An evolutionary algorithm for missing values substitution in classification tasks (2009)
- Authors:
- Autor USP: HRUSCHKA, EDUARDO RAUL - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-642-02319-4_23
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Source:
- Título: Lecture Notes in Artificial Intelligence
- ISSN: 0302-9743
- Volume/Número/Paginação/Ano: v. 5572, p. 195-202, 2009
- Conference titles: International Conference on Hybrid Artificial Intelligence Systems - HAIS
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
SILVA, Jonathan de Andrade e HRUSCHKA, Eduardo Raul. An evolutionary algorithm for missing values substitution in classification tasks. Lecture Notes in Artificial Intelligence. Berlin: Springer. Disponível em: https://doi.org/10.1007/978-3-642-02319-4_23. Acesso em: 03 dez. 2025. , 2009 -
APA
Silva, J. de A., & Hruschka, E. R. (2009). An evolutionary algorithm for missing values substitution in classification tasks. Lecture Notes in Artificial Intelligence. Berlin: Springer. doi:10.1007/978-3-642-02319-4_23 -
NLM
Silva J de A, Hruschka ER. An evolutionary algorithm for missing values substitution in classification tasks [Internet]. Lecture Notes in Artificial Intelligence. 2009 ; 5572 195-202.[citado 2025 dez. 03 ] Available from: https://doi.org/10.1007/978-3-642-02319-4_23 -
Vancouver
Silva J de A, Hruschka ER. An evolutionary algorithm for missing values substitution in classification tasks [Internet]. Lecture Notes in Artificial Intelligence. 2009 ; 5572 195-202.[citado 2025 dez. 03 ] Available from: https://doi.org/10.1007/978-3-642-02319-4_23 - An experimental study on the use of nearest neighbor-based imputation algorithms for classification tasks
- Unsupervised learning of Gaussian mixture models: evolutionary create and eliminate for expectation maximization algorithm
- Transfer learning with cluster ensembles
- An Experimental Study on Unsupervised Clustering-Based Feature Selection Methods
- On the influence of imputation in classification: practical issues
- Towards improving cluster-based feature selection with a simplified silhouette filter
- Document clustering for forensic computing: an approach for improving computer inspection
- Document clustering for forensic analysis: an approach for improving computer inspection
- Evolving Gaussian mixture models with splitting and merging mutation operators
- An optimization framework for combining ensembles of classifiers and clusterers with applications to nontransductive semisupervised learning and transfer learning
Informações sobre o DOI: 10.1007/978-3-642-02319-4_23 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
