Filtros : "SISTEMAS DINÂMICOS" "Indexado no Web of Science" Limpar

Filtros



Refine with date range


  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRUZ, Leonardo Pereira Costa da e OLIVEIRA, Regilene Delazari dos Santos e TORREGROSA, Joan. Limit cycles in piecewise quadratic Kolmogorov systems. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-16, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109285. Acesso em: 27 nov. 2025.
    • APA

      Cruz, L. P. C. da, Oliveira, R. D. dos S., & Torregrosa, J. (2026). Limit cycles in piecewise quadratic Kolmogorov systems. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-16. doi:10.1016/j.cnsns.2025.109285
    • NLM

      Cruz LPC da, Oliveira RD dos S, Torregrosa J. Limit cycles in piecewise quadratic Kolmogorov systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-16.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109285
    • Vancouver

      Cruz LPC da, Oliveira RD dos S, Torregrosa J. Limit cycles in piecewise quadratic Kolmogorov systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-16.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109285
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES IMPULSIVAS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e UZAL, José Manuel. Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, v. 37, p. 241–2265, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10356-9. Acesso em: 27 nov. 2025.
    • APA

      Bonotto, E. de M., & Uzal, J. M. (2025). Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, 37, 241–2265. doi:10.1007/s10884-024-10356-9
    • NLM

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37 241–2265.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
    • Vancouver

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37 241–2265.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
  • Source: Qualitative Theory of Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRUZ, Leonardo Pereira Costa da e REZENDE, Alex Carlucci e TORREGROSA, Joan. Coexistence of analytic and piecewise analytic limit cycles in planar piecewise quadratic differential systems. Qualitative Theory of Dynamical Systems, v. 24, n. 2, p. 1-19, 2025Tradução . . Disponível em: https://doi.org/10.1007/s12346-025-01252-8. Acesso em: 27 nov. 2025.
    • APA

      Cruz, L. P. C. da, Rezende, A. C., & Torregrosa, J. (2025). Coexistence of analytic and piecewise analytic limit cycles in planar piecewise quadratic differential systems. Qualitative Theory of Dynamical Systems, 24( 2), 1-19. doi:10.1007/s12346-025-01252-8
    • NLM

      Cruz LPC da, Rezende AC, Torregrosa J. Coexistence of analytic and piecewise analytic limit cycles in planar piecewise quadratic differential systems [Internet]. Qualitative Theory of Dynamical Systems. 2025 ; 24( 2): 1-19.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s12346-025-01252-8
    • Vancouver

      Cruz LPC da, Rezende AC, Torregrosa J. Coexistence of analytic and piecewise analytic limit cycles in planar piecewise quadratic differential systems [Internet]. Qualitative Theory of Dynamical Systems. 2025 ; 24( 2): 1-19.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s12346-025-01252-8
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, SINGULARIDADES, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCÍA, Isaac A e GINÉ, Jaume e RODERO, Ana Livia. Dulac functions and monodromic singularities. Journal of Mathematical Analysis and Applications, v. 547, n. 2, p. 1-14, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129309. Acesso em: 27 nov. 2025.
    • APA

      García, I. A., Giné, J., & Rodero, A. L. (2025). Dulac functions and monodromic singularities. Journal of Mathematical Analysis and Applications, 547( 2), 1-14. doi:10.1016/j.jmaa.2025.129309
    • NLM

      García IA, Giné J, Rodero AL. Dulac functions and monodromic singularities [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-14.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129309
    • Vancouver

      García IA, Giné J, Rodero AL. Dulac functions and monodromic singularities [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-14.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129309
  • Source: Rendiconti del Circolo Matematico di Palermo Series 2. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BACELAR, Leandro e LLIBRE, Jaume. Reversible nilpotent centers with cubic nonlinearities. Rendiconti del Circolo Matematico di Palermo Series 2, v. 74, n. 5, p. 1-25, 2025Tradução . . Disponível em: https://doi.org/10.1007/s12215-025-01256-y. Acesso em: 27 nov. 2025.
    • APA

