'C POT. 3'E: a framework for combining ensembles of classifiers and clusterers (2011)
- Authors:
- Autor USP: HRUSCHKA, EDUARDO RAUL - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-642-21557-5_29
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher: Springer-Verlag
- Publisher place: Berlin
- Date published: 2011
- Source:
- Título: Lecture Notes in Computer Science
- ISSN: 0302-9743
- Volume/Número/Paginação/Ano: v. 6713, p. 269-278, 2011
- Conference titles: International Workshop on Multiple Classifier Systems - MCS
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ACHARYA, A et al. 'C POT. 3'E: a framework for combining ensembles of classifiers and clusterers. Lecture Notes in Computer Science. Berlin: Springer-Verlag. Disponível em: https://doi.org/10.1007/978-3-642-21557-5_29. Acesso em: 13 fev. 2026. , 2011 -
APA
Acharya, A., Hruschka, E. R., Ghosh, J., & Acharyya, S. (2011). 'C POT. 3'E: a framework for combining ensembles of classifiers and clusterers. Lecture Notes in Computer Science. Berlin: Springer-Verlag. doi:10.1007/978-3-642-21557-5_29 -
NLM
Acharya A, Hruschka ER, Ghosh J, Acharyya S. 'C POT. 3'E: a framework for combining ensembles of classifiers and clusterers [Internet]. Lecture Notes in Computer Science. 2011 ; 6713 269-278.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1007/978-3-642-21557-5_29 -
Vancouver
Acharya A, Hruschka ER, Ghosh J, Acharyya S. 'C POT. 3'E: a framework for combining ensembles of classifiers and clusterers [Internet]. Lecture Notes in Computer Science. 2011 ; 6713 269-278.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1007/978-3-642-21557-5_29 - On the influence of imputation in classification: practical issues
- An evolutionary algorithm for clustering data streams with a variable number of clusters
- An Experimental Study on Unsupervised Clustering-Based Feature Selection Methods
- Using both latent and supervised shared topics for multitask learning
- A study of K-means-based algorithms for constrained clustering
- Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble
- A semi-supervised approach to estimate the number of clusters per class
- Classification with multi-modal classes using evolutionary algorithms and constrained clustering
- A distance-based mutation operator for learning bayesian network structures using evolutionary algorithms
- Evolving Gaussian mixture models with splitting and merging mutation operators
Informações sobre o DOI: 10.1007/978-3-642-21557-5_29 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
