Filtros : "WOLF, DENIS FERNANDO" "Indexado no Web of Science" Removido: "Applied Soft Computing" Limpar

Filtros



Refine with date range


  • Source: Neurocomputing. Unidade: ICMC

    Subjects: VEÍCULOS AUTÔNOMOS, MÉTODOS DE PREVISÃO E CORREÇÃO, TRAJETÓRIA, TOMADA DE DECISÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMES, Iago Pachêco e WOLF, Denis Fernando. A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving. Neurocomputing, v. 651, p. 1-19, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2025.131014. Acesso em: 27 nov. 2025.
    • APA

      Gomes, I. P., & Wolf, D. F. (2025). A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving. Neurocomputing, 651, 1-19. doi:10.1016/j.neucom.2025.131014
    • NLM

      Gomes IP, Wolf DF. A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving [Internet]. Neurocomputing. 2025 ; 651 1-19.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.neucom.2025.131014
    • Vancouver

      Gomes IP, Wolf DF. A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving [Internet]. Neurocomputing. 2025 ; 651 1-19.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.neucom.2025.131014
    GDS 09. Industry, innovation and infrastructure
  • Source: Expert Systems With Applications. Unidade: ICMC

    Subjects: COMPORTAMENTO, REDES NEURAIS, VEÍCULOS AUTÔNOMOS, AMBIENTES URBANOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMES, Iago Pachêco e PREMEBIDA, Cristiano e WOLF, Denis Fernando. Multi-agent interaction-aware behavior intention prediction using graph mixture of experts attention network on urban roads. Expert Systems With Applications, v. 270, p. 1-12, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.eswa.2025.126485. Acesso em: 27 nov. 2025.
    • APA

      Gomes, I. P., Premebida, C., & Wolf, D. F. (2025). Multi-agent interaction-aware behavior intention prediction using graph mixture of experts attention network on urban roads. Expert Systems With Applications, 270, 1-12. doi:10.1016/j.eswa.2025.126485
    • NLM

      Gomes IP, Premebida C, Wolf DF. Multi-agent interaction-aware behavior intention prediction using graph mixture of experts attention network on urban roads [Internet]. Expert Systems With Applications. 2025 ; 270 1-12.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.eswa.2025.126485
    • Vancouver

      Gomes IP, Premebida C, Wolf DF. Multi-agent interaction-aware behavior intention prediction using graph mixture of experts attention network on urban roads [Internet]. Expert Systems With Applications. 2025 ; 270 1-12.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.eswa.2025.126485
  • Source: IEEE Transactions on Intelligent Transportation Systems. Unidades: EESC, ICMC

    Subjects: VEÍCULOS AUTÔNOMOS, TOMADA DE DECISÃO, VEÍCULOS AUTÔNOMOS, TOMADA DE DECISÃO, MÉTODOS MCMC

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Júnior Anderson Rodrigues da e GRASSI JÚNIOR, Valdir e WOLF, Denis Fernando. Maximum entropy inverse reinforcement learning using Monte Carlo tree search for autonomous driving. IEEE Transactions on Intelligent Transportation Systems, v. 25, n. 9, p. 11552-11562, 2024Tradução . . Disponível em: https://doi.org/10.1109/TITS.2024.3363497. Acesso em: 27 nov. 2025.
    • APA

      Silva, J. A. R. da, Grassi Júnior, V., & Wolf, D. F. (2024). Maximum entropy inverse reinforcement learning using Monte Carlo tree search for autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 25( 9), 11552-11562. doi:10.1109/TITS.2024.3363497
    • NLM

      Silva JAR da, Grassi Júnior V, Wolf DF. Maximum entropy inverse reinforcement learning using Monte Carlo tree search for autonomous driving [Internet]. IEEE Transactions on Intelligent Transportation Systems. 2024 ; 25( 9): 11552-11562.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/TITS.2024.3363497
    • Vancouver

      Silva JAR da, Grassi Júnior V, Wolf DF. Maximum entropy inverse reinforcement learning using Monte Carlo tree search for autonomous driving [Internet]. IEEE Transactions on Intelligent Transportation Systems. 2024 ; 25( 9): 11552-11562.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/TITS.2024.3363497
  • Source: Sensors. Unidade: ICMC

