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 a b s t r a c t

We study planar piecewise quadratic differential systems of Kolmogorov type. Specifically, we 
consider systems with both coordinate axes invariant and with a separation line that is straight 
and distinct from the invariant axes. The main results concern two different aspects. First, the 
center problem is solved for certain subclasses. Second, using this classification, the bifurcation 
of limit cycles of crossing type is investigated. We contrast the nature of Hopf-type bifurcations 
in smooth and piecewise smooth settings, particularly regarding the bifurcation of limit cycles of 
small amplitude. The classical pseudo-Hopf bifurcation is analyzed in the Kolmogorov systems 
class. It is worth highlighting that, in contrast to the smooth Kolmogorov quadratic systems, 
which have no limit cycles, the piecewise case exhibits at least six. Furthermore, we show that 
the maximal weak focus order, eight, does not necessarily yield the maximal number of small-
amplitude limit cycles.

1.  Introduction

There has been significant interest in the study of piecewise differential systems in recent years. This interest is likely due to the 
fact that many natural phenomena can be modeled by such systems. Examples include electrical and mechanical systems, control 
theory, and even genetic networks; see Acary et al. [1], di Bernardo et al. [2], Filippov[3]. Additionally, from a theoretical point of 
view, many authors are now exploring the piecewise setting by posing questions analogous to those studied in the smooth case, such 
as determining an analogue of the Hilbert number for piecewise polynomial systems, characterizing centers, investigating conditions 
for integrability, and so on.

We adopt this second perspective, focusing on the extension of the concepts of cyclicity and the center problem within the class 
of planar piecewise differential systems of the form

𝑍 = (𝑍1(𝑥, 𝑦), 𝑍2(𝑥, 𝑦)),

where 𝑍𝑖, for 𝑖 = 1, 2, are smooth vector fields defined respectively in the regions Σ𝑖 = {(𝑥, 𝑦) ∶ (−1)𝑖ℎ(𝑥, 𝑦) > 0}, with ℎ ∶ ℝ2 → ℝ a 
1 function for which 0 is a regular value. In this setting, the curve Σ = {ℎ(𝑥, 𝑦) = 0} is called the separation line. More specifically, 
we investigate the behavior of closed solutions of 𝑍 near pseudo-equilibrium points with monodromic behavior, i.e. points where 
solutions of 𝑍 rotate around the point. In this context, two possibilities arise: the study of isolated periodic orbits (limit cycles) and 
of continua of periodic orbits (centers).
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$u(x+1)du=(-x+ax^{2}+bxu+cu+du^{2})dx$


\begin {equation*}Z = (Z_1(x,y), Z_2(x,y)),\end {equation*}


$Z_i$


$i = 1, 2$


$\Sigma _i = \{(x,y) : (-1)^i h(x,y) > 0\}$


$h: \mathbb {R}^2 \to \mathbb {R}$


$\mathcal {C}^1$


$\Sigma = \{ h(x,y) = 0 \}$


$Z$


$Z$


$n$


\begin {equation*}(\dot {x}, \dot {y}) = (xP(x,y),\ yQ(x,y)),\end {equation*}


$P$


$Q$


$x$


$y$


$P(x,y) = \alpha - \beta y$


$Q(x,y) = -\gamma + \delta x$


$\mathcal {K}_2$


\begin {equation}\label {eq:2} Z_i:\begin {cases} \dot {x} = x (a_i + b_i x + c_i y),\\ \dot {y} = y (d_i + e_i x + f_i y), \end {cases} \quad \text {if} \quad (x,y) \in \Sigma _i = {(x,y) : (-1)^i h(x,y) > 0,}\end {equation}


