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ABSTRACT

We present sufficient conditions to obtain a generalized (¢, D)-pullback attractor for evolution processes on time-dependent phase

spaces, where ¢ is a given decay function and D is a given universe. We deal specifically with the case in which ¢ has either exponen-

tial or polynomial decay, the universe is the one of uniformly bounded families, and apply the abstract results to a non-autonomous

wave equation with time-dependent propagation velocity.
MSC2020 Classification: 35B41, 35120, 37L25

1 | Introduction

For nonautonomous systems, described in terms of evolution pro-
cesses, in which the time variable appears as an independent
parameter in the equations, the main feature of the solutions is
that they depend separately on the initial and final times, and
not simply on the elapsed time, as it occurs in the autonomous
case, described by semigroups. Hence, there are a few different
ways to define and study the asymptotic behavior of the system.
One can work with the forward attraction, in which a compact
set A called the uniform attractor, that is minimal in some sense,
attracts all the solutions as the final time goes to infinity, uni-
formly for initial times and initial data in a bounded set of the
phase space. We could also work with the pullback attraction, in

which for each fixed final time ¢, we have a compact and invariant
(in some sense) set A(¢) that attracts solutions when we let the
initial time s tend to —oo, uniformly for initial data in bounded
subsets of the phase space. In this case, the family {A(?)},cg is
called the pullback attractor of the system. There exist several sce-
narios in which the pullback attraction can be studied and the
forward attraction cannot, that is, we have the pullback attractor
and not the uniform attractor. These are two possible frameworks
that naturally appear when dealing with systems in a fixed phase
space.

In order to apply the obtained abstract results to a nonau-
tonomous wave equation with time-dependent propagation
velocity, we make use of the theory of time-dependent evolution
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process and their attractors, in the pullback sense. It should be
noted that this theory is a natural extension of the classical the-
ory for nonautonomous dynamical systems in fixed phase spaces,
and enables us to understand, for instance, the pullback dynam-
ics of noncylindrical problems in PDEs and equations in which
the coefficients depend on time, and influence in the choice of
the phase space, as is the case of the problem we discuss in this
work. Furthermore, the theory of pullback attractors, for instance
as developed in [1-3], is the natural candidate to extend the the-
ory of global attractors for semigroups (also called autonomous
dynamical systems), especially when we consider it in the frame-
work of time-dependent spaces because, to the extent of our
current knowledge, there is no theory of uniform attractors for
nonautonomous dynamical systems in time-dependent spaces.

Problems in a fixed space describe a vast number of phenom-
ena, but they do not exhaust them all. For instance, in [4], the
authors study the solutions of a Klein-Gordon equation with
time-dependent Hamiltonian density, with applications to cos-
mological theory. Many other researchers have used this frame-
work to study a number of problems. See, for instance, [5-10]
and references therein. That is the reason why we have chosen
this framework to develop our study.

Our goal is to generalize the theory developed in [11], for the
autonomous case, and in [12, 13] for the nonautonomous case
with a fixed phase space, to the nonautonomous framework
with time-dependent phase spaces. As an application, follow-
ing these three works mentioned and also [5, 6], we obtain the
existence of the so-called generalized @-pullback attractor for a
nonautonomous wave equation with nonlocal weak damping
and time-dependent propagation velocity.

To better outline our results, we introduce some terminology,
definitions and notations. Let us consider the set T =R or Z
and denote Tj :={(t,7) € T? : t > t}. We also consider a family
X ={(X,.d)},cr of complete metric spaces. A family S =
{Sit,r): (7)€ '[I'dz}, consisting of maps S(t,7) : X, - X,, is
called an evolution process on 2 if it satisfies:

o S(r,r)x =xforanyx € X, andr € T;
o S(t,7) =S, 5)S(s,r)foranyt > s > 7;

o S(t,7) : X, = X, is continuous for each (¢, 7) € 'I]'dz.

We say that the evolution process is time-discrete if T = Z and
time-continuous if T = R.

Let us denote by & the class of all families D = { D, },; in which
D, C X, for each t € R. We say that a family D e & is nonempty,
open, closed, bounded, compact if each set D, is nonempty, open,
closed, bounded, compact, respectively, for each r € T. Further-
more, given D', D € &, we say that D° ¢ D' if D> ¢ D! for each
t € T. Auniverse D is a subclass of § which consists of families of
nonempty sets. We say that a universe D is of inclusion-closed if,
for any f)l € Dand f)2 € & such that f)2 C ﬁl,we have f)2 € D.
In this paper, we will consider only inclusion-closed universes.

Given a family 2 of complete metric spaces and S an evolution
process on &, we say that a family D € § is positively invariant

for S if
S@t,t)D, c D, foreach (t,7)€T;.

Also, for t € T and A, B C X, two nonempty subsets of X,, we
denote the Hausdorff semidistance between A and B by

X _ .
dist}/ (A, B) = 31615 %glf;d,(a, b).

Lastly, we say that a function ¢ : [a, ) — [0, o0), Where a > 0, is
adecay function if ¢ is nonincreasing, ¢(t) - 0 ast — oo, and for
each w > 0 and n € R, we have

lim Supw

Examples of decay functions are ¢(t) = e™" (exponential decay),
@(t) = 7" (polynomial decay), and () = ﬁ (logarithm decay)
(see, for instance, [13, section 2]).

With that, we can introduce the object in which we focus our
efforts in this paper.

Definition 1. Given a family & of complete metric spaces, S
an evolution process on ', and D a universe, we say that a family
M € F is a generalized (¢, D)-pullback attractor for S if M is
compact, positively invariant for S, and M is (¢, D)-pullback
attracting, that is, there exists a constant @ > 0 such that for each
DeDandr e T, there exist C = C(D,1) > 0and 7, = 7,(D, 1) >
0 such that

distz’ (S(t, t—1)D,_,, M,) < Cop(wr) forall 7> 1,

When ¢ is an exponential decay function, we also call M a gener-
alized exponential D-pullback attractor. The analogous definition
holds when g is a polynomial decay function.

Our goal is to find conditions under which a given evolution pro-
cess S on & possesses a generalized (¢, D)-pullback attractor, in
the specific cases of polynomial and exponential decay functions,
and a given universe ® that will later be defined. In Section 2,
we state and prove abstract results that ensure the existence of
such objects (namely, Theorem 2.5 for the exponential decay, and
Theorem 2.6 for the polynomial decay), so that, in Section 3,
we can apply them to the evolution process S, generated by the
family of nonautonomous wave equations with nonlocal damp-
ing and time-dependent speed of propagation, indexed by the
parameter p > 0, given below:

e(Mu,(t, x) — Au(t, x) + k(@)||u,(t, -)||iz(g)u,(t, x)
+ f(u(t, x)) = h(x), (t,x) € [s,00)XQ,

(W-Eq)
ut,x) =0, (t,x)€E [s,0)X L,

u(s, x) = uy(x), u,(s,x) =u;(x), x € Q.
where Q C R3 is a bounded domain with smooth boundary 0Q.

We consider X, = H;(Q) x L*(Q) the Hilbert space with inner
product

<(1/l1, Ul)’ (u2’ U2)>t = / V”l . Vuzdx
Q

+s(t)/vlvzdx for(uy,vy), (uy,0,) € X,
Q
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and associated norm

2 2
Il )17 = llull

2
i@ T eOllvllysq, for w,v) € X,

which is equivalent with the usual norm in Hj(Q) x L*(Q), pro-
vided &(r) > 0 for each t+ € R. We consider the family of Hilbert
spaces

X = {(Xt’ ” ° Ht)}te[R = {HS(Q) X LZ(Q)’ ” ° ”t}tEIR (11)
Taking into account (W-Eq), we assume the following:

H1 p=0,
H, h e L*(Q)and we set hy := ||h]| 12(q)»

H; k € C(R), and there exists k,, k; > 0 such that k, < k(7) <
k,forallt € R;

H, £ € CY(R) is such that £(r) > 0 and £'(r) <0 for all t €
R, and

L :=sup(e(®) + |€'(D)]) < oo;
teR

H; f € C!(R)issuch that f(0) = 0and

11|1r|1 inf f/(u) > —44,

where 4, > 0 is the first eigenvalue of the negative Lapla-
cian operator —A with Dirichlet boundary conditions in Q.
Additionally, there exist ¢, > 0 and 1 < g < 2 such that

|f )| < co(1+ |u]?) forall u € R.

H, there exist #, c; > 0 such that

t
F(t) = / f(s)ds=n|t|** —¢, forallt €R.
0

Now we define the universe we work with. Consider a family 2" =

{(X,,d,)},cr of Banach spaces and denote by Etr the closed ball in
X, of radius r > 0 centered at 0.

Definition 2. A family D € § is called uniformly bounded if
there exists » > 0 such that D, C E: for allt € T. The universe of
uniformly bounded families is denoted by D,,,.