    Subjects: VEÍCULOS AUTÔNOMOS, SIMULAÇÃO, DIREÇÃO VEICULAR, SEGURANÇA VEICULAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROSERO, Luis Alberto Rosero et al. Integrating modular pipelines with end-to-end learning: a hybrid approach for robust and reliable autonomous driving systems. Sensors, v. 24, n. 7, p. 1-30, 2024Tradução . . Disponível em: https://doi.org/10.3390/s24072097. Acesso em: 27 nov. 2025.
    • APA

      Rosero, L. A. R., Gomes, I. P., Silva, J. A. R. da, Przewodowski Filho, C. A. B., Wolf, D. F., & Osório, F. S. (2024). Integrating modular pipelines with end-to-end learning: a hybrid approach for robust and reliable autonomous driving systems. Sensors, 24( 7), 1-30. doi:10.3390/s24072097
    • NLM

      Rosero LAR, Gomes IP, Silva JAR da, Przewodowski Filho CAB, Wolf DF, Osório FS. Integrating modular pipelines with end-to-end learning: a hybrid approach for robust and reliable autonomous driving systems [Internet]. Sensors. 2024 ; 24( 7): 1-30.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3390/s24072097
    • Vancouver

      Rosero LAR, Gomes IP, Silva JAR da, Przewodowski Filho CAB, Wolf DF, Osório FS. Integrating modular pipelines with end-to-end learning: a hybrid approach for robust and reliable autonomous driving systems [Internet]. Sensors. 2024 ; 24( 7): 1-30.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3390/s24072097
  • Source: Journal of Control, Automation and Electrical Systems. Unidades: EESC, ICMC

    Subjects: TRAJETÓRIA, VEÍCULOS AUTÔNOMOS, CAMINHÕES, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CALDAS, Kenny Anderson Queiroz et al. Autonomous driving of trucks in off-road environment. Journal of Control, Automation and Electrical Systems, v. 34, p. 1179-1193, 2023Tradução . . Disponível em: http://dx.doi.org/10.1007/s40313-023-01041-1. Acesso em: 27 nov. 2025.
    • APA

      Caldas, K. A. Q., Barbosa, F. M., Silva, J. A. R., Santos, T. C., Gomes, I. P., Rosero, L. A., et al. (2023). Autonomous driving of trucks in off-road environment. Journal of Control, Automation and Electrical Systems, 34, 1179-1193. doi:10.1007/s40313-023-01041-1
    • NLM

      Caldas KAQ, Barbosa FM, Silva JAR, Santos TC, Gomes IP, Rosero LA, Wolf DF, Grassi Júnior V. Autonomous driving of trucks in off-road environment [Internet]. Journal of Control, Automation and Electrical Systems. 2023 ; 34 1179-1193.[citado 2025 nov. 27 ] Available from: http://dx.doi.org/10.1007/s40313-023-01041-1
    • Vancouver

      Caldas KAQ, Barbosa FM, Silva JAR, Santos TC, Gomes IP, Rosero LA, Wolf DF, Grassi Júnior V. Autonomous driving of trucks in off-road environment [Internet]. Journal of Control, Automation and Electrical Systems. 2023 ; 34 1179-1193.[citado 2025 nov. 27 ] Available from: http://dx.doi.org/10.1007/s40313-023-01041-1
  • Source: Neurocomputing. Unidades: EESC, ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, REDES NEURAIS, ENGENHARIA ELÉTRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKAMURA, Angelica Tiemi Mizuno e GRASSI JÚNIOR, Valdir e WOLF, Denis Fernando. Leveraging convergence behavior to balance conflicting tasks in multitask learning. Neurocomputing, v. 511, p. 43-53, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2022.09.042. Acesso em: 27 nov. 2025.
    • APA

      Nakamura, A. T. M., Grassi Júnior, V., & Wolf, D. F. (2022). Leveraging convergence behavior to balance conflicting tasks in multitask learning. Neurocomputing, 511, 43-53. doi:10.1016/j.neucom.2022.09.042
    • NLM