$i = 1, 2$


$\Sigma = \{ h(x,y) = 0 \}$


$h$


$\mathcal {K}_2$


$x = 0$


$y = 0$


$\mathcal {K}_2$


$\Sigma $


$\Sigma $


$p$


$\mathcal {K}_2$


$\Sigma $


$\mathcal {K}_2$


$\mathcal {K}_2$


$\Sigma $


$Z_i$


$i = 1, 2$


$CC$


${\text det}\, {\text Jac} Z(x_0, y_0)$


$Z$


$(x_0, y_0)$


$Z \in \mathcal {K}_2$


$(x_0, y_0)$


$CC$


$\Sigma $


${\text det}\, {\text Jac} Z_i(x_0, y_0) = D_i$


$i = 1, 2$


$h(x,y)=x y_0-y x_0$


$Z$


$(x_0,y_0)$


\begin {align*}D_1^2D_2^2(b_1e_2-b_2e_1)-x_0^2D_1^2b_2e_1(b_2 - e_2)^2 + x_0^2D_2^2b_1e_2(b_1 - e_1)^2=0.\end {align*}


$h(x,y)=y-y_0$


$Z$


$(x_0,y_0)$


\begin {align*}D_1^2b_2^2 - D_1^2b_2e_2 - D_2^2b_1^2 + D_2^2b_1e_1=0.\end {align*}


$h(x,y)=x-x_0$


$Z$


$(x_0,y_0)$


\begin {align*}D_1^2D_2^2(b_1e_2 - b_2e_1) - x_0^2D_1^2b_2^2e_1(b_2 - e_2) + x_0^2D_2^2b_1^2e_2(b_1 - e_1)=0.\end {align*}


$\mathcal K_2$


$\mathcal {K}_2$


$CC$


$Z=(Z_1,Z_2)$


$\Sigma $


$Z_1, Z_2$


$\Sigma $


$\Sigma ^e$


$\Sigma ^s$


$\Sigma ^e \cup \Sigma ^s$


$\Sigma $


$\Sigma ^c$


$Z_1, Z_2$


$\Sigma $


$\Sigma ^e$


$\Sigma ^s$


$Z$


$Z$


$\Sigma $


$Z = (Z_1, Z_2) \in \mathcal {K}_2$


$p \in \Sigma $


$Z_1$


$Z_2$


$Z_i$


$i=1,2$


$\Pi _1(\rho )$


$\Pi _2 (\rho )$


$Z$


$Z_1, Z_2$


\begin {equation}\label {eq:11} \Delta (\rho )={\left (\Pi _2\right )}^{-1}(\rho )-\Pi _1(\rho )\end {equation}


${\left (\Pi _2\right )}^{-1}(\rho )$


$\Pi _2(\rho ),$


$\Pi _1$


${\left (\Pi _2\right )}^{-1},$


$\rho = 0$


$\Delta $


$k$


$W_k$


$\{W_1 = \ldots = W_{k-1} = 0\}$


$L_{\ell }=W_{2\ell +1} \ne 0$


$\ell $


$\ell $


$W_1 = W_2 = 0$


$W_k$


$L_1=W_3$


$1$


$1$


$\mathcal {B} = \langle W_3, \ldots , W_k, \ldots \rangle $


$\mathcal {B}$


$\ell $


$\ell $


$\Sigma $


$L_\ell = W_{2\ell } \ne 0$


$\ell $


$\ell $


$p \in \Sigma $


$\ell $


$W_j = 0$


$1 \leq j \leq \ell - 1$


$W_\ell \ne 0$


$W_\ell $


$\ell $


$k$


$s$


$k$


$W_{1},\ldots ,W_{k},$


$W_{j}$


$s$


$s$


$k$


$k$


$s$


$s$


$k$


$s$


$s$


$k$


$k$


$s$


$W_1=W_2=\ldots =W_k=0$


$W_{j}=h_j(\lambda )+O_{m+1}(\lambda ),$


$j=k+1,\ldots ,k+l,$


$h_j$


$m\ge 2$


$\lambda =(\lambda _{k+1},\ldots ,\lambda _{k+l})$


$\mathcal {L},$


$h_{j}(\mathcal {L}) = 0,$


$j=k+1,\ldots ,k+l-1,$


$h_{i} = 0$


$\mathcal {L}$


$j=k+1,\ldots ,k+l-1,$


$h_{k+l}(\mathcal {L})\ne 0$


$k+l$


$i = 1, 2$


$Z = (Z_{1,\mu }, Z_{2,\mu })$


$(\dot {x}, \dot {y}) = (P^i_c(x, y, \mu ), Q^i_c(x, y, \mu ))$


$n$


$\mu \in \mathbb {R}^\ell $


\begin {equation}\label {eq:centrob} \begin {array}{lll} \dot {x}=X_{i,c}(x, y, \mu ) + P_i(x, y, \lambda ), \\ \dot {y}=Y_{i,c}(x, y, \mu ) + Q_i(x, y, \lambda ), \end {array}\end {equation}