The main application of our results, proved in Section 3, is the
following theorem:

Theorem A. Assume that 1-1 hold. Then (W-Eq) generates
an evolution process S, on the family & defined in (1.1), for each
p = 0. Moreover:
a. S, has a generalized exponential ® ,-pullback attractor M ;
b. for p>0, S, has a generalized polynomial D ,-pullback

attractor M »

Inany case, S, has also a D,,-pullback attractor A , with A, C Mp.

2 | A Review on the Abstract Results

This section is devoted to stating the results concerning the exis-
tence of generalized (¢, D)-pullback attractors associated with
evolution processes in time-dependent phase spaces. We point
out that not all the results stated in this section are proven, as
many of them follow similarly to those presented in [13]. In the
proofs we do present here, we carefully indicate where the differ-
ences lie when working in time-dependent phase spaces.

To begin, we provide some definitions. Given a family 2" of com-
plete metric spaces and an evolution process S on ', we say that
afamily B € § is

o positively invariant for Sif S(¢, 7)B, C B, foreach(z,7) € T?;
o invariant for S if S(#,7)B, = B, for each (¢, 7) € T?;

o D-pullback absorbing for a universe D, if given D € D and
t € T, there exists 7, = 7,(D, ) > 0 such that

S(t,t—7)D,_. C B, forallt > 1.

When there exists 7, = 7,(D) > 0 independent of t € T for
which the inclusion above holds for all 7 > 7, and allt € T,
we say that B is uniformly ®-pullback absorbing.

Remark 1. We point out that the definition of a uniformly
D-pullback absorbing family presented here slightly differs from
[13, definition 2.3]. The property we ask here is stronger. How-
ever, in the application presented in [13], they obtain a uniformly
D-pullback absorbing family according to our definition.

We will also need the following definition: if ' = {(X,, || - ll,)};er
is a family of Banach spaces, we say that a family D € § is back-
wards bounded if given ¢ € T there exists r, > 0 such that D, C
Ei, forall s < 1.

As for the existence of generalized (¢, D)-pullback attractors, we
can see, analogously to what already has been presented in the lit-
erature so far, that in the scenario in which the evolution proper-
ties enjoy some compactness property, the following result holds.

Proposition 2.1. (cf, [13, proposition 2.1]). Let X bea
family of Banach spaces, S an evolution process on X, and D a
given universe. Assume also that

o S is an eventually compact evolution process, that is, there
exists = > 0 such that S(t,t—7) : X,_, = X, is a compact
map foreacht € T;

t—7

o there exists a backwards bounded D-pullback absorbing
family B € D.

Then, given any decay function ¢, S has a generalized
(¢, D)-pullback attractor M. Additionally if B is closed, then
MeD.

We recall that, given a metric space (X, d) and B C X bounded,
we define its Kuratowski measure of noncompactness by
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k(B) = inf{$ > 0 : Badmits a finite cover by

sets of diameter less than or equal to §},
and its ball measure of noncompactness by

B(B)=inf(r>0: B

admits a finite cover by open balls of radius r}.

We could replace less than or equal to by less than and open balls
by closed balls in the definitions of x and f, respectively, and
obtain the same quantities.

We work in the framework of a family of spaces ¥ = {(X,.d,)},r
and hence, each X, has its own Kuratowski measure of noncom-
pactness and ball measure of noncompactness, which we could
denote by x, and g,, for each r € T. However, to simplify notation,
and in the understanding that this will not cause any confu-
sion, we denote the Kuratowski measure of noncompactness and
ball measure of noncompactness in every X, simply by « and f,
respectively.

As in [12, 13], inspired by [11] and [14], we make the following
definition:

Definition 2. Given a family 2 of complete metric spaces,
an evolution process S on 2, and a universe ®, we say that S
is (@, D)-pullback x-dissipative if there exists w > 0 such that
for any D e ® and 7 €T, there exist C = C(ﬁ, )2 0and 7, =
ro(ﬁ, t) > 0 such that

K< U St — a)D,_(,> < Co(wr) forall t > 1,

(>4

As in [13], the following result holds.

Proposition 2.3. (cf., [13, proposition 2.8]). Consider a
family & of complete metric spaces, S an evolution process on
Z, and D a universe. Assume that B is a uniformly ®-pullback
absorbing family for S, and that there exist a decay function ¢
and w > 0 such that for each t € R, there exist C = C(t) > 0 and
7, = 7o(t) > 0 such that

k(S(t,t —1)B,_;) < Cop(wr) forallt > 1.

Then S is (¢, D)-pullback k-dissipative.

Also, with very similar proof as in [13] (which is inspired by [15,
16]), we have the following result presenting conditions to ensure
the existence of a generalized (¢, D)-pullback attractor.

Proposition 2.4. (c¢f, [13, theorem 2.6]). Consider a
family of complete metric spaces 2, a time-continuous evolution
process S on ', and a given universe D. Assume also the following
conditions:

C, there exists a closed and bounded family B € ® such that B is
uniformly D-pullback absorbing;

C, there exist y, L > 0 for which

di, . (S(s+7,5)x,8(+7,5)y) < Ld(x,y) forallx,y € By,

s € Randt € [0,7];

C; for a given decay function ¢, S is (@, D)-pullback
K-dissipative.

Then, there exists a generalized (¢, D)-pullback attractor M for S,
with M C B.

We now state and outline the proof of the two main results of
this section, in which we present sufficient conditions to obtain
a generalized exponential and polynomial ®,,-pullback attrac-
tor, which are based on [12, theorem 2.5] and [13, theorem 2.7],
respectively.

Before that, we just introduce two concepts that are needed. For
a complete metric space X and B C X, afunctiony : X X X —
R* is called contractive on B if for each sequence {x"}neN CB
we have

lim inf w(x,, x,,) = 0.

m,n— oo

We denote the set of such functions by contr(B).

A pseudometric in a set X is a function p : X X X — [0, c0) that
satisfies:

o p(x,x)=0forall x € X;
o p(x,y) = p(y,x) forall x,y € X;

o p(x,z) < p(x,y) + p(y,z) forall x,y, z € X.

Also, for B C X, we say that p is precompact on B if any sequence
in B has a Cauchy subsequence with respect to p.

Theorem 2.5. (The exponential case). Consider a family
of Banach spaces 2, a time-continuous evolution process S on 2,
and the universe D,,. Assume also that conditions 2.4 and 2.4 of
Proposition 2.4 hold, and that B in 2.4 is also positively invariant
and Be D,

Furthermore, assume that there exist constants yu € (0,1), T > 0
and r > 0 satisfying: given t € R and n € N, there exist m(n) €
N, functions g, : (R)™™ - R*, w, : X,_,+ X X,_r —» R* and

pseudometrics pi"), e p;:'()n) on X,_,r such that

i. g, is nondecreasing with respect to each variable,
£,(0, ... ,0) =0and g, is continuous at (0, ... ,0);

(n) (n)

ii. the pseudometrics p;", ... Pty

are precompact on B,_, ;
iii. y, € contr(B,_,);
iv. for x,y € B,_, we have

d,_(n_l)T(Snx, S,,y)r < yd,_,,T(x, »
(n)

+ 8,0 (X, 1), s P (5, 9+ (5, 9,

where S, := St —m—-1T,t—nT).
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Then, for the decay function @(s) = u*, S is (¢, D,,)-pullback
k-dissipative, and it possesses a uniformly bounded generalized
(@, D,,)-pullback attractor M € D,

Proof. Because Be D, there exists a positive constant R such
that B, C B forall s € R. Asin [12, theorem 2.5], for A C B,_,;
we obtain

k(S(t,t —nT)A)

<2'p'k(A) < 27W'2RY,

which, in particular, implies that
K(S(t.t = nT)B,_,;) < ARy .

Finally, for s > T letn € Nbesuch that s — T < nT < s

From the positive invariance of B, we obtain

K(S(t,t—s)B,_) = k(S(t,1 =nT)S(t — nT,1 - 5)B,_,)

n 1o
K'(S(Z,t—}’lT)BZ_nT) <4Rur <4Ru rum < Cu™,

where C = 4Ry~ ¢ and @ = L. Tt follows from Proposition 2.3
that S is (¢, D,,)-pullback «- d1351patlve with decay function ¢
given by ¢(s) = p*, and it follows from Proposmon 2.4thatS pos-
sesses a generalized (@, D) pullback attractor M with M C B.
Because B € D,,, so does M. O

Theorem 2.6. (The polynomial case). Consider a family
of Banach spaces 2, a time-continuous evolution process S on 2,
and the universe D,,. Assume also that conditions 2.4 and 2.4 of
Proposition 2.4 hold, and that B in 2.4 is also positively invariant
and Be D,

Furthermore, suppose also that there exist € (0,1), r >0, T >
0, C > 0 satisfying: given t € R and n € N, there exist m(n) € N,
functions g, h, : RY" > R, w,.0, : X,_p X X,_,q = RT

and pseudometrics p(") s pf:()n) on X,_,r such that

i. g,, h, are nondecreasing with respect to each variable,
g,00, ... ,0)=h,0, ... ,0)=0and g,, h, are continuous at
, ... ,0);

(n) (n)
ii. p", ... Pty

are precompact on B,_,;;
iii. y,, 6, € contr(B,_,r);

iv. forall x,y € B,_,; we have

a7 (S, %, S, 0" < dy_yr(x,y)

+ 8, (X D)y e (5 ) F 9, (X, )
and

di_ ey (8, %, 8, 9)" < C[d,_,,T(x, W =d_ 1y (S,x, S,y

(n)

m(n)

O, A o )]

+ (" (x, ), .. (X, ) + 0,(x, ),

m(n)

where S, 1= St —m—-1T,t—nT).