      Bacelar, L., & Llibre, J. (2025). Reversible nilpotent centers with cubic nonlinearities. Rendiconti del Circolo Matematico di Palermo Series 2, 74( 5), 1-25. doi:10.1007/s12215-025-01256-y
    • NLM

      Bacelar L, Llibre J. Reversible nilpotent centers with cubic nonlinearities [Internet]. Rendiconti del Circolo Matematico di Palermo Series 2. 2025 ; 74( 5): 1-25.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s12215-025-01256-y
    • Vancouver

      Bacelar L, Llibre J. Reversible nilpotent centers with cubic nonlinearities [Internet]. Rendiconti del Circolo Matematico di Palermo Series 2. 2025 ; 74( 5): 1-25.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s12215-025-01256-y
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: PROCESSOS GAUSSIANOS, ESTATÍSTICA APLICADA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIAN, Zheng e LAMB, Jeroen S. W e PEREIRA, Tiago. Mean-field and fluctuations for hub dynamics in heterogeneous random networks. Communications in Mathematical Physics, v. 406, p. 1-42, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00220-025-05335-0. Acesso em: 27 nov. 2025.
    • APA

      Bian, Z., Lamb, J. S. W., & Pereira, T. (2025). Mean-field and fluctuations for hub dynamics in heterogeneous random networks. Communications in Mathematical Physics, 406, 1-42. doi:10.1007/s00220-025-05335-0
    • NLM

      Bian Z, Lamb JSW, Pereira T. Mean-field and fluctuations for hub dynamics in heterogeneous random networks [Internet]. Communications in Mathematical Physics. 2025 ; 406 1-42.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00220-025-05335-0
    • Vancouver

      Bian Z, Lamb JSW, Pereira T. Mean-field and fluctuations for hub dynamics in heterogeneous random networks [Internet]. Communications in Mathematical Physics. 2025 ; 406 1-42.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00220-025-05335-0
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: ESPAÇOS DE BESOV, OPERADORES, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TEOREMAS LIMITES, ANÁLISE HARMÔNICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids. Nonlinearity, v. 38, n. 8, p. 082001-1-082001-40, 2025Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/adf0dd. Acesso em: 27 nov. 2025.
    • APA

      Smania, D. (2025). A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids. Nonlinearity, 38( 8), 082001-1-082001-40. doi:10.1088/1361-6544/adf0dd
    • NLM

      Smania D. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids [Internet]. Nonlinearity. 2025 ; 38( 8): 082001-1-082001-40.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/1361-6544/adf0dd
    • Vancouver

      Smania D. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids [Internet]. Nonlinearity. 2025 ; 38( 8): 082001-1-082001-40.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/1361-6544/adf0dd
  • Source: International Journal of Robust and Nonlinear Control. Unidade: EESC

    Subjects: PROCESSOS DE MARKOV, SISTEMAS DINÂMICOS, SISTEMAS DISCRETOS, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ODORICO, Elizandra Karla e TERRA, Marco Henrique. Robust regulation of markovian jump linear systems subject to state time delay and uncertain transition probabilities. International Journal of Robust and Nonlinear Control, p. 1-13, 2025Tradução . . Disponível em: https://dx.doi.org/10.1002/rnc.70070. Acesso em: 27 nov. 2025.
    • APA

      Odorico, E. K., & Terra, M. H. (2025). Robust regulation of markovian jump linear systems subject to state time delay and uncertain transition probabilities. International Journal of Robust and Nonlinear Control, 1-13. doi:10.1002/rnc.70070
    • NLM

      Odorico EK, Terra MH. Robust regulation of markovian jump linear systems subject to state time delay and uncertain transition probabilities [Internet]. International Journal of Robust and Nonlinear Control. 2025 ; 1-13.[citado 2025 nov. 27 ] Available from: https://dx.doi.org/10.1002/rnc.70070
    • Vancouver