$P_i$


$Q_i$


$n$


\begin {equation*}P_i(x, y, \lambda ) = \sum \limits _{k+l=0}^n a^i_{k,l} x^k y^l, \quad Q_i(x, y, \lambda ) = \sum \limits _{k+l=0}^n b^i_{k,l} x^k y^l,\end {equation*}


$\lambda = (a^i_{00}, a^i_{10}, a^i_{01}, \ldots , b^i_{00}, b^i_{10}, b^i_{01}, \ldots ) \in \mathbb {R}^{M}$


$M = 2n^2 + 6n + 4$


$X_c = X_{i,c}$


$Y_c = Y_{i,c}$


$W_{j}^{[1]}(\lambda ,\mu )$


$\lambda \in \mathbb {R}^M,$


$j$


$\mu \in \mathbb {R}^\ell $


\begin {equation*}W_j=\begin {cases} &\lambda _j + O_2(\lambda ), \text { for } j=1,\ldots ,k-1,\\ &\sum \limits _{l=1}^{k-1} g_{j,l}(\mu ) \lambda _l+f_{j-k}(\mu )\lambda _{k}+ O_2(\lambda ), \text { for } j=k,\ldots ,k+l, \end {cases}\end {equation*}


$O_2(\lambda )$


$2$


$\lambda $


$\mu $


$\mu ^*$


$f_0(\mu ^*)=\ldots =f_{l-1}(\mu ^*)=0,$


$f_{l}(\mu ^*)\ne 0,$


$(f_{0},\ldots ,f_{l-1})$


$\mu $


$l$


$\mu ^*,$


$k+l$


$CC$


$W_i$


$(x_0,y_0)$


$Z=(Z_1, Z_2)$


$n$


$\Sigma $


$(x_0,y_0)$


$Z_1$


$Z_2$


$(x_0,y_0)=(0,0)$


$\Sigma $


$x$


$Z_i$


$H_i:\mathbb {R}^2\rightarrow \mathbb {R}$


$i=1,2$


$H_i(x,y)=A_i x^{2}+B_i x y+C_i y^2+O_3(x,y)$


$y=0$


$A_i \ne 0$


$A_i$


$A_i=1$


$(\rho ,0)$


$(\sigma ,0)$


$H_1$


$y=0$


$H_1(\rho ,0)-H_1(\sigma ,0)=(\rho -\sigma )\mathcal {H}_1(\rho ,\sigma )=0$


$\mathcal {H}_1(\rho ,\sigma )$


$\mathcal {H}_1(\rho ,\sigma )$


$(0,0)$


$\rho +\sigma +O_2(\rho ,\sigma )$


$\sigma $


$\rho $


$\Pi _1$


\begin {equation*}\Pi _1(\rho )=-\rho +\sum _{k=2}^{\infty } W_{1,k} \rho ^k.\end {equation*}


$\sigma $


$H_2$


$\Pi _2$


\begin {equation*}(\Pi _2)^{-1}(\rho )=-\rho +\sum _{k=2}^{\infty } W_{2,k} \rho ^k,\end {equation*}


$\mathcal {H}_2(\rho ,\sigma )$


\begin {equation}\label {eq:difmap} \Delta (\rho )=(\Pi _2)^{-1}(\rho )-\Pi _1(\rho )=-\sum \limits _{k=2}^\infty (W_{2,k} -W_{1,k})\rho ^k=-\sum \limits _{k=2}^\infty W_k\rho ^k.\end {equation}


$W_1,\ldots ,W_8$


\begin {equation*}H_i(\rho ,0)=\rho ^2+\sum \limits _{k=3}^\infty h_{i,k}\rho ^k.\end {equation*}