Then, for the decay function ¢(s) = sﬁ , Sis (¢, D,)-pullback
k-dissipative. Also, S has a uniformly bounded generalized
(@, D,,)-pullback attractor M € D,,.

Proof. Asin[13, theorem 2.7], consider the function u : R* —

R* defined by u(s) = (3C)~"/#s'/# + 5. Because u is an increasing

bijective function, it has an inverse function that we will denote
: Rt > R*, which also is increasing. The composite functions

u" and v" are also increasing for n > 2 and satisfy u < 2<ud <
candvzv®*2 03> .- foranys >0

Because B € D, there exists a positive constant R such that
—s
B, C B, foralls € R.Forn € Nand A C B,_,; we have

k(S(t,t —nT)AY < 270" (k(A)) < 270"(2'R™).  (2.1)

From [13, proposition A.2], there exists n, € N, such that for n >
ny, we have

i

V(2R < [(n - n0)<z - 1)(1 +30)70 +(2R)”’ﬂ”] "

Thus for all n > n, it holds that

K(S(t,t — nT)B,_,7) < 2 [(n - n0)<% - 1)(1 +3C)77

rgp-n | "1
+(2R) 7 ] .

Ifs > (ny+ 1)T,taken € Nsuchthat = —1l<n< We have n >

ny, and from the positive invariance of B, we obtaln

K(S(t,t—s)B,_) = k(S(t,1 —nT)S(t = nT,t - 5)B,_,)
k(S t—nT)B,_,7)

1
<2f(n—np)( = -
[(n no)(ﬁ

b
r(p-1) | rF-1
+(2R) 7 ]

B
s 1 1]
(T —1—n0><5 —1)(1+3C) ’

b
= 2(ws — )TV,

1)(1 +30)7

<2

where
» = l<l - 1)(1 +3C) Tandn = (1+n )<1 - 1)(1 +3C)7
T\p Y\ B '
Now, there exist C; >0 and s,>0 such that
i I
2(ws —n)@v < Cy(ws)#-n for s>s,. Then, taking

s > s 1= max {5y, (ny + 1)T }, we have
i
k(S@,t—s)B,_,) < C(ws) D

fors > s,.

It follows from Proposition 2.3 that S is (¢,9d,,)-pullback

s
k-dissipative, with the decay function ¢ given by ¢(s) = s'o-b,
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and therefore, from Theorem 2.4, there exists a generalized
(@, D,)-pullback attractor M for S with M C B. Because B
belongs to ®,,,, so does M. o

3 | Application to a Nonautonomous Wave
Equation With Nonlocal Damping and
Time-Dependent Speed of Propagation: The Proof
of Theorem A

3.1 | Well-Posedness of the Problem

In order to obtain existence, uniqueness and continuity with
respect to initial data for (W-Eq), we first present some esti-
mates related to the functions f and F defined in 1 and 1. The
proof of the next result is standard, and can be found in detail, for
instance, in [17].

Proposition 3.1. Forallu,v € R, we have
i [ f@)] < 2¢o(1 + [u|Tth);

i [fw - f)I <
iii. |F)| <

2¢o(1 + |ul? + |v|)|u - v];
dey(1 + |ul92);
iv. |F(u) — F(v)| < 8¢(1 + |u]9™ + |0|7 ) |u — v];

v. Foreach K > 0,

K
/ | fW)]du < 8cy(1 + K972,

vi. There exist u, € (0, A,) and M > 0 such that

f'(u) > —py and & > —po forall |u| > M;  (3.1)

vii. For pu,and M given above, there exists a constant e, > 0 such
that

+1
F(u)>—<”°4 !

>u2 —8¢y(1 + M7*?) forall [u| > M
(3.2)

Flu) < uf(u)+ %uz te forall ul >M  (33)

and
|F(u)] < 8¢cy(1+ M7*2) forall |u| < M (3.4)

In what follows (-, -) denotes the usual inner product in L?(Q)
and (-,-); is the inner product in H(}(Q), where (u,v), :=
(A%u Aév) = (Vu, Vv). Furthermore, to simplify notation, we set
-l i= 11 Ny forp > Loand || - g 2= 11 - lmpo-

Proposition 3.2. > 0 such that

(F(u).1) = / F(u)dxz—(” 0 )II 12,
Q

Ho + Ay 2
>_< 4/{1 )”””,_13_6'07

There exist Cy > 0 and g,

and

(Fw),1) <(f@),u) + —IIMIILz +4o < (f (W), u)

+ —||u||H1 + 4o

Proof.  The first inequality follows directly from (3.2), by tak-
ing Cy = 8¢y(1 + M%%)|Q| > 0. The second one is a consequence
of inequalities (3.3) and (3.4) taking ¢, = e,|Q,|+ 8¢y(1 +
M) |Q, | +8Mcy(1 + M7+2), =

Lemma 3.3. There exists a constant C > 0 such that

Lf @) — fWl 2 <

Crllu— U||HUl

forallu,v e H(}(Q) satisfying ||u||H& < Rand ||v||H5 <R

Proof. This result is a consequence of item 3.1 of
Proposition 3.1. O

Definition 3.4. A weak solution of (W-Eq), associated to the
initial condition (uy,u;) € Hy(Q) x L*(Q), is a function u such

thatforall T > s,

u€ L=(s,T; Hj(Q)),
u, € L*(s,T; LX(Q)), u, € L*(s,T; H(Q)),

which, fora.e.7 € (s,T)and all v € H(}(Q), satisfies

ety v)_y + (Vu, Vo) + k@)l (2, 11", uy, v)
+ (f(w),v) = (h,v),

(3.5)

where (-, -)_; denotes the duality from H~1(Q) and H(}(Q), and it
satisfies the initial conditions u(s) = u, and u,(s) = u;.

The proof of the following theorem is based on [18, theorem 6.1,
p. 222] and [19, section 7.2.2].

Proposition 3.5. (Existence of weak solutions).  Suppose
that conditions 1-1 hold. Then, for each (uy, u;) € Hy(Q) x L*(Q),
there exists at least one weak solution u of (W-Eq).

Sketch of the proof using the Faedo-Galerkin method. Consider
an orthonormal basis {w, } of L(Q), consisting of eigenvectors of
—A, each associated to the eigenvalue 4,, with w, € H&(Q) for all

keN. Let u" =Y y"(Hw, € W™ :=span{wy, ... ,w,} and
consider the following ordinary differential equations
(e(uyy, wy) +(Vu", Vw, )
+ kOl @ N ul' we) + (f @, wy) = (hwy),  (3:6)

u"(s) = P"uy, u'(s) = P"uy,

fork =1, ... ,m,where P" : L2(Q) — W™ is the orthogonal pro-
jection of L*(Q) into W™. 1t follows from [20, theorem 3.4 pg.
287] that, for each T' > 0, (3.6) has a unique maximal solution

=" - v € C(s,1,],R™) with s <1, < T. The a priori
estimates below will show that?, = T.
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We multiply the kth equation of (3.6) by % 2(t) and add the
equations for k = 1, ... ,m to obtain

E(Z)d m —-“ m
— 7 2dtnv 112,
+ kOl (@ TS+ (@) = (hal.

Note that

2
nlu™| — ¢,

(f@),u"y = — / F@™dx and
< F@W™) < 32¢,(1 + |u™]9),

and also that || P"ug|| 41 < llugll 2 and [[P"uy |l 2 < luy|l - for all
m € Nand (uy,u;) € Hy(Q) X L*(Q). Therefore, it follows from 1
and the Gronwall inequality that

{u"} is bounded in L™ (s, T; LA(Q)),
{um} is bounded in L¥(s,T; H;(Q)), (3.7
{u"} is bounded in LI+%(s, T; LI+t3(Q)).

Using that | f(u™)| < 8co(1 + |u™|9*1), (3.7), Proposition 3.1, and
Banach-Alaoglu’s Theorem, it follows that, up to a subsequence,

W S win L¥(s, T; HY(Q)),

W =, in L¥(s, T; L(Q)),

F@"y = X, in L (s,T; L%(g))
|7 X, in Lri (s, T; L2(Q)).