      Odorico EK, Terra MH. Robust regulation of markovian jump linear systems subject to state time delay and uncertain transition probabilities [Internet]. International Journal of Robust and Nonlinear Control. 2025 ; 1-13.[citado 2025 nov. 27 ] Available from: https://dx.doi.org/10.1002/rnc.70070
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALCEDO, Graccyela. Equivalence of classical properties for strongly irreducible linear cocycles. Bulletin of the Brazilian Mathematical Society : New Series, v. 56, n. 3, p. 1-31, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00574-025-00461-8. Acesso em: 27 nov. 2025.
    • APA

      Salcedo, G. (2025). Equivalence of classical properties for strongly irreducible linear cocycles. Bulletin of the Brazilian Mathematical Society : New Series, 56( 3), 1-31. doi:10.1007/s00574-025-00461-8
    • NLM

      Salcedo G. Equivalence of classical properties for strongly irreducible linear cocycles [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2025 ; 56( 3): 1-31.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00574-025-00461-8
    • Vancouver

      Salcedo G. Equivalence of classical properties for strongly irreducible linear cocycles [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2025 ; 56( 3): 1-31.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00574-025-00461-8
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, José Santana Campos e TAHZIBI, Ali. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, v. 45, n. 5, p. 1444-1460, 2025Tradução . . Disponível em: https://doi.org/10.1017/etds.2024.59. Acesso em: 27 nov. 2025.
    • APA

      Costa, J. S. C., & Tahzibi, A. (2025). Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, 45( 5), 1444-1460. doi:10.1017/etds.2024.59
    • NLM

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2025 ; 45( 5): 1444-1460.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/etds.2024.59
    • Vancouver

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2025 ; 45( 5): 1444-1460.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/etds.2024.59
  • Source: IEEE Transactions on Automatic Control. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, PROCESSOS DE MARKOV, PROCESSOS ESTOCÁSTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Eduardo Fontoura. Input-Output stochastic stability for Markov jump linear systems. IEEE Transactions on Automatic Control, v. 70, n. 1, p. 635-641, 2025Tradução . . Disponível em: https://doi.org/10.1109/TAC.2024.3446713. Acesso em: 27 nov. 2025.
    • APA

      Costa, E. F. (2025). Input-Output stochastic stability for Markov jump linear systems. IEEE Transactions on Automatic Control, 70( 1), 635-641. doi:10.1109/TAC.2024.3446713
    • NLM

      Costa EF. Input-Output stochastic stability for Markov jump linear systems [Internet]. IEEE Transactions on Automatic Control. 2025 ; 70( 1): 635-641.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/TAC.2024.3446713
    • Vancouver

      Costa EF. Input-Output stochastic stability for Markov jump linear systems [Internet]. IEEE Transactions on Automatic Control. 2025 ; 70( 1): 635-641.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/TAC.2024.3446713
  • Source: Discrete and Continuous Dynamical Systems, Series S. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS, GEOMETRIA ALGÉBRICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCÍA, Isaac A et al. A new characterization of the Jacobian conjecture in the real plane and some consequences. Discrete and Continuous Dynamical Systems, Series S, v. 18, n. 8, p. 2201-2210, 2025Tradução . . Disponível em: https://doi.org/10.3934/dcdss.2024201. Acesso em: 27 nov. 2025.
    • APA

      García, I. A., Giné, J., Rodero, A. L., & Xiao, Y. (2025). A new characterization of the Jacobian conjecture in the real plane and some consequences. Discrete and Continuous Dynamical Systems, Series S, 18( 8), 2201-2210. doi:10.3934/dcdss.2024201
    • NLM

      García IA, Giné J, Rodero AL, Xiao Y. A new characterization of the Jacobian conjecture in the real plane and some consequences [Internet]. Discrete and Continuous Dynamical Systems, Series S. 2025 ; 18( 8): 2201-2210.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3934/dcdss.2024201
    • Vancouver

      García IA, Giné J, Rodero AL, Xiao Y. A new characterization of the Jacobian conjecture in the real plane and some consequences [Internet]. Discrete and Continuous Dynamical Systems, Series S. 2025 ; 18( 8): 2201-2210.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3934/dcdss.2024201
  • Source: Journal of Modern Dynamics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS, ANÁLISE FUNCIONAL, ANÁLISE REAL

