Filtros : "Computational Optimization and Applications" "PROGRAMAÇÃO NÃO LINEAR" Limpar

Filtros



Limitar por data


  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assuntos: PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, v. 83, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-022-00389-5. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, 83, 1-27. doi:10.1007/s10589-022-00389-5
    • NLM

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
    • Vancouver

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assuntos: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, v. 79, p. 633-648, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00281-8. Acesso em: 08 nov. 2025.
    • APA

      Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2021). On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, 79, 633-648. doi:10.1007/s10589-021-00281-8
    • NLM

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
    • Vancouver

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e HAESER, Gabriel e RAMOS, Alberto. Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points. Computational Optimization and Applications, v. 69, n. 1, p. 51–75, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10589-017-9937-2. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., Haeser, G., & Ramos, A. (2018). Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points. Computational Optimization and Applications, 69( 1), 51–75. doi:10.1007/s10589-017-9937-2
    • NLM

      Birgin EJG, Haeser G, Ramos A. Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points [Internet]. Computational Optimization and Applications. 2018 ; 69( 1): 51–75.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-017-9937-2
    • Vancouver

      Birgin EJG, Haeser G, Ramos A. Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points [Internet]. Computational Optimization and Applications. 2018 ; 69( 1): 51–75.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-017-9937-2
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Computational Optimization and Applications, v. 70, n. 2, p. 615–639, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10589-018-0005-3. Acesso em: 08 nov. 2025.
    • APA

      Haeser, G. (2018). A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Computational Optimization and Applications, 70( 2), 615–639. doi:10.1007/s10589-018-0005-3
    • NLM

      Haeser G. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms [Internet]. Computational Optimization and Applications. 2018 ; 70( 2): 615–639.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-018-0005-3
    • Vancouver

      Haeser G. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms [Internet]. Computational Optimization and Applications. 2018 ; 70( 2): 615–639.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-018-0005-3
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assuntos: PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO MATEMÁTICA, PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e BUENO, L. F e MARTINEZ, José Mario. Sequential equality-constrained optimization for nonlinear programming. Computational Optimization and Applications, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10589-016-9849-6. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., Bueno, L. F., & Martinez, J. M. (2016). Sequential equality-constrained optimization for nonlinear programming. Computational Optimization and Applications. doi:10.1007/s10589-016-9849-6
    • NLM

      Birgin EJG, Bueno LF, Martinez JM. Sequential equality-constrained optimization for nonlinear programming [Internet]. Computational Optimization and Applications. 2016 ;[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-016-9849-6
    • Vancouver

      Birgin EJG, Bueno LF, Martinez JM. Sequential equality-constrained optimization for nonlinear programming [Internet]. Computational Optimization and Applications. 2016 ;[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-016-9849-6
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assuntos: PROGRAMAÇÃO NÃO LINEAR, ALGORITMOS, PROGRAMAÇÃO MATEMÁTICA, CIÊNCIA DA COMPUTAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTINEZ, José Mario e PRUDENTE, Leandro da Fonseca. Optimality properties of an Augmented Lagrangian method on infeasible problems. Computational Optimization and Applications, v. 60, n. 3, p. 609-631, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10589-014-9685-5. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., Martinez, J. M., & Prudente, L. da F. (2015). Optimality properties of an Augmented Lagrangian method on infeasible problems. Computational Optimization and Applications, 60( 3), 609-631. doi:10.1007/s10589-014-9685-5
    • NLM

      Birgin EJG, Martinez JM, Prudente L da F. Optimality properties of an Augmented Lagrangian method on infeasible problems [Internet]. Computational Optimization and Applications. 2015 ; 60( 3): 609-631.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-014-9685-5
    • Vancouver

      Birgin EJG, Martinez JM, Prudente L da F. Optimality properties of an Augmented Lagrangian method on infeasible problems [Internet]. Computational Optimization and Applications. 2015 ; 60( 3): 609-631.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-014-9685-5
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTINEZ, J. M. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization. Computational Optimization and Applications, v. 51, n. 3, p. 941-965, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10589-011-9396-0. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., & Martinez, J. M. (2012). Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization. Computational Optimization and Applications, 51( 3), 941-965. doi:10.1007/s10589-011-9396-0
    • NLM

      Birgin EJG, Martinez JM. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization [Internet]. Computational Optimization and Applications. 2012 ; 51( 3): 941-965.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-011-9396-0
    • Vancouver

      Birgin EJG, Martinez JM. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization [Internet]. Computational Optimization and Applications. 2012 ; 51( 3): 941-965.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-011-9396-0
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e GENTIL, Jan Marcel Paiva. Evaluating bound-constrained minimization software. Computational Optimization and Applications, v. 53, n. 2, p. 347-373, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10589-012-9466-y. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., & Gentil, J. M. P. (2012). Evaluating bound-constrained minimization software. Computational Optimization and Applications, 53( 2), 347-373. doi:10.1007/s10589-012-9466-y
    • NLM

      Birgin EJG, Gentil JMP. Evaluating bound-constrained minimization software [Internet]. Computational Optimization and Applications. 2012 ; 53( 2): 347-373.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-012-9466-y
    • Vancouver

      Birgin EJG, Gentil JMP. Evaluating bound-constrained minimization software [Internet]. Computational Optimization and Applications. 2012 ; 53( 2): 347-373.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-012-9466-y
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, R. et al. Second-order negative-curvature methods for box-constrained and general constrained optimization. Computational Optimization and Applications, v. 45, n. 2, p. 209-236, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10589-009-9240-y. Acesso em: 08 nov. 2025.
    • APA