(3.8)

L@t
Note that, for v € H}(Q), we have

[(e@u?", P"v)| = [(h, P"v) — (Vu", V P"v)

- (k(t)||um||Lz(g) v, Poy = (f ™), P"v)|
< Al Mol 2 + el g ol gy

+ k(t)||um||p+1||U||Lz + ||f(14m)|| a2 [[0l ova
< Al lloll 2 + el g lloll g

+1
+k@llu I ol + 1/ @D w2 llvll gy

because H, g (Q) c L72(Q) continuously. Then, the sequence [z
is bounded in L?(s, T; H~1(Q)). From this last fact, we deduce

ul' = u, in L*(s,T; H'(Q)) (3.9)

Now, let us fix k € N. Using (3.6), (3.9), and making m — oo, we
obtain

(e®uy, wi ) +(Vu, Vi) + (k)X wy) + (X, wy) = (h, wy).
Hence, for all v € HJ (), we obtain

(e(uy, v)_; + (Vu, Vo) + (k(1)X,, v) + (X}, v) = (h,v) (3.10)
Finally, because f € C}(R) and u™ — u a.e. in QX (s,T), we

obtain f(u™) - f(u) a.e. in QX (s,T). Thus, by (3.8) we have
X, = f(u). With an analogous reasoning we deduce that X, =

||u,||‘iz(g)u,. Therefore, from (3.10) and (3.9), u is a weak solution
of (W-Eq).

Remark 3.6. Any weak solution u to (W-Eq) has a contin-
uous representative, in the sense that u € C([z,T], H&(Q)) and
u, € C([z,T], L*(Q)). Moreover, by a density argument, we can
multiply (W-Eq) by u, to we obtain the following energy equality:

e d 1d 2
—_— +__
2 dt” A7 2a,lllullh,l

+ k(t)][u, (1, )||1’+2 (3.11)
+ (f(u),u,) = (h,uforae.t € (s,T).

Also, the uniqueness of weak solutions, their continuous depen-
dence on initial data, and the fact that weak solutions are glob-
ally defined (that is, defined in [s, 00)), will be proven later (see
Proposition 3.7).

Translated problem. We use the translations of the original
nonautonomous problem in order to obtain a problem defined in
[0, o0) rather than on [s, o0). To be more specific, fixing s € R and
setting v(t, x) 1= u(t + s, x) fort > 0 and x € Q, we formally have

£,(N, (1, x) = Av(t, x) + k,0)||v,(t, )50, x) + (0. X)) = h(x)
=&t + s)u,(t +5,x) — Au(t + 5, x)

+ k(4 9)||u,(t + 5., (¢ + 5. %) + fu(t + 5,x)) — h(x) =0,
where the boundary and initial conditions become

v(t,x)=u(t+s,x) =0 for(t,x) € [0,00) X 0L,

0(0,x) = u(s, x) = uy(x), v,(0,x) =u,(s,x) =u;(x) forxe€Q.
Thus, we will study the boundary and initial conditions problem
£,(N, (1, x) = Av(t, x) + k,0)||v, . )|[5 v, x)
+ [, %) = h(x), (1,x) € [0,00) X Q,

u(t,x) =0, (t,x) € [0,00) X 09,
v(0,x) = uy(x), v,(0,x) =u;(x), x € Q,

(tNWE)

instead of (W-Eq). This problem is equivalent to the initial one,
but with the nonautonomous terms being £,(:) = (- + s) and
ky(-) = k(- + s) instead of € and k.

Fix s € R and consider the initial data V := (uy, u;) € X,.For V,
we denoteby V,(-, V;) : [0,00) — X, aweak solution of ({(NWE),
which for now we assume that is defined in [0, c0).

Let V1,V € X, be the initial data for (W-Eq) such that ||V; ||, <
R and ||V, || x, < R. We have that there exists a constant cg > >0
such that forall = > HV(T Vl)“ < cgpand HV(T Vz)‘ <

cg (see Proposition 3.14, which, in partlcular proves that weak
solutions are globally defined). The next result refers to the conti-
nuity of the problem with respect to initial data and, in particular,
gives us the uniqueness of solutions.

Proposition 3.7.
K(R) > 0 such that

Given R > 0, there exists a constant K =

[mew-venl|, <&m-nly
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forevery V.V, € X, where |V}||, < Rand ||V,]|, <R

Ix, Ix,

Proof. If V,(z,V}) = (1), v,(r)) and V,(z,V,) = (w(z), w,(7))
for 7>0, denote Z(r)=(z(1),z,(r)), where z=v-w.
Then V(0. V) = V, (1, V) = (u(2) — (1), 0,(r) — w;(7)) =
(z(1), z,(r)) = Z(r). Because v and w are weak solutions of
(W-Eq), we formally obtain that

£,(0)z,; — Az + k (O)(||o,|| 00 = [Jwi ||} w) + f(0) = fw) =0
(3.12)

Multiplying formally (3.12) by z, and integrating over , we have

e(r)(z, z) — (Az,z,) + ks(T)<||Ur||1112Ut

_ p 3 3 (3.13)
|, ||72wss 2,) + (f () = f(w), z,) = 0.

Now observe that

1d

2
1200, =35 (lzl, + 2@z

4
dt

N =

1
=—(Az,z,) + Eeg(r)”z,“iz + &,(t)(z,, z,,)
and (3.13) becomes

d
LNZ@I, =@z - 2k o]0,
- ”wt”iz wy, z,) = 2(f(v) = f(w), z,).
We know from [21, lemma 2.2] that

<||Ut||lzzvt - ||w,||'22w,, z;) > 27p||2r||[;2’

which implies

p+2

_st(Tx””t”izUt - ”wtuizwr’ z;) < _Zlipks("')nzt”u >

and by Lemma 3.3 we can show that there exists a constant C >
0 such that

=2(f(0) = f(w),z,) <20 f @) = F)l 2]z ]| 12
< ZCR“z”H(} ”Z;”Lp
Then,
L)z, <@zl -2kl

+2CklIzll gy 2]

()
< @z l7 - k@2 |z )17
2
+ k(027|275 + Crllzll

, 2 Az & 2
<e @z [ + Crllzlly, < Ce,@z ],

+ Crllzlly, = CrIZDI -
(3.14)
with Cp, := max{C, Cg}.

To obtain (x) we note that, applying Young’s inequality,

2C,lIzll g |12 2 = Lk ()P + 217255 | 2] .2
Crlk,(2)(p + 21773275 || ]|

1 1-p +2
([ks(r)(p +2)]m2m IIZfIILz)p
p+2

<
_ pml e
(2Calk @0+ 21 7325 121l )

2+2
p+1

+

P2

= k(027|227 + Crllzl o

A o2 _L
where Cp = (:’% )(2CR):1+1 [k(p + 2)]" 71251 In (%) we observe
that for each 1 € R we have £/(r) < 0 < Ce (1), by hypothesis.

Integrating (3.14) from 0 to 7, we obtain
e,
IZ@lx <e* N1ZO)lly.

e
£,

and the result is proved taking K = O
Hence, under conditions 1-1,forp > 0, se R, V; € X, andt >
0, we can define the map .S,(#,s) : X, — X, by

S,(t,)Vy =V, (1 = 5, Vp).

The family S, =1{8,(t.s) 1 t > 5} defines a time-continuous evo-
lution process on the family & = {(X,, || - ||,)} defined in (1.1).

The proof of the existence of a generalized (¢, D,,)-pullback
attractor for the evolution process S, involves, as a key step, show-
ing the existence of a uniformly ®,,-pullback absorbing family
for S, as required by condition 2.4 of Proposition 2.4, and this is
done in Section 3.2. The obtained family, while closed and uni-
formly bounded, does not have the property of positive invari-
ance. However, this is not an issue, as Proposition 3.23 enables
the construction of a new family that preserves these properties
and it is also positively invariant (hence, satisfying 2.4).

We provide, separately, the proofs for the cases p > 0 and p = 0.
The case p > 0 follows the ideas of [22] and [13] while the case
p = 0 is inspired by the work developed in [6] and [12].

3.2 | Existence of a Uniformly ®,,-Pullback
Absorbing Family

Case p > 0. Consider a constant 6 > 0. Multiplying formally
(tNWE) by v, + 6v and integrating over Q, we obtain

€,((0ys V)1 + (0 ALY + k|0, |75 + (v, ()
+ 8 (1(0, v,;)_y + 6(v, Av) + Sk, D) v, || (v, v,y (3.15)
+ 6(v, f(v)) = (h,v,) + 6(h,v).
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Noting that

d (1 1 2
¢ G )

1
- zz»:;(t)”v,”zL2 = e,(t)(v,, U, )_1 + (v, AV),

d d
E<F(”)’ 1)= <EF(”)’ 1) + (F(v),0)
= (f()v,, 1) = (f(v), v,),
5(v, Av) = 5(Azu As v) = 5||U||H1,
%(5550)(% vy) = 8l (v, v) + 5es(t)||v,||2Lz + 8e, (v, U,)_1s
and
2L (h,v) = (h,,)
dt”’ B

Equation (3.15) becomes

di<1||0||28 + lss(z‘)”z},”i2 + (F(v),1) + 6¢,(1){v,, v) — (h, U>>
= =k, O|ei|[72 = sk 0or]ly (v 0 = 110l
+ 55;(1‘)<U;’ U> + 6£S(Z)||UI||2LZ + E;(t)”l)l”ZLz

—&8(v, f()) + 6({h, v).
(3.16)

For each initial data V{ = (u,,u;) € X, we set the function
E -,V : [0,00) = R, by

1 1 2 Mt p
E,0) = S0l + S0l + F@), 1) + == lIvllf. + o,

where the constant C;, was obtained in Proposition 3.2. and
(v(1), v,(2)) is the solution related to this initial data. Understand-
ing this function is paramount to prove the existence of a uni-
formly ®,,-pullback absorbing family for the evolution process
S, related to (W-Eq).