\begin {equation*}\begin {aligned} W_{i,2}&= -h_{i,3},\\ W_{i,3}&= -h_{i,3}^2,\\ W_{i,4}&= -2 h_{i,3}^3+2 h_{i,3} h_{i,4}-h_{i,5},\\ W_{i,5}&= -4 h_{i,3}^4+6 h_{i,3}^2 h_{i,4}-3 h_{i,3} h_{i,5},\\ W_{i,6}&= -9 h_{i,3}^5+19 h_{i,3}^3 h_{i,4}-11 h_{i,3}^2 h_{i,5}-4 h_{i,3} h_{i,4}^2+3 h_{i,3} h_{i,6}+2 h_{i,4} h_{i,5}-h_{i,7},\\ W_{i,7}&= -21 h_{i,3}^6+56 h_{i,3}^4 h_{i,4}-34 h_{i,3}^3 h_{i,5}-24 h_{i,3}^2 h_{i,4}^2+12 h_{i,3}^2 h_{i,6}+16 h_{i,3} h_{i,4} h_{i,5}\\ &\quad -4 h_{i,3} h_{i,7}-2 h_{i,5}^2,\\ W_{i,8}&= -51 h_{i,3}^7+165 h_{i,3}^5 h_{i,4}-104 h_{i,3}^4 h_{i,5}-112 h_{i,3}^3 h_{i,4}^2+43 h_{i,3}^3 h_{i,6}\\ &\quad +93 h_{i,3}^2 h_{i,4} h_{i,5}+8 h_{i,3} h_{i,4}^3-18 h_{i,3}^2 h_{i,7}-12 h_{i,3} h_{i,4} h_{i,6}-17 h_{i,3} h_{i,5}^2\\ &\quad -4 h_{i,4}^2 h_{i,5}+4 h_{i,3} h_{i,8}+2 h_{i,4} h_{i,7}+3 h_{i,5} h_{i,6}-h_{i,9}. \end {aligned}\end {equation*}


$W_1=0$


$k=2,\ldots ,8$


$\{W_1=W_2=\ldots =W_{k-1}=0\}$


$W_3=W_5=W_7=0$


\begin {equation*}\begin {aligned} W_2&=-h_{1,3}+h_{2,3},\\ W_4&=2 h_{1,3} h_{1,4}-2 h_{1,3} h_{2,4}-h_{1,5}+h_{2,5},\\ W_6&=-3 h_{1,3}^3 h_{1,4}+3 h_{1,3}^3 h_{2,4}-4 h_{1,3} h_{1,4}^2+4 h_{1,3} h_{1,4} h_{2,4}+3 h_{1,3} h_{1,6}\\ &\quad -3 h_{1,3} h_{2,6}+2 h_{1,4} h_{1,5}-2 h_{1,5} h_{2,4}-h_{1,7}+h_{2,7},\\ W_8&=11 h_{1,3}^5 h_{1,4}-11 h_{1,3}^5 h_{2,4}+28 h_{1,3}^3 h_{1,4}^2-28 h_{1,3}^3 h_{1,4} h_{2,4}-11 h_{1,3}^3 h_{1,6}+11 h_{1,3}^3 h_{2,6}\\ &\quad -11 h_{1,3}^2 h_{1,4} h_{1,5}+11 h_{1,3}^2 h_{1,5} h_{2,4}+8 h_{1,3} h_{1,4}^3-8 h_{1,3} h_{1,4}^2 h_{2,4}-12 h_{1,3} h_{1,4} h_{1,6}\\ &\quad +6 h_{1,3} h_{1,4} h_{2,6}+6 h_{1,3} h_{1,6} h_{2,4}-4 h_{1,4}^2 h_{1,5}+4 h_{1,4} h_{1,5} h_{2,4}+4 h_{1,3} h_{1,8}\\ &\quad -4 h_{1,3} h_{2,8}+2 h_{1,4} h_{1,7}+3 h_{1,5} h_{1,6}-3 h_{1,5} h_{2,6}-2 h_{1,7} h_{2,4}-h_{1,9}+h_{2,9}. \end {aligned}\end {equation*}