      Nakamura ATM, Grassi Júnior V, Wolf DF. Leveraging convergence behavior to balance conflicting tasks in multitask learning [Internet]. Neurocomputing. 2022 ; 511 43-53.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.neucom.2022.09.042
    • Vancouver

      Nakamura ATM, Grassi Júnior V, Wolf DF. Leveraging convergence behavior to balance conflicting tasks in multitask learning [Internet]. Neurocomputing. 2022 ; 511 43-53.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.neucom.2022.09.042
  • Source: Neurocomputing. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, REDES NEURAIS, ANÁLISE DE DESEMPENHO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKAMURA, Angelica Tiemi Mizuno e GRASSI JÚNIOR, Valdir e WOLF, Denis Fernando. Leveraging convergence behavior to balance conflicting tasks in multitask learning. Neurocomputing, v. 511, p. 43-53, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2022.09.042. Acesso em: 27 nov. 2025.
    • APA

      Nakamura, A. T. M., Grassi Júnior, V., & Wolf, D. F. (2022). Leveraging convergence behavior to balance conflicting tasks in multitask learning. Neurocomputing, 511, 43-53. doi:10.1016/j.neucom.2022.09.042
    • NLM

      Nakamura ATM, Grassi Júnior V, Wolf DF. Leveraging convergence behavior to balance conflicting tasks in multitask learning [Internet]. Neurocomputing. 2022 ; 511 43-53.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.neucom.2022.09.042
    • Vancouver

      Nakamura ATM, Grassi Júnior V, Wolf DF. Leveraging convergence behavior to balance conflicting tasks in multitask learning [Internet]. Neurocomputing. 2022 ; 511 43-53.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.neucom.2022.09.042
  • Source: IEEE Transactions on Intelligent Transportation Systems. Unidades: ICMC, EESC

    Subjects: VEÍCULOS AUTÔNOMOS, TRÁFEGO RODOVIÁRIO, ANÁLISE DE TRAJETÓRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Júnior Anderson Rodrigues da et al. Sparse road network model for autonomous navigation using clothoids. IEEE Transactions on Intelligent Transportation Systems, v. 23, n. 2, p. 885-898, 2022Tradução . . Disponível em: https://doi.org/10.1109/TITS.2020.3016620. Acesso em: 27 nov. 2025.
    • APA

      Silva, J. A. R. da, Gomes, I. P., Wolf, D. F., & Grassi Júnior, V. (2022). Sparse road network model for autonomous navigation using clothoids. IEEE Transactions on Intelligent Transportation Systems, 23( 2), 885-898. doi:10.1109/TITS.2020.3016620
    • NLM

      Silva JAR da, Gomes IP, Wolf DF, Grassi Júnior V. Sparse road network model for autonomous navigation using clothoids [Internet]. IEEE Transactions on Intelligent Transportation Systems. 2022 ; 23( 2): 885-898.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/TITS.2020.3016620
    • Vancouver

      Silva JAR da, Gomes IP, Wolf DF, Grassi Júnior V. Sparse road network model for autonomous navigation using clothoids [Internet]. IEEE Transactions on Intelligent Transportation Systems. 2022 ; 23( 2): 885-898.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/TITS.2020.3016620
  • Source: International Journal of Control. Unidades: EESC, ICMC

    Subjects: CONTROLE (TEORIA DE SISTEMAS E CONTROLE), CONTROLE ÓTIMO, SISTEMAS LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASSERA FILHO, Carlos Alberto de Magalhães e TERRA, Marco Henrique e WOLF, Denis Fernando. Optimal guaranteed cost control of discrete-time linear systems subject to structured uncertainties. International Journal of Control, v. 94, n. 4, p. 1132-1142, 2021Tradução . . Disponível em: https://doi.org/10.1080/00207179.2019.1634838. Acesso em: 27 nov. 2025.
    • APA

      Massera Filho, C. A. de M., Terra, M. H., & Wolf, D. F. (2021). Optimal guaranteed cost control of discrete-time linear systems subject to structured uncertainties. International Journal of Control, 94( 4), 1132-1142. doi:10.1080/00207179.2019.1634838
    • NLM