For this purpose, we first define, for a positive § (which will
be conveniently chosen later), the auxiliary function ¥;(-, V) :
[0, 0) — R by

, 1, .o
w0 = Sloll, +

To simplify notation we write E,(f) and () instead of E (¢, V})
and ¥;(t, V;), but we keep in mind the dependence of both func-
tions on the initial data ¥;,. The next result establishes a relation
between these two functions.

Proposition 3.8. For a constant 0<86<K6,:=

i MMy A—Hy h—Ho ﬁ 7
mm{—sL e e L there exists dy>0 such that,

fort >0,

A B} 11
( 14/11 )E(t) Y0 < TEWM+dy,

Ze,0||v|[7> + (F(), 1) + 6e,(1)(v,, v) — (h, V).

Proof. Note that

1
+ 5e0lel

2
Sl
A+ u
—uﬂmn=mm—<47£ﬂw;—q<am
and using the Poincaré’s inequality, we obtain

e, (O, v)| < Se,O||v,]| 2110l 2

8e,(1) 1
< — vl 2ol g = e, )| og ||, —= IVl g2
el et = ses 0l =l
5 t

O (ol + i)

o€ (t)

ledlz:
6L &
<nmx{zZ,E}OWM%+5JMWMZ>

oL )'1_/40 1
< —, 6 pE(1) S ——E (1) < =E ().
nmx{ i } 0 < T E W< FEO

oL 2
< —
< Spllelly +

Additionally, we have that

1 Ho 4 o1
oy < —(1-22 1 R<z(1-2)E
I vn\16< M)umﬁ TS 8( M) 0

4 1 4
h: < ZE () + n2.
A= 1y 0= g A=y ©
Then, for7 > 0and 0 < 6 < 6,
s 11 4 2
Wi < E(1) + 6e,()(v;, v) — (h, V) < EEs(t) + T hy.
— Ho

On the other hand,

(1) = E((t) — (’11 b

Ho
>||U||2Lz -G

+ 8e,()(v,, v) — (h, V)

> Es(t)_ <Al +”O)Ex(t)_ CO
1
A A 4 2
(35 )mo- (S5 )po- s
_ (Mt et e
_< i >Es(t) C, ﬁl—ﬂoho.

4 2
he. O
Ar—Ho 0

The proof is concluded if we set d;, := C, +

The following Lemmas 3.9, 3.10, and 3.11 will be necessary for
the proof of Proposition 3.12 .

Lemma 3.9.
0, we have

There exists a constant g, > 0 such that forallt >

>I| ull7. = G

1ﬁmg+%

A+

“ (.0 < =(Fon) - (A
1 3u
+Z<Tl+

1 3—+1 ol +
T4\ 4 my T 8o
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where C,, is given in Proposition 3.2.

Proof. 1t is a consequence of Proposition 3.1. Here, g, :
eo|Q, | + 8¢y(1 + M92)|Q,| + 8Mcy(1+ M%) + C, > 0. o

Lemma 3.10. There exists a constant K* > 0 such that for t >
0 and 6 > 0, we have

— k|0, |75 = 8k, @)|v, |5 (v, v,

6K ky
<—kollof(1-

o Ho 2
~(1-=2 .
* 12( /11>”U”H&

Proof.  The proof is analogous to that one of [13, lemma 3.16]0

“llo II”“>

Lemma 3.11. Forall0 <6 <6,

1 2 o Ho 2
|6€"(t)(v,, )| < S ||ve||72 + —(1— —)Ilvll .- (3.17)
t 2” f”L 12 A’l H,

Proof.

|8, (v, v)] = 8le;(O[{v,, V)]

1
< Sz + L2 10l.)

< 6L||Uz||L2”U”L2

1 2 6L
<Al + ||v||i,é

6 /1 — Mo » (3.18)

= Sl + m » ol
1 — My 686217
< gl + lml".il_ ol

VA

1 2 0 H
Hloie+ 5 (152 ot

where in the last inequality we used that 60" i < édwhens < 6
A=

A —Ho
6L2 °
Proposition 3.12.  There exist n,,n, > 0 such that for 0 < § <
6, and t > 0, we have
d 1 -
G0 < Halle 72 (5 - on (%50 +4) )

8 :
1—— S (¢ .

Proof. From the hypotheses imposed on the function e,
we have

Adding and subtracting %es(t)<1 -
Equation (3.16), we obtain

“)oli: to the

d s

S0 = =k Olo 7 - sk, 0o 0. v)
1

= allell, + €0l

+ 86/ (1)(v,, v) + e,(0)||0s |7, = 5, F(V)) + 6(h, V)

—gs(z)<1 - —>|| o2 - es(t)<1 - _1>||UI|IL2

(3.22)
Joining the inequalities (3.19)-(3.21), Lemmas 3.9, 3.10, and 3.11
and Equation (3.22), we obtain

6 Ho 2 2
+—=1-— -6
12( /11>”U”H3 ”U”Hé

- 6[<F<v),1> + (ﬁ‘ i ”")nvuiz +G,

5 3Hm
+7 <—° + 1) 191131 + 080

d s
Ly <kl (1- 2

A (3.23)
5 MO 2 450 2
“(1-= 0 5
b2 (1= 2 Yoty +
1 2 1) H
+ Mol + ﬁ(l 0>|| oll3,
L 6oL
L+ oo+ 2 a2
- 2e(1- 52l
1
Now observe that setting C; := % + % + 6oL + TL 0andC, :=
8080 + ﬁhgéo > 0, we have
d s 2 -
L)< koo < )
A+
+ Gl - 6[<F<v>,1> + <M>nuniz +Co

+C - gem(l - —>|| o7 - 222 (1 - —>|| ol

<kollall? (1= ZEt 0 ) +

C,—6 [(F(U), 1)+ <’1‘ Ho ) loll7. + Co]

+Cy— z<1 - 7) (||u||H1 +e, (t)||U,||L2>

2 1 2 0K*k
S Olo 7 < S Lol (3.19) < ko ’lpﬂ(; 1“ |)
2 2 C,—§[(F(v),1) + '11 Ho ) oz, + ¢
se,()||vi|22 < 8oL |0, (3.20) : ’ 1+ Co
and S ) 5 +C, - 2(1—7>(||U||H1+£(t)||U,||L2>,
2 2
Ze(1- 58Il < 2elaly, Gav 1 (.24
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where

p 4 P
Cy = o
’ P+2<k0(P+2)> '

arises from an application of the Young’s inequality to obtain
2 _ k +2
Gl < ol + S

P

From Proposition 3.8 and from the fact that || v|| "< (QEL®1) prey s
we have

1 6K*%, L
— kol|o ,|"”(2 el )

ot B (2
ofl“t

1 2(prir1) . r
(W50 + dy ) 0

Ho

(325)

kO Al -
On the other hand,

;<1 - —)(Muu,,l +e,0]v 7

A +u
+<F<u),1>+( - °>||v||iz+co

;(1 - —)(uunﬂl +e,0o,72)

+E0 = 31012, = Se0llu

u
- —ﬁ( ol +eolled:) + Eo
Ho = _t
> T EO+E®D= Es(t><1 4 >

which implies, again using Proposition 3.8, that

_ 5[%<1 - _>(||u||H1 +e,0uill7)

+(F(v),1) + <M

(1 - Z)&E )
8 s Ho
< - m <1——>5‘P @)+ 1d060< /11>

Joining (3.25) and (3.26), we conclude that

)Ilvlliz +C,
(3.26)

L) <

dr e —kollv |72 i

SK*k 84, \ wm .
1 _ 1 %M ( (\P;(t) + do) 2p+1)
2 ko AL — My

8 Ho
1-— 5‘Pt+ dyby(1—— ) +C,+C;.
11( 1> () 100( ’11> ’ }

»
K*k, ( 81, >z<p+1> and

ko A—Ho
- ?) +C, + C;. o
1

The proof is done taking #;, =
8
n = 35030(

From Proposition 3.12 and with a similar reasoning of [13, lemma
3.18], we have the following lemma.