$W_{2i}$


$-h_{1,2i+1}+h_{2,2i+1}$


$x,y$


$y=0$


$\mathcal {H}_1(\rho ,\sigma )=a \rho + a\sigma + b$


$a,b$


$\sigma =-\rho -b/a$


$\varepsilon $


$\varepsilon = 0$


$Z=(Z_{1,\mu }, Z_{2,\mu })$


$\mu $


$Z_{i,\varepsilon }$


$n$


$Z_{i,\mu }$


\begin {equation}\label {eq:a8} Z_{i,\varepsilon }:(\dot {x},\dot {y})=Z_{i,\mu }(x,y)+\varepsilon Z_{i}(x,y), \textrm { if } (x,y)\in \Sigma _i,\end {equation}


$\varepsilon > 0,$


$Z_{i,\mu }=(X_{i,c}(x,y,\mu ),Y_{i,c}(x,y,\mu ))$


$Z_{i}(x,y) = \left (X_{i}(x,y,\lambda ),Y_{i}(x,y,\lambda )\right )$


$X_i$


$Y_i$


$n$


$i=1,2$


$X_c=X_{i,c},$


$Y_c=Y_{i,c}$


$(x,y)=(r\cos \theta ,r\sin \theta )$


$\theta $


\begin {equation*}\dot {r}=\dfrac {dr}{d\theta }=F(\theta , r)=F_0(\theta , r) + \sum _{j=1}^m\varepsilon ^j F_j(\theta , r) + O(\varepsilon ^{m+1}),\end {equation*}


$F_j=(F_{1,j}, F_{2, j})$


$j=0,\ldots , m$


$\varphi (\theta ,r)=(\varphi _{1,N}(\theta ,r), \varphi _{2,N}(\theta ,r))$


$\varphi _{i,N}(\theta ,r)=\sum _{k=0}^N\varepsilon ^k\varphi _{i,k}(\theta ,r),$


$i=1,2,$


$N$


$k$


\begin {equation*}\delta _k(r) = \varphi _{1,k}(\pi ,r) - \varphi _{2,k}(-\pi ,r),\end {equation*}


$\varphi _{i,0}$


$i=1,2,$


\begin {equation*}z'(s) = F_{i,0}(s,z(s)),\quad z(0) = r,\end {equation*}


$\varphi _{i,k}$


$k\geq 1$


$N$


\begin {equation}\label {delta1} \Delta _N(r,\varepsilon )=\sum _{k=1}^N \varepsilon ^k \delta _k(r).\end {equation}


$\varphi _{1,0}(\pi ,r) - \varphi _{2,0}(-\pi ,r) = 0$


$\delta _0$


$r\mapsto \Delta (r, \varepsilon )$


$k$


$\delta _l(r)$


$r$


$N$


\begin {equation*}\Delta _N(r)=\sum _{j=1}^\infty \mathcal {W}^{[N]}_{j} r^j,\end {equation*}