      Massera Filho CA de M, Terra MH, Wolf DF. Optimal guaranteed cost control of discrete-time linear systems subject to structured uncertainties [Internet]. International Journal of Control. 2021 ; 94( 4): 1132-1142.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1080/00207179.2019.1634838
    • Vancouver

      Massera Filho CA de M, Terra MH, Wolf DF. Optimal guaranteed cost control of discrete-time linear systems subject to structured uncertainties [Internet]. International Journal of Control. 2021 ; 94( 4): 1132-1142.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1080/00207179.2019.1634838
  • Source: Engineering Applications of Artificial Intelligence. Unidades: EESC, ICMC

    Subjects: TOMADA DE DECISÃO, ANÁLISE DE DESEMPENHO, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKAMURA, Angelica Tiemi Mizuno e GRASSI JÚNIOR, Valdir e WOLF, Denis Fernando. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation. Engineering Applications of Artificial Intelligence, v. 100, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.engappai.2021.104205. Acesso em: 27 nov. 2025.
    • APA

      Nakamura, A. T. M., Grassi Júnior, V., & Wolf, D. F. (2021). An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation. Engineering Applications of Artificial Intelligence, 100, 1-10. doi:10.1016/j.engappai.2021.104205
    • NLM

      Nakamura ATM, Grassi Júnior V, Wolf DF. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation [Internet]. Engineering Applications of Artificial Intelligence. 2021 ; 100 1-10.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.engappai.2021.104205
    • Vancouver

      Nakamura ATM, Grassi Júnior V, Wolf DF. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation [Internet]. Engineering Applications of Artificial Intelligence. 2021 ; 100 1-10.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.engappai.2021.104205
  • Source: Journal of Intelligent & Robotic Systems. Unidade: ICMC

    Assunto: ROBÓTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ICAR 2019 Special Issue [Editorial]. Journal of Intelligent & Robotic Systems. Dordrecht: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10846-021-01460-9. Acesso em: 27 nov. 2025. , 2021
    • APA

      ICAR 2019 Special Issue [Editorial]. (2021). ICAR 2019 Special Issue [Editorial]. Journal of Intelligent & Robotic Systems. Dordrecht: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. doi:10.1007/s10846-021-01460-9
    • NLM

      ICAR 2019 Special Issue [Editorial] [Internet]. Journal of Intelligent & Robotic Systems. 2021 ; 102 1-2.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10846-021-01460-9
    • Vancouver

      ICAR 2019 Special Issue [Editorial] [Internet]. Journal of Intelligent & Robotic Systems. 2021 ; 102 1-2.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10846-021-01460-9
  • Source: Journal of Intelligent & Robotic Systems. Unidade: ICMC

    Subjects: VEÍCULOS AUTÔNOMOS, FALHAS COMPUTACIONAIS, APRENDIZADO COMPUTACIONAL, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMES, Iago Pachêco e WOLF, Denis Fernando. Health monitoring system for autonomous vehicles using dynamic bayesian networks for diagnosis and prognosis. Journal of Intelligent & Robotic Systems, v. 101, n. Ja 2021, p. 1-21, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10846-020-01293-y. Acesso em: 27 nov. 2025.
    • APA

      Gomes, I. P., & Wolf, D. F. (2021). Health monitoring system for autonomous vehicles using dynamic bayesian networks for diagnosis and prognosis. Journal of Intelligent & Robotic Systems, 101( Ja 2021), 1-21. doi:10.1007/s10846-020-01293-y
    • NLM

      Gomes IP, Wolf DF. Health monitoring system for autonomous vehicles using dynamic bayesian networks for diagnosis and prognosis [Internet]. Journal of Intelligent & Robotic Systems. 2021 ; 101( Ja 2021): 1-21.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10846-020-01293-y
    • Vancouver

      Gomes IP, Wolf DF. Health monitoring system for autonomous vehicles using dynamic bayesian networks for diagnosis and prognosis [Internet]. Journal of Intelligent & Robotic Systems. 2021 ; 101( Ja 2021): 1-21.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10846-020-01293-y
  • Source: IEEE Robotics and Automation Letters. Unidade: ICMC