Lemma 3.13. Assume 0 < § < &, If for a fixed = > 0 we have

s _ 204D 11 A
Y1) < 2nyd) r - ——— !

then for all t > = we have

2p+1)

W) < 2md)” » —dy.
Proposition 3.14. Given R > 0, there exists a constant cg > 0
such that E (1) < cg forall V, € B andt >
Proof.  Using 3.1 from Proposition 3.1 and considering the con-

tinuous inclusion H}(Q) — LI**(Q), we can prove that there
exists a constant , > Osuch that [(F(v),1)| < a;(1 + ||v||"+2) Fix

R > 0andlet V = (uy,u;) € X, such that V, € BR. We deduce

1
E0 = 3 (Ilolliy + @)

A’l
+ <F(u0)’ 1) +

/4
: ||”0||2L2 + G

Al"‘#o

SVl + et + IIMoIIq+2 =l + o

Ay + g

1

1
< ERZ + ayR7*? + R* +ay+ C,.

By Proposition 3.8,

s 11
lP&(O) < EES(O) +d,

11
8

\

( RZ +a Rq+2

1

By an analogous process to the one carried out in the proof of [13
proposition 3.14], we obtain that there exists a constant ¢z > 0
such that E (f) < cg for7 > 0.

Again, analogous proofs to [13, proposition 3.20] and [13
theorem 3.12] yield the next two results, where the second is
almost an immediate consequence of the first.

Proposition 3.15. Thereexists a constant R, > 0 such that for
any R > 0and s € R, we have

limsup| sup E\(7)

e Vol <k

Proposition 3.16. (Existence of a pullback absorbing
family). There exists r, > 0 such that for each R > 0, there exists
7, = 75(R) = 0 with

HSP(I, t — 7)(up, ul)”Xl <
forallt >

7o, 1 € Rand (uy,uy) € X,_, with ”(”0’”1)”)(,, <R

This implies that the family B = {B, : B, C X,.1 € R} with B, =
E:O for allt € Ris a uniformly ®,,-pullback absorbing family for
S, which is, additionally, uniformly bounded, that is, Be D
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Case p = 0. For each initial data V = (uy,u;) € X, we set the

function E(-, 7;) : [0, 00) = R, by
E0) = 10l + &,0|o,]) 7.

Additionally, for a positive § (which we will choose later) we
define the auxiliary function (-, V;) : [0,c0) - R by

Y =E@®+ (Sks(t)||v||i2 + 26¢€ (1)(v,, v) + 2(F(v), 1) — 2(h, V).

Proposition 3.17. For0<46 <
> 0 (depending on R) such that for all t >

A —H 4n? ) A
L_9)E@) - S+ Cy | < WD < CRE(1) + 245,
44 A= My

where C, and g, are the constants that arise from Proposition 3.2
and é, is again taken as in Proposition 3.8.

6y and ||v|| m < R, there exists
0, it holds that

Proof.  Firstly, note that

2[(h, v)| < 2|All 2 llvl] 2
2 VA — Ho 4h3
=2 1Al 2 2 ol ) < 7
1~ Ho 17 Ho
MMy o
+ 4—/11||U||H5
(3.27)
and
26¢ (Z)|(U,,U>| 20¢ (t)”Uz“Lz”U”LZ
1
= ng(t)<$”Ut”Lzé\/E”U”LZ)
1 2 2 2

<e, (5l +2620012,)

(3.28)

e (1)
< == lloillz +28% 0l

£ ()
||U,||LZ +262L||U||Lz

e (z) 5k,

+—lv oll7.,

where in the last inequality we consider that 0 < 6 < ﬁ

It follows from inequalities (3.27), (3.28), and Proposition 3.2 that

W0 = ol + e O]lo 3 + sk @lloll,

+ 26¢e,(1)(v,, v) + 2(F(v),1) — 2(h,v)

€, (1) Sk,

> ”U”il(} + gx(t)”UIHiZ +6kollvlliz - ” t"LZ - _” ”Lz

"° o2, - M (At
G =ty \ 44 H,

€, (t) ko 1o 4h2

—HU
> %nuugg v l7. + — el -

- C

A — My 2
vl (7 +es<r>||u,||p)

4h2 A — 4n?
_ 0 -G, = 1 ﬂOES(t)— 0 +C, ).
AL = Ho 44 A1 — Ho

1o An Sko 11112
- > A0 -0 >
because 5 > o and —*||v][, = 0.

On the other hand, it follows from Proposition 3.2 and Lemma 3.3
that for v € H(Q) satisfying lloll 2 < R, we have

2(F(v),1) < 2(f (v, U>+ IUII 1+ 240

M
2SOl + ol + 240
! (3.29)
2 2, Moz
SIS@IT: + 1017+ 210l + 24y

<(Ci+ /1— + —)”U” +2‘10~
A

Applying (3.27), (3.28), and (3.29) to the expression for W;(#), we
obtain

2
W30 < ol +&,0lo,]| 2 + kvl

e (z) ok,
+ —°|| vll?,
+ (C2 + /1— + —)Ilvll 1+ 24
2
Mo LA Hoe
= Hy 4k Hy

2 2 5kl 2
<ol +&,0|v 7. + =—1lvll3,,
o Py o

L (z) ko
+ JHU”H(;
1
S —)Ilvll 2+ 240
4h§ A =ty

—|lv
Ay = Hy 44 | ”H‘}

Soky | Sokg 2 L 1 Hy , A1 — Ho 2
1+ 224 20 24— 404 L 10
< PR YRR S a iy L

3¢ (t)

<

I

— = lloillz: + 240

< CREX(I) + 2q,,

WhereCRzmax{1+ Sk y 2 k0+c2 Lyt bk é}, o

PR 43 2
Proposition 3.18. For any fixed § > 0,

d s

T+ (2K,(0) — €[ (1) — 286,1) o3

+ 280113, + 26(f (v), v) — 26(h, v) = 26¢/(1)(v;. V).

Proof.  This result is obtained by multiplying £ (1)v,, + k,(H)v, +
Av + f(v) = hby 20, + 26v and integrating over Q. O

Proposition 3.19. The function

1—~5 _ ’ kO 2
30 = | k(1) — €.(t) — 36 (1) — o1 lo ]l 72

1+ ky)6%2L?
+<5_¥

T, >||u||i,g = 8%k, (lIoll7; - 26% (1);, v)

g
- e IIHI
A

13467

85U8017 SUOWIWOD BA1181D 3 qedt dde au Aq peusenob afe safoie YO ‘8SN J0 Sa|nJ Joj ARiq18UlIUO A8]IAA UO (SUOPUOO-PUE-SUB)LI0D"AB | IM Afe.d 1[Bu [UO//:SdNL) SUOIPUOD Pue SWie | 8u 89S *[6Z02/80/TT] U0 ARiqiT8uliuO A8|IM ‘[1Zeigd - Ofed 0es JO AISeAIuN Aq STTTTRWW/Z00T 0T/I0p/W0d A8 | AReiq 1 pul|uo//Sdiy Wo.j pepeojumoa ‘T ‘SZ0Z ‘927T660T



is positive for 0 < 6 < 6, sufficiently small fixed.

Proof. Note that, because —25% (1)(v;, v) = —6%€,(0)||v,||7> —
S LI, > =6%,0)|v |3 and —8%,(®lv]l?, >

2 6 k
=&k lloll7, = ==+ IIUII

&L
- ZLloll,

Hi we have

IMOP (ks(t) — € (1) - 36¢,(1) — % - 5255(1)> o[

5%k 821  Su, SL
+ (5— e T>||u||;l,
1 1 0

wherey := 1:—"" > ki It is clear that there exists 0 < 6 < §, suffi-
0 0
ciently small such that 36 + 62 < k”" ! and 6 < . +1 L”“L Then,

ko — 1
366,(1)+ © +6%,() < 38L+ = + 6L < < L )L
n n

+ = < ko < k() < ky(t) — €.(1),

S|~ =

and, consequently,

<ks(t) — &/(1) — 36¢,(1) - % - 6%50)) lo ]2 > 0

On the other hand, because § < 4 L“iL we conclude that
8%k né*L S 5 L

(6-Zh-mr_om_st )nun,,l/o. o

Proposition 3.20. It holds that

d s N 'S
TS0 + 8% + K O|oy|[7 + T30 < 254,
where I'}, is the function defined in the previous proposition.

