHARYA, Ayan et al. Transfer learning with cluster ensembles. JMLR: Workshop and Conference Proceedings. Brookline: Microtome Publishing. Disponível em: http://jmlr.csail.mit.edu/proceedings/papers/v27/. Acesso em: 28 dez. 2025. , 2012 -
APA
Acharya, A., Hruschka, E. R., Ghosh, J., & Acharyya, S. (2012). Transfer learning with cluster ensembles. JMLR: Workshop and Conference Proceedings. Brookline: Microtome Publishing. Recuperado de http://jmlr.csail.mit.edu/proceedings/papers/v27/ -
NLM
Acharya A, Hruschka ER, Ghosh J, Acharyya S. Transfer learning with cluster ensembles [Internet]. JMLR: Workshop and Conference Proceedings. 2012 ; 27 123-133.[citado 2025 dez. 28 ] Available from: http://jmlr.csail.mit.edu/proceedings/papers/v27/ -
Vancouver
Acharya A, Hruschka ER, Ghosh J, Acharyya S. Transfer learning with cluster ensembles [Internet]. JMLR: Workshop and Conference Proceedings. 2012 ; 27 123-133.[citado 2025 dez. 28 ] Available from: http://jmlr.csail.mit.edu/proceedings/papers/v27/ - An experimental study on the use of nearest neighbor-based imputation algorithms for classification tasks
- Unsupervised learning of Gaussian mixture models: evolutionary create and eliminate for expectation maximization algorithm
- An Experimental Study on Unsupervised Clustering-Based Feature Selection Methods
- On the influence of imputation in classification: practical issues
- Agrupamento de documentos aplicado à computação forense: uma abordagem para aperfeiçoar análises periciais de computadores
- A semi-supervised approach to estimate the number of clusters per class
- A study of K-means-based algorithms for constrained clustering
- Probabilistic combination of classifier and cluster ensembles for non-transductive learning
- Using both latent and supervised shared topics for multitask learning
- Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