$\mathcal {W}^{[N]}_{j}=\sum _{k=1}^N W^{[k]}_{j},$


$W^{[k]}_{j}$


$k$


$j$


$\lambda .$


$W_j$


$j$


$W_j=\mathcal {W}^{[\infty ]}_{j}=\sum _{k=1}^{\infty } W^{[k]}_{j},$


\begin {equation*}\Delta (r)=\sum _{j=1}^\infty W_j r^j.\end {equation*}


$W_j^{[1]}$


$\mathcal {W}_j^{[1]}$


${\left (\Pi _2\right )}^{-1}(\rho )-\Pi _1(\rho )=0$


$\rho >0$


$Z=(Z_1, Z_2)$


$\Sigma $


$Z_1$


$Z_2$


$\Sigma _1$


$\Sigma _2$


$x$


$Z=(Z_1, Z_2)$


$\Sigma =\{y=0\}$


$H_i$


$Z_i$


$H_1(x,0)=H_2(x,0),$


$i=1,2.$


$Z$


$x = y = 0$


$y-x=0$


$Z=(Z_1, Z_2)$


$(x_0,y_0)\in \Sigma $


$(x_0,y_0)\in \Sigma ,$


$\Sigma $


$p\in \Sigma $


$Z = (Z_1, Z_2)$


$Z_i := (\dot {x}, \dot {y}) = (x f_i(x,y), y g_i(x,y))$


$i = 1,2$


$\alpha (x - 1) - \beta (y - 1)=0$


$(\alpha , \beta ) \neq (0,0),$


$\beta >0$


$\alpha +\beta \ne 0$


$(1,1)$


$|\alpha |\ge \beta $


$|\alpha |\le \beta $


$i=1,2$


$Z_{i,\varepsilon }$


$Z_i$


$(x,y) \rightarrow ((1+\varepsilon )x, (1+\varepsilon )y)$


$\alpha ,\beta ,$


$\varepsilon $


$\alpha /\beta \geq 1,$


$(1,1)$


$(Z_{1,\varepsilon }, Z_2)$


$(1,1)$


$\varepsilon > 0$


$0 \leq \alpha /\beta \leq 1,$


$\varepsilon < 0$


$(Z_1,Z_{2,\varepsilon })$


$\varepsilon >0$


$\varepsilon $


$\mathcal K_2$


$\mathcal {K}_2$


$CC$


\begin {equation}\label {eq:LV} \begin {cases} \dot {x}=x (a+b x+c y),\\ \dot {y}=y (d+e x+f y), \end {cases}\end {equation}


$b=f=0$


$\mathcal {K}_{2}$


$b_i f_i - c_i e_i \ne 0$


$i=1,2$


$x_0 y_0 \ne 0$


\begin {equation*}(x_0, y_0) = \left ( \frac {c_i d_i - a_i f_i}{b_i f_i - c_i e_i}, \frac {a_i e_i - b_i d_i}{b_i f_i - c_i e_i} \right ), \text { for } i=1,2.\end {equation*}


$x$


$y$


$e_i \ne 0$


\begin {equation*}D_i = 2b_i e_i x_0^2 + 4b_i f_i x_0 y_0 + 2c_i f_i y_0^2 + (a_i e_i + 2b_i d_i)x_0 + (2a_i f_i + c_i d_i)y_0 + a_i d_i > 0,\end {equation*}


\begin {equation*}a_i = \frac {(b_i x_0)^2 - b_i e_i x_0^2 + D_i^2}{e_i x_0},\quad c_i = -\frac {(b_i x_0)^2 + D_i^2}{e_i x_0 y_0},\quad d_i = (b_i - e_i) x_0,\quad f_i = -\frac {b_i. x_0}{y_0},\end {equation*}


$i=1,2$


$(x_0, y_0)$


$CC$


$Z$


$CC$


$(1,1)$


$D_i = 1$


$i=1,2$


$Z_i$


$i=1,2$


\begin {equation}\label {ip} H_i(x,y) = x^{b_i(b_i - e_i)} y^{-\frac {b_i}{e_i}(b_i^2 - b_i e_i + 1)} \Lambda _i(x,y),\end {equation}


\begin {equation*}\Lambda _i(x,y) = (b_i^2 e_i - b_i e_i^2)x + (b_i^2 e_i - b_i^3 - b_i)y + b_i^3 - 2b_i^2 e_i + b_i e_i^2 + b_i - e_i.\end {equation*}


$n$


$Z$


$W_1 = 0$


$W_2$


$W_3 = W_4 = \ldots = W_8 = 0$


$W_2 = 0$


$Z\in \mathcal K_2$


$CC$


$\Sigma $


$b_1=1$


$4(x-1)-3(y-1)=0,$


$Z$


$CC$


\begin {equation*}\begin {aligned} C_1:& b_2-1=e_1-e_2=0;\\ C_2:& b_2+1=e_1+e_2=0;\\ C_3:& 3e_1-8=3e_2-4b_2=0;\\ C_4:& 3e_1-8=3e_2b_2-4 (b_2^2+1)=0;\\ C_5:& 3e_1-8=(8b_2-7e_2)^2-49(b_2^2-64)=0;\\ C_6:& 3e_1-4=3e_2-4b_2=0;\\ C_7:& 3e_1-4=3e_2b_2-4(b_2^2+1)=0;\\ C_8:& 3e_1-4=(8b_2-7e_2)^2-49(b_2^2-64)=0. \end {aligned}\end {equation*}