    Subjects: ANÁLISE DE TRAJETÓRIAS, GEOMETRIA E MODELAGEM COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIDEL, Daniela Alves et al. Scene compliant trajectory forecast with agent-centric spatio-temporal grids. IEEE Robotics and Automation Letters, v. 5, n. 2, p. 2816-2823, 2020Tradução . . Disponível em: https://doi.org/10.1109/LRA.2020.2974393. Acesso em: 27 nov. 2025.
    • APA

      Ridel, D. A., Deo, N., Wolf, D. F., & Trivedi, M. (2020). Scene compliant trajectory forecast with agent-centric spatio-temporal grids. IEEE Robotics and Automation Letters, 5( 2), 2816-2823. doi:10.1109/LRA.2020.2974393
    • NLM

      Ridel DA, Deo N, Wolf DF, Trivedi M. Scene compliant trajectory forecast with agent-centric spatio-temporal grids [Internet]. IEEE Robotics and Automation Letters. 2020 ; 5( 2): 2816-2823.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/LRA.2020.2974393
    • Vancouver

      Ridel DA, Deo N, Wolf DF, Trivedi M. Scene compliant trajectory forecast with agent-centric spatio-temporal grids [Internet]. IEEE Robotics and Automation Letters. 2020 ; 5( 2): 2816-2823.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/LRA.2020.2974393
  • Source: Engineering Applications of Artificial Intelligence. Unidade: ICMC

    Subjects: SISTEMAS EMBUTIDOS, COMPUTAÇÃO EVOLUTIVA, ROBÓTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALES, Daniel Oliva et al. Adaptive finite state machine based visual autonomous navigation system. Engineering Applications of Artificial Intelligence, v. 29, p. 152-162, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.engappai.2013.12.006. Acesso em: 27 nov. 2025.
    • APA

      Sales, D. O., Correa, D. O., Fernandes, L. C., Wolf, D. F., & Osório, F. S. (2014). Adaptive finite state machine based visual autonomous navigation system. Engineering Applications of Artificial Intelligence, 29, 152-162. doi:10.1016/j.engappai.2013.12.006
    • NLM

      Sales DO, Correa DO, Fernandes LC, Wolf DF, Osório FS. Adaptive finite state machine based visual autonomous navigation system [Internet]. Engineering Applications of Artificial Intelligence. 2014 ; 29 152-162.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.engappai.2013.12.006
    • Vancouver

      Sales DO, Correa DO, Fernandes LC, Wolf DF, Osório FS. Adaptive finite state machine based visual autonomous navigation system [Internet]. Engineering Applications of Artificial Intelligence. 2014 ; 29 152-162.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.engappai.2013.12.006
  • Source: Journal of Intelligent and Fuzzy Systems. Unidade: ICMC

    Subjects: VEÍCULOS AUTÔNOMOS, REDES NEURAIS, VISÃO COMPUTACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PESSIN, Gustavo et al. Investigation on the evolution of a robotic controller for autonomous vehicle navigation. Journal of Intelligent and Fuzzy Systems, v. 27, n. 6, p. 3047-3058, 2014Tradução . . Disponível em: https://doi.org/10.3233/IFS-141262. Acesso em: 27 nov. 2025.
    • APA

      Pessin, G., Souza, J. R. de, Osório, F. S., Faiçal, B. S., Rocha Filho, G. P., Ueyama, J., et al. (2014). Investigation on the evolution of a robotic controller for autonomous vehicle navigation. Journal of Intelligent and Fuzzy Systems, 27( 6), 3047-3058. doi:10.3233/IFS-141262
    • NLM

      Pessin G, Souza JR de, Osório FS, Faiçal BS, Rocha Filho GP, Ueyama J, Vargas PA, Wolf DF. Investigation on the evolution of a robotic controller for autonomous vehicle navigation [Internet]. Journal of Intelligent and Fuzzy Systems. 2014 ; 27( 6): 3047-3058.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3233/IFS-141262
    • Vancouver

      Pessin G, Souza JR de, Osório FS, Faiçal BS, Rocha Filho GP, Ueyama J, Vargas PA, Wolf DF. Investigation on the evolution of a robotic controller for autonomous vehicle navigation [Internet]. Journal of Intelligent and Fuzzy Systems. 2014 ; 27( 6): 3047-3058.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3233/IFS-141262

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025