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. Deformation theory of one-dimensional systems. Journal of Modern Dynamics, v. 21, p. 1-20, 2025Tradução . . Disponível em: https://doi.org/10.3934/jmd.2025001. Acesso em: 27 nov. 2025.
    • APA

      Smania, D. (2025). Deformation theory of one-dimensional systems. Journal of Modern Dynamics, 21, 1-20. doi:10.3934/jmd.2025001
    • NLM

      Smania D. Deformation theory of one-dimensional systems [Internet]. Journal of Modern Dynamics. 2025 ; 21 1-20.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3934/jmd.2025001
    • Vancouver

      Smania D. Deformation theory of one-dimensional systems [Internet]. Journal of Modern Dynamics. 2025 ; 21 1-20.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3934/jmd.2025001
  • Source: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Subjects: ATRATORES, PROBLEMAS DE CONTORNO, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity. Mathematical Methods in the Applied Sciences, v. 48, n. 14, p. 13456-13474, 2025Tradução . . Disponível em: https://doi.org/10.1002/mma.11115. Acesso em: 27 nov. 2025.
    • APA

      Bortolan, M. C., Pecorari Neto, C., López-Lázaro, H., & Seminario-Huertas, P. N. (2025). Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity. Mathematical Methods in the Applied Sciences, 48( 14), 13456-13474. doi:10.1002/mma.11115
    • NLM

      Bortolan MC, Pecorari Neto C, López-Lázaro H, Seminario-Huertas PN. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity [Internet]. Mathematical Methods in the Applied Sciences. 2025 ; 48( 14): 13456-13474.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/mma.11115
    • Vancouver

      Bortolan MC, Pecorari Neto C, López-Lázaro H, Seminario-Huertas PN. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity [Internet]. Mathematical Methods in the Applied Sciences. 2025 ; 48( 14): 13456-13474.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/mma.11115
  • Source: Journal of Computational Science. Unidades: EP, ICMC

    Subjects: REDES NEURAIS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA JÚNIOR, César Magno Leite de et al. Data assimilation by cellular neural network applied to Lorenz-63 system. Journal of Computational Science, v. 90, p. 1-11, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jocs.2025.102587. Acesso em: 27 nov. 2025.
    • APA

      Oliveira Júnior, C. M. L. de, Saraiva, A. M., Delbem, A. C. B., Velho, H. F. de C., Lemos, G. G. Z., & Härter, F. P. (2025). Data assimilation by cellular neural network applied to Lorenz-63 system. Journal of Computational Science, 90, 1-11. doi:10.1016/j.jocs.2025.102587
    • NLM

      Oliveira Júnior CML de, Saraiva AM, Delbem ACB, Velho HF de C, Lemos GGZ, Härter FP. Data assimilation by cellular neural network applied to Lorenz-63 system [Internet]. Journal of Computational Science. 2025 ; 90 1-11.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jocs.2025.102587
    • Vancouver

      Oliveira Júnior CML de, Saraiva AM, Delbem ACB, Velho HF de C, Lemos GGZ, Härter FP. Data assimilation by cellular neural network applied to Lorenz-63 system [Internet]. Journal of Computational Science. 2025 ; 90 1-11.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jocs.2025.102587
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, PROBLEMAS DE CONTORNO, SISTEMAS DINÂMICOS

    Disponível em 2026-07-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio et al. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, v. 393, p. 58-101, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.02.005. Acesso em: 27 nov. 2025.
    • APA

      López-Lázaro, H., Nascimento, M. J. D., Takaessu Junior, C. R., & Azevedo, V. T. (2024). Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, 393, 58-101. doi:10.1016/j.jde.2024.02.005
    • NLM

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
    • Vancouver

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
  • Source: Studies in Applied Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCÍA, Isaac A e GINÉ, Jaume e RODERO, Ana Livia. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities. Studies in Applied Mathematics, v. 153, n. 2, p. 1-27, 2024Tradução . . Disponível em: https://doi.org/10.1111/sapm.12724. Acesso em: 27 nov. 2025.
    • APA