$CC$


$W_1 = 0.$


\begin {equation*}\mathcal {S} = {W_2 = W_4 = W_6 = W_8 = 0}.\end {equation*}


$W_3,W_5,$


$W_7$


$W_i$


$i=2,4,6,8$


$\widehat W_i$


$(e_1,b_2,e_2)$


$\widehat W_8$


$\widehat W_4$


$\widehat W_6$


$20$


$104$


$295$


$1832$


\begin {equation*}\begin {aligned} \widehat W_2=\;& 27 b_2 e_1 (9 e_1^2 - 24 e_1 + 32) e_2^4 - (1215 b_2^2 e_1^3 - 3240 b_2^2 e_1^2 + 243 e_1^4 + 4320 b_2^2 e_1 \\ & - 1215 e_1^3 + 2916 e_1^2 - 3456 e_1 + 2304) e_2^3 + 12 b_2 (189 b_2^2 e_1^3 - 504 b_2^2 e_1^2 + 54 e_1^4 \\ & + 672 b_2^2 e_1 - 216 e_1^3 + 504 e_1^2 - 576 e_1 + 512) e_2^2 - 16 (b_2^2 + 1) (117 b_2^2 e_1^3 \\ & - 312 b_2^2 e_1^2 + 27 e_1^4 + 416 b_2^2 e_1 - 144 e_1^3 + 348 e_1^2 - 416 e_1 + 256) e_2 \\ &+ 64 e_1 b_2 (9 e_1^2 + 24 e_1 + 32) {(b_2^2 + 1)}^2,\\ \widehat W_8=\;&e_1^5(1458e_1^8 - 15309e_1^7 + 78003e_1^6 - 248832e_1^5 + 535680e_1^4- 781056e_1^3 + 755712e_1^2\\ & {- 442368e_1 + 131072)}^3(b_2+1)(3e_1 - 8)^2(3e_1^2 - 7e_1 + 8)^2(27e_1^4 - 108e_1^3 \\ &+ 288e_1^2- 384e_1+ 256)b_2^3{(b_2^2 + 1)}^7(9e_1^2 - 24e_1 + 32)^4(3e_1 - 4)^2(b_2- 1)\\ &(7015420248855589903862275823952189119801685375120618e_1^{11} \\ &- 152357242285056016622382435380491647911148728341085013e_1^{10}\\ & + 1435336366582110818156465089095809417442072336316281705e_1^9\\ & - 8043276072604152065018524298720295090916067001323121132e_1^8 \\ &+ 30283544465057925411860791413515197107177223647053806704e_1^7\\ & - 81061414503281949781688061029238613292150397149292296448e_1^6 \\ &+ 158934347738141481809466504567893193833879482270751697792e_1^5 \\ &- 230418094422134302482528539805203263325388508317820726272e_1^4 \\ &+ 243754882522350777561809342871138194082313826638503997440e_1^3 \\ &- 179413407752255527803949903705145705530859993913011601408e_1^2\\ &+ 81749048336969359284906573839660434291536221323282087936e_1\\ &-16511335007295362432559652316381263201043632657029660672). \end {aligned}\end {equation*}


$C_1, \ldots , C_8$


$Z_i$


$i = 1,2$


$C_1$


$C_2$


$C_3$


\begin {equation*}\begin {aligned} H_1(x,y) &= \frac {(3y)^{1/4}(20x - 3y - 5)}{4x^{5/3}}, \\ H_2(x,y) &= \frac {(3y)^{(b_2^2 - 3)/4}\left (4b_2^2x + (3 - b_2^2)(3y + 1)\right )}{12x^{b_2^2/3}}, \end {aligned}\end {equation*}


$i = 1, 2$


$\widetilde {H}_1 = H_1^{12/5}$


$\widetilde {H}_2 = H_2^{12/(b_2^2 - 3)}$


\begin {equation*}\widetilde {H}_i\left (x, \dfrac {4(x - 1)}{3} + 1\right ) = \frac {(4x - 1)^3}{x^4}.\end {equation*}