      Andreani, R., Birgin, E. J. G., Martinez, J. M., & Schuverdt, M. L. (2010). Second-order negative-curvature methods for box-constrained and general constrained optimization. Computational Optimization and Applications, 45( 2), 209-236. doi:10.1007/s10589-009-9240-y
    • NLM

      Andreani R, Birgin EJG, Martinez JM, Schuverdt ML. Second-order negative-curvature methods for box-constrained and general constrained optimization [Internet]. Computational Optimization and Applications. 2010 ; 45( 2): 209-236.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-009-9240-y
    • Vancouver

      Andreani R, Birgin EJG, Martinez JM, Schuverdt ML. Second-order negative-curvature methods for box-constrained and general constrained optimization [Internet]. Computational Optimization and Applications. 2010 ; 45( 2): 209-236.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-009-9240-y
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRÉ, Thiago Afonso de e SILVA, Paulo J. S. Exact penalties for variational inequalities with applications to nonlinear complementary problems. Computational Optimization and Applications, v. 47, n. 3, p. 401-429, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10589-008-9232-3. Acesso em: 08 nov. 2025.
    • APA

      André, T. A. de, & Silva, P. J. S. (2010). Exact penalties for variational inequalities with applications to nonlinear complementary problems. Computational Optimization and Applications, 47( 3), 401-429. doi:10.1007/s10589-008-9232-3
    • NLM

      André TA de, Silva PJS. Exact penalties for variational inequalities with applications to nonlinear complementary problems [Internet]. Computational Optimization and Applications. 2010 ; 47( 3): 401-429.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-008-9232-3
    • Vancouver

      André TA de, Silva PJS. Exact penalties for variational inequalities with applications to nonlinear complementary problems [Internet]. Computational Optimization and Applications. 2010 ; 47( 3): 401-429.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-008-9232-3
  • Fonte: Computational Optimization and Applications. Nome do evento: Brazilian Workshop on Continous Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ECKSTEIN, Jonathan e SILVA, Paulo J. S. Proximal methods for nonlinear programming: double regularization and inexact subproblems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-009-9274-1. Acesso em: 08 nov. 2025. , 2010
    • APA

      Eckstein, J., & Silva, P. J. S. (2010). Proximal methods for nonlinear programming: double regularization and inexact subproblems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-009-9274-1
    • NLM

      Eckstein J, Silva PJS. Proximal methods for nonlinear programming: double regularization and inexact subproblems [Internet]. Computational Optimization and Applications. 2010 ; 46( 2): 167-188.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-009-9274-1
    • Vancouver

      Eckstein J, Silva PJS. Proximal methods for nonlinear programming: double regularization and inexact subproblems [Internet]. Computational Optimization and Applications. 2010 ; 46( 2): 167-188.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-009-9274-1
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization. Computational Optimization and Applications, v. 39, n. 1, p. 1-16, 2008Tradução . . Disponível em: https://doi.org/10.1007/s10589-007-9050-z. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2008). Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization. Computational Optimization and Applications, 39( 1), 1-16. doi:10.1007/s10589-007-9050-z
    • NLM

      Birgin EJG, Martínez JM. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization [Internet]. Computational Optimization and Applications. 2008 ; 39( 1): 1-16.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-007-9050-z
    • Vancouver

      Birgin EJG, Martínez JM. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization [Internet]. Computational Optimization and Applications. 2008 ; 39( 1): 1-16.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-007-9050-z
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Paulo J. S. e ECKSTEIN, Jonathan. Double-regularization proximal methods, with complementarity applications. Computational Optimization and Applications, v. 33, n. 2, p. 115-156, 2006Tradução . . Disponível em: https://doi.org/10.1007/s10589-005-3065-0. Acesso em: 08 nov. 2025.
    • APA

      Silva, P. J. S., & Eckstein, J. (2006). Double-regularization proximal methods, with complementarity applications. Computational Optimization and Applications, 33( 2), 115-156. doi:10.1007/s10589-005-3065-0
    • NLM

      Silva PJS, Eckstein J. Double-regularization proximal methods, with complementarity applications [Internet]. Computational Optimization and Applications. 2006 ; 33( 2): 115-156.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-005-3065-0
    • Vancouver

      Silva PJS, Eckstein J. Double-regularization proximal methods, with complementarity applications [Internet]. Computational Optimization and Applications. 2006 ; 33( 2): 115-156.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-005-3065-0
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e CASTILLO, Romulo A e MARTINEZ, Jesus Manuel. Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems. Computational Optimization and Applications, v. 31, n. 1, p. 31-55, 2005Tradução . . Disponível em: https://doi.org/10.1007/s10589-005-1066-7. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., Castillo, R. A., & Martinez, J. M. (2005). Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems. Computational Optimization and Applications, 31( 1), 31-55. doi:10.1007/s10589-005-1066-7
    • NLM

      Birgin EJG, Castillo RA, Martinez JM. Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems [Internet]. Computational Optimization and Applications. 2005 ; 31( 1): 31-55.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-005-1066-7
    • Vancouver

      Birgin EJG, Castillo RA, Martinez JM. Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems [Internet]. Computational Optimization and Applications. 2005 ; 31( 1): 31-55.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-005-1066-7

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025