      García, I. A., Giné, J., & Rodero, A. L. (2024). Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities. Studies in Applied Mathematics, 153( 2), 1-27. doi:10.1111/sapm.12724
    • NLM

      García IA, Giné J, Rodero AL. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities [Internet]. Studies in Applied Mathematics. 2024 ; 153( 2): 1-27.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1111/sapm.12724
    • Vancouver

      García IA, Giné J, Rodero AL. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities [Internet]. Studies in Applied Mathematics. 2024 ; 153( 2): 1-27.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1111/sapm.12724
  • Source: Carpathian Journal of Mathematics. Unidade: ICMC

    Subjects: TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOZA, Gheorghe et al. Stability and bifurcation analysis of a four-dimensional economic model. Carpathian Journal of Mathematics, v. 40, n. 1, p. 139-153, 2024Tradução . . Disponível em: https://doi.org/10.37193/CJM.2024.01.10. Acesso em: 27 nov. 2025.
    • APA

      Moza, G., Rocşoreanu, C., Sterpu, M., & Oliveira, R. D. dos S. (2024). Stability and bifurcation analysis of a four-dimensional economic model. Carpathian Journal of Mathematics, 40( 1), 139-153. doi:10.37193/CJM.2024.01.10
    • NLM

      Moza G, Rocşoreanu C, Sterpu M, Oliveira RD dos S. Stability and bifurcation analysis of a four-dimensional economic model [Internet]. Carpathian Journal of Mathematics. 2024 ; 40( 1): 139-153.[citado 2025 nov. 27 ] Available from: https://doi.org/10.37193/CJM.2024.01.10
    • Vancouver

      Moza G, Rocşoreanu C, Sterpu M, Oliveira RD dos S. Stability and bifurcation analysis of a four-dimensional economic model [Internet]. Carpathian Journal of Mathematics. 2024 ; 40( 1): 139-153.[citado 2025 nov. 27 ] Available from: https://doi.org/10.37193/CJM.2024.01.10
  • Source: Nonlinear Analysis: Hybrid Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e KALITA, Piotr. Long-time behavior for impulsive generalized semiflows. Nonlinear Analysis: Hybrid Systems, v. 51, p. 1-25, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.nahs.2023.101432. Acesso em: 27 nov. 2025.
    • APA

      Bonotto, E. de M., & Kalita, P. (2024). Long-time behavior for impulsive generalized semiflows. Nonlinear Analysis: Hybrid Systems, 51, 1-25. doi:10.1016/j.nahs.2023.101432
    • NLM

      Bonotto E de M, Kalita P. Long-time behavior for impulsive generalized semiflows [Internet]. Nonlinear Analysis: Hybrid Systems. 2024 ; 51 1-25.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.nahs.2023.101432
    • Vancouver

      Bonotto E de M, Kalita P. Long-time behavior for impulsive generalized semiflows [Internet]. Nonlinear Analysis: Hybrid Systems. 2024 ; 51 1-25.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.nahs.2023.101432
  • Source: Stochastic Processes and their Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS, EQUAÇÕES INTEGRAIS, CONTROLE (TEORIA DE SISTEMAS E CONTROLE)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da e BONOTTO, Everaldo de Mello e FEDERSON, Marcia. Stability for generalized stochastic equations. Stochastic Processes and their Applications, v. 173, p. 1-14, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2024.104358. Acesso em: 27 nov. 2025.
    • APA

      Silva, F. A. da, Bonotto, E. de M., & Federson, M. (2024). Stability for generalized stochastic equations. Stochastic Processes and their Applications, 173, 1-14. doi:10.1016/j.spa.2024.104358
    • NLM

      Silva FA da, Bonotto E de M, Federson M. Stability for generalized stochastic equations [Internet]. Stochastic Processes and their Applications. 2024 ; 173 1-14.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.spa.2024.104358
    • Vancouver

      Silva FA da, Bonotto E de M, Federson M. Stability for generalized stochastic equations [Internet]. Stochastic Processes and their Applications. 2024 ; 173 1-14.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.spa.2024.104358

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025