Proof. Note that for any 7 > 0 fixed we have

266 (1)(v,, v) < 26L|[,|| 210l = 2<\/ﬁ |U,||Lz><\/_6L||U||Lz>
—|| ol +

Hl

which, together with Proposition 3.18, implies that

d s , 1
SO < (es(r) +26e,(1) + i 2k‘\,(t)> o7

2712
+ <’7‘1L - 25>||u||§,1 —26(f(v). v) + 28(h, v)

1

and then, by Proposition 3.2, we have
s (1) + 59
E 5(0 + 5(0
< SE, (1) + 8%k, (D|vll%, + 28%,(1)(v,, v} + 26(F (v), 1)

—28(h,v) + (.s;(z) +266,(1) + % - ZkS(I)) o3

272
+ (’75; - zs) 0112, = 26(£ (v), v) + 25(h, v)
1 0

SSE (1) + 8%k, |vll?, + 26%,(t)(v,, v) + 26(f (v), v)

O 1
Sty 2 (02500 + 200 o,
1

56212
" (” L za) ol - 25(7@). 0.
1 0

Therefore,

%‘P;(t) + 830 + k0o, -

S SE (1) + 8k, |vll?, + 28% (1)(v,, v)

5
+ %”U“i{l +28g0 + <6§(t) +36e,(1) + % - "s(’)> ledlz:
1 0

52L*
(!
A

- 6) 0112 = e,y = Sllol,,

(3.30)
which can be written as
Ly (1) + 595 (1) + k .
E 5(0 + 5(t) + s(t)”U[”LZ + 5(0
< SE,(1) + 28y — e,0)||vy| 3 — 5||v||§qé =254,
]

It is a consequence of Propositions 3.19 and 3.20 that for a suffi-
ciently small 0 < 6 < §, fixed we have for all 7 > 0 that %‘P;(r) +
6‘1’;(0 < 264,. Therefore, for a fixed 6 > 0 sufficiently small,

(1) < W5(0)e™ + 24, (3.31)
forallt >0

Lemma 3.21. Let R> 0 and V;, = (uy,u,) € X be such that
IVollx < R If 6 > 0 is sufficiently small, then there exist ag > 0
and p > 0 (which does not depend on R) such that

Vot Vol < are™: Y4+ forallt >

Proof.  From Proposition 3.17 and inequality (3.31)

”Vp(tv 1) j(,ﬂ =E ()

s ,114:11”0 0+ 1116:11;]:03)2 + jlc—oto

s '114j1/40 (#5067 +240) + ()»116i1/il§)2 + ZC—O/L]O

s AL — Ho ((CRE‘*(O) + 240>e_m + 240) + (/1116i1l}41§)2 + ZC—O};JIO
< /114j1ﬂo (@R”VO”iS + 2qo>e‘5’ + flq+);0

164, h? 4C,A

+ 1% - + 01
(}‘1 - /40) A= My
44,
A=

Sape™™ + p2,

84/, 164 hy 4G4
M=y (A= Hp)* A — kg

< (CrR* +2gy)e™ +
0
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where

4) A
aRz,/r;o(CRRZ+2qO) >0 and p=

Sank 164,13 LTI O
M=o (h—me)*  A—Ho

Thus, we have proven the following.

Proposition 3.22. Thereexists r, > 0such that the family B =
{B, : B,C X,.t € R} where B, = E;, is uniformly ®,,-pullback
absorbing for the evolution process S,

Proof. Setr,:=1+p>0.Let R>0. For every t € R, if 7 >
7o(R) := In(a2/®) and ||V ||,_, < R, we have

ISttt = Woll, = Vol Vo, Sane™s + B <14+ =r,.
m]

Similarly to [13, theorem 3.21], we obtain the following result.

Proposition 3.23.  Forboth cases, p = 0 and p > 0, there exists
a family C = {C, G CcX,te IR} which is closed, uniformly
bounded, positively invariant and uniformly D,,,-pullback absorb-
ing for the respective process S,. Additionally, C, C E;U foreacht.

With the family € obtained in the previous theorem, in the next
section, we show that S, is (o, D,,,)-pullback k-dissipative, where
@ is a polynomial decay function for p > 0 and an exponential
decay function for p = 0. To that end, we verify the conditions
of Theorems 2.5 and 2.6, respectively. As a consequence, we will
obtain condition 2.4. Finally, Proposition 2.4 ensures the exis-
tence of a generalized (¢, ®,,)-pullback attractor for S,.

3.3 | Generalized (¢,9,,)-Pullback Attractors

Case p> 0.If s e Rand V., V, € C,; C X,, we know there exists
a constant ¢, > 0 such that ”Vp(t, Vl)”x = [|w®, v,y <

¢, and HVP(I,VZ)HX = [|w®, w,o) <e, for all £0.

Setting Z(1) = (2(1), z,(1) = V, (1, V) = V,(1, V), we have z(r) =
v(t) — w(t) and z,(t) = v,(t) — w,(t) and, formally proceeding, it is
clear that

e,z — Az + k) (||v |50, = Jwi ||} w,) + f0) = fw) =0
(3.32)
which, when formally multiplied by z, and integrated over Q,
results in

:0(z,.24) 1 = (Az.2) + kO v, || (v, 2)

— k,®|w, ||} (w,. z,) + (f () = f(w), z,) = 0.

For a fixed T > 0 (which will be chosen later), integrating from ¢
to T, we obtain

T T
/ss(r)(z,,z,,)_ldr—/ (Az, z,)dt
T
+ [ ka0

T
— w70, z)dz + / (f() = f(w), z,)dT = 0.
t

Defining the function E, : R* — R* by

E0= 21201, =3 (I22, +e0lzll) (33

and noting that
T4 T
EY(T)—EY(Z)z/ —EV(T)d‘L':/ e,(t)(z,, 2, )dT
3 s Cdr &

T T
- [zzies [ ezl
t t

we have
T
£ =EM+ [ k@l
T
—||wt||izwt,zx>df+/ (FW) = fw). z)dr  (3.34)

4 2
— / 8;(T)||Zt||L2dT.
1

Now, an integration of this previous equation from 0 to T leads
us to the equation

T T T
rem = [Ceoa- [ [ k@l
0 0 t

= [l ||}, 2, yddr

Tt (3.35)
- / / (f() = f(w), z,)drdt
0 t

T T
i / / /(02| drt.
0 t

On the other hand, multiplying (3.32) by z and integrating over
Q, we obtain

T T
/ £,(t)(z, z,,)_1dt — / (Az, z)dt
0 0

T
+ / kO onlavs = (1|2 2
0

T
+ / (f() = f(w), z)dt = 0.
0

(3.36)
Plotting

d
ez, z,)_; — (Az,z) = SS(I)E<Z” z) — Zes(t)”z,”iz +2E(1)
into (3.36) results in

T 1 T d T
/Ex(t)dtz——/ ex(t)—(z,,z)dt+/ e,(0)||z||3.4d1
0 2 Jo dt 0

1 T
-1 /O ko]0, = (1|10, 2y

1 T
—5/ (f() = f(w), z)dt.
0

(3.37)
Joining (3.35) and (3.37), we obtain the following result.
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Lemma 3.24. Let T > 0 fixed. Then,

T
TE(T) =3 / £ 5 (z,, )1 + / e,z |[7.dt

L[ kol
1 T
-1 [ - rw.zar
0
T T
_/0 /ks(Tx”Ut”[]}_zUt
T T
- /0 [ 7= s zpasa
T T
n / / ¢ ||| drdr.
0 t

Proposition 3.25. LetT > 0fixed. Givent € R, thereexistT" =
I'(t,T) > 0and C > 0 such that

- ||w,||izw,,z)dt

- ||wt||psz,,z,)drdt

(3.38)

E(T) <T'@T) sup [lzO|l
t€[0,11]

T
/ (f() = f(w),z,)dz
0

/ / (f(v) = f(w), z,)drdt|.

Proof. 1t follows from [13, proposition A.4] that (||v,||},v, —
lw|[5,w;. z,) = 0, which implies that

(22
T T
- / / k@,
0 t

Additionally, because &/(z) <0 for every € R, we have
/OT /tTe;(r)”z,”izdrdt < 0. In what follows we explore the other
terms appearing on the right side of Equation (3.38).

2
> P2

(3.39)

+ C<ES(0) -E(T)+

+ 1L
T

—lw |} w,. z,)drdt <0

1 /T 1 s 1 (",
_E/ g(t) (zt,z)dt _EE“(I)<Z”Z>|°+E</O £ (t)(z,, z)dt

< VLe, sup |z,
t€[0,T]

L et 120
s z(D)]l 125
Tt T)te[op L

noting that € (r) > £,(T) > 0 for r € [0, T'], and then

1 [T, L [Te@
5/0 e(r)(z,, z)d7 < 5/0 es(T)”Zf(T)”Lz”Z(T)”LZdT

L T
< m JACCIECTNECTE

25([ +7) / VEs(7) ”Z (T)”Lz [|z(D)] 2dT

LE ,OT
< su z(t
e ot A COUTS

In the previous inequalities we used that ¢ (T)=€e(s+T) >
e(t+T), because s < t and ¢ is decreasing, the fact that £ (T) <

VL\/e, () and \/e,()||z,] 2 < 2¢,.

From [13, proposition 3.22, inequality (3.21)],

T 5 T 5
o< [Ceolalar<t [zl
0 0

N
< LAT) ™ k™ (3.40)

T 2
([ woxtal.
0

o)
v, — ||w,||’£2wt,z,)dt)
In addition, (3.34) implies that

T
0< / ks (|Jv ][5
0

v, — ||w,||‘22w,, z,)dt

T
=E(0)- E(T) - / (f(v) = f(w), z,)dT
0 (3.41)

T
+ / ¢ @zl pdr
0

T
S E(0) - E(T) + / (f() = f(w), z,)dz|.
0

Therefore, from (3.40) and (3.41), we obtain

T 2
[ eolzliar
0

-2

< L@T) k] (ES«» — E(T)

2
> P2

and € (t)||w,||L2 < crzo,

T
N / () = W), z)dr
0

Considering that & (t)||u,|| 2 < c2

1 [ » »
-1 / ko0, = w210, 2)dx

2
<Lt [l + el iz ca

k T
<—
ptl
260+ T)5 Jo

(e@F Nl + e, w52 Y1zl e (3.42)

k, /T
26t +T)5 Jo

((exoedi) ™ + (exoldi) ™ izhoas

p+1
kl

< ———— sup [lz(D)|l -
e(t+T)% reloT)

VA
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Finally, from Lemma 3.3, there exists a constant C,0 > Osuch that

1 /" 1 /7
- 5/ (f) = f(w), z)dt < 5/ [If (@) = fF@)ll 211zl 2 dt
0 0

c, [T
<= [ NzOlm 20l 2dt
2 /o 6

< CrUCrUT sup ”Z(t)”Lz’
t€[0,T]

(3.43)
because ||z(t)||Hé < 2¢,.
Plotting all these considerations into (3.38) and setting
3
Lic, T kyel™'T
ra,7)= (Ve + — 4 _+C, ¢, T
T 0 S(t + T) £(t + T)% 0o

and ,

L@T)w ke, ™

- T

we conclude the proof. m]
Remark 3.26. It is an immediate consequence of (3.41) that

T
E(T)< E0) + / (f() = f(w), z,)dr (3.44)
0

Setting y, 0, : X, X X, > R* by

T
v =2 [ = rw.zae
0

and

0,(V1. V) =

/(f(v) fw), z,)drd1|,

we can show that y, 6, € contr(Ei ). See [13, proposition 3.25].
0
Additionally, setting

POV, V) =2 sup]IIZ(t)Ile,

te[0,T
we can prove that p(® is a precompact pseudometric on Eio.
Finally consider the functions g, h : R, — R, given by g(a) =0
and h(a) =T'(¢,T)a. It is obvious that g, h are non-decreasing,
g(0) = h(0) = 0 and that they are continuous at 0.
Therefore, from (3.39) and (3.44), we get
dy, (S,(T + s,V S,(T +5.5)V;)°

2
= |Sp(T +5,5V, = ST + 5,5V,

T+s

= [ner-vanl, =1zml, =26am

< 2I@, 1) sup [[z(D)]l -
1€(0,T]

2
> 2

T
+ 2C<ES(0) - E(T)+ / (f(v) = f(w), z,)dr
0

/ / (W) = f(w), z)drdt

<20(E,0) - B+ 0,1, V) )

+2
T

+T 1)V (V. V) + 0,(V1. V)

= 23 C(2E,(0) — 2E,(T) + g(5°(V;., V)
+y, (V1. V)
+h(pO V1, V3) + 0,1, V)

=20 C(dy (Vi Vo)
—dy,, (ST + 5,9V, S(T +5,9)V,)
+g(p(S)(V17 VZ)) + WS(VI’ VZ)) 2
+h(pO V1, V5) + 0,01, V),

and

dy,, (S)(T +5,)V1, S,(T +5,9)V,)

T
= 2E,(T) < 2E,(0) + 2 / (f(0) = fw), z,)dT
0

= dy K. V2 +w, (1. V)
= dy V. Vo) + 80OV Vo) + w, (V. V).

Now, a direct application of Theorem 2.6 ensures that the process
S, has a generalized (¢, ®,,)-pullback attractor M € D,,, where

s
-1
@(s) =s0-H =g /v,

2
because r =2 and f = —=.
p+2

Case p = 0. Taking p = 0 in (3.32), we obtain
e,z — Az + k()z,(t,x) + f(v) — f(w) =0 (3.45)

Considering again E (f) as in (3.33) and setting W (1) =
E @)+ %“es(t)(z, z,), where 4 is a constant satisfying 0 < ¢, <

min { % 1, k—L" }, we reach the following result.
Lemma 3.27. Fort > 0, we have

JEO <0< EO.

Proof.  This result follows directly from

505 0

1)
‘gssaxz, z,)‘ 2]l —= =2l

5 55(1) 2 1
< 2SO Zu:nﬁ,Q

505 )

L
= + S0l
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6oL 0, 2
<rnax{ 4(} :}(HZ“?% +5s(’)”zt”L2)
< max f 2L %0

24,2

B@“%*“Wﬂﬁﬂ<%&m

O
Formally multiplying (3.45) by z, +2 ~zin LX(Q),
ez 2,) 1 — (2, Az) + kx(t)”Zt”iz +{f(v) = f(w),z)
50 50 A 6Ok
+ E<Zmz>—1 - E( z,z) + 7 sz, z)
by
+ EU(U) - f(w),z) =
(3.46)
Because
‘P () = (E "+ —e sz, z,>)
= iES(t) + @sg(txz, z,) (3.47)
s(t)”Zt”LZ 5 sS4z, 2,) 4
we have
= Dy 1)+ 6,0, == E () + —g "1z 2,)
5 1)
+ ?Oes(t)”zt”zm + %’es(z)(z, z,) 1
+ @nzuz + e (0|z|[5. + 5—35 14z, z,)
2 THy g e L g e
= ez 2)-1 — (20 A2 + 203
6 N
S € "0z, z,) + € (z)||z,||L2
+ %%(0(2, Zy)oq t+ %Hzllfq&
8 5
+ 2e0llz 7 + e 0Kz z)
—k, ||z 7. = (f @) = Fw). z,)
60 50
- 5163(1)(2;, z) — EU(U) - f(w), z)
3 2
+ ?ex(t)(z, z,) + 80, 2| 12
+ 2z,
(3.48)

where in the last inequality of the calculation above we applied
(3.46).

Note that, because 6, < -2, we have

—k )| z,]|72 + S0, O]z ||} <0

Additionally, it follows from Lemma 3.3 that there exists C,0 >0
such that

) )
- 5°<f(u> — f(w), z) < 70 £ @) = F@)ll 2Nzl 1

ry”0
< Mzl lizll

0
<2zl 2l 2 < 8y, 12 1o

2
Also, observe that

2

2
Ef’esa)(z, 7)< 2

5 (t)”Zr”LZHZ”LZ
< 3"\/Zx/ss(r)||z,||p||z||u <82VLe, llzll o
Inserting these estimates into (3.48),
%ws(z) +8,2.0 < (3C,pc,, + BV Ie, )1z,
60 / 60
= {(f() - f(w), z,) + Ees(t) - ?ks(t) (z,2,).

Let T > 0 fixed.

d d

T ("W (1)) = 85% W (1) + e5°’d—‘l‘s(t)
= b ( ¥ (1) + 6,9, (t))

< e‘50’<50Crncrn + 53\/Zcrn)||z||Lz
- (f(v) - f(w), z,)

5t

+ ( (1) — k(D)(z. z,).

Integrating from 0 to T,

ST (T) — ¥ (0) < P!

T
<50C,Uc,0+6§\/zcro> /O Izl 2dt

T
+ /€5°’(f(v)—f(w),zf>dl
0

5oe /|g (1) — ky(1)]|(z, z,)|dt.
(3.49)
Additionally,
5.etT T
062 /|£;(T)—ks(f)||(z,zt)|df
< (T)”zt(T)”LZHZ(T)”deT
S,e%T L +k T
S 02 e(s+Tl) | e @@l de (3.50)
5.5 [+ k T
S e / VIVeE @@ 120 d7
50‘—’ L+k
S \f/ Izl 2.
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From (3.49) and (3.50), and considering that f0T||z(r)||dr <

T sup ||z(®)|| 2, we obtain
1€[0,T]

T
P (T) < e (0) + / e D(f(0) = f(w), z,)dt
0 (3.51)
+T'@T) sup ||z®]l 12,
t€[0,T]

where

Téo(L + ky)e, VL

reT) = T(aoc,oc,0 + 62 \/Zc,o) =

This implies that
E(T) < 2% (T) < 3¢ %T E(0)

+2

T
/ D f(0) = f(w), z,)dt (3.52)

0

+2I'(t, T) sup ||zl 2.
1€[0,T]

Finally,

dy,, (So(T +5.5)V1. So(T + 5,9V, = | Z(D5, < 2E(T)

<3¢ dy (V. V)P

T
+4 / e N(f () = f(w), z,)dt

0

+4L@¢, T) sup ||z®)|l 12
t€[0,T]
= udx (V1. V2> + (00 V1, Vo) + w (V. V)
(3.53)
setting u 1= 3e~%7T, p® 1 X x X, - R* given by p(V;,V,) =

4 sup ||zl ;2> g : RT — R* given by g(a) =T'(+,T)a and y;, :
1€(0.T]

X, X X, = RE by y (1. V) = 4| [ D(f(0) = f(w), z,)di]-

In3
50
compact pseudometric in Ejo and y, € contr(EjO). Finally also
note that g satisfies the conditions required in Theorem 2.5. All
these considerations leads us to the existence of a generalized
(@, D,,)-pullback attractor M € D, for S, where ¢(s) = p°.

Note that y € (0,1) if we fix T > ==, Additionally, p® is a pre-
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