$\mathcal K_2$


$\Sigma .$


$CC$


$CC$


$k,$


$k$


$\mathcal {K}_2,$


$CC$


$(e + p_i)e \neq 0$


$i = 1, 2$


$\mu = (b, e) \in \mathbb {R}^2$


$\lambda = (p_1, q_1, p_2, q_2) \in \mathbb {R}^4$


$4(x - 1) - 3(y - 1)=0$


$(1, 1)$


$p_1 = q_1 = p_2 = q_2 = 0$


$(1,1)$


$CC$


$i=1,2$


$\lambda $


$W_0=W_1 = 0$


$(1,1)$


$4x - 3y = 0$


$y = 0$


$W_j$


$j = 2, \ldots , 8$


$\lambda $


\begin {equation*}\begin {aligned} W^{[1]}_{2} =& \frac {2e}{243} L_{2}(b,e) (q_1 - q_2) + \frac {2}{243} M_{2}(b,e) (p_1 - p_2), \end {aligned}\end {equation*}


\begin {equation*}\begin {aligned} L_{2} &= -243 e^6 - 1458 b e^5 + 8(27 - 31 b^2) e^4 + 288 (4 b^2 + 3)b e^3+ 192(42 b^4 + 27 b^2 - 5) e^2 \\ & \quad + 512b(17 b^2 + 5)(b^2 + 1) e + 1024 (3b^2 + 1) (b^2 + 1)^2, \\ M_{2}&= -243 b e^6 - 1296 b^2 e^5 - 972 b (3 b^2 + 2) e^4 - 2016 (2 b^2 + 1) (b^2 + 1) e^3\\ & \quad - 192 b (22 b^2 + 17) (b^2 + 1) e^2 - 3072 b^2 (b^2 + 1)^2 e - 1024 b (b^2 + 1)^3. \end {aligned}\end {equation*}


$L_2(b,e) \ne 0$


$q_1$


$(p_1, p_2, q_2)$


$l = 2, 3, 4$


\begin {equation*}W^{[1]}_{2l} = \frac {M_{2l}(b,e)}{L_{2}(b,e)} (p_1 - p_2),\end {equation*}


\begin {equation*}M_{2l}(b,e) = e^{2l} (4b + 3e)^2 (4b^2 - be - 3e^2 + 4)^2 (4b^2 + 3be + 4)^2 (16b^2 + 24be + 9e^2 + 16)^{2l} m_{2l}(b,e),\end {equation*}


\begin {equation*}\begin {aligned} m_{4}(b,e) &= -27 b e^4 - (81 b^2 - 162) e^3 - 36 b^3 e^2 + (8 b^4 - 192 b^2 - 272) e + 64 b (b^2 + 1)^2, \\ m_{6}(b,e) &= -346428 b^3 e^{12} - (31177872 b^2 - 149328 ) b^2e^{11} - (1739448 b^4 - 8485776 b^2 \\ & \quad - 36551331 ) be^{10} - (145881648 b^6 - 172851732 b^4 - 9128457 b^2 - 33736662) e^9 \\ & \quad + (6624864 b^6 + 1459224 b^4 - 2776284 b^2 - 162724464 ) be^8 + (451638 b^8 \\ & \quad + 1337868 b^6 - 12979584 b^4 - 88322148 b^2 - 223416) e^7 + (434294784 b^9 \\ & \quad + 296182656 b^6 - 46674 b^4 - 2553264 b^2 + 1383552) be^6 - (167878656 b^{10} \\ & \quad + 86413824 b^8 - 1349768448 b^6 - 26465832 b^4 - 1792233216 b^2 - 414288) e^5 \\ & \quad - 27648 (b^2 + 1)^2 (2768 b^6 - 2678 b^4 - 3559 b^2 - 15344) be^4 - 496 (68288 b^6 \\ & \quad + 36774 b^4 + 73641 b^2 + 58141) (b^2 + 1)^3 e^3 + 49152 (2816 b^4 - 5634 b^2 \\ & \quad - 6551) (b^2 + 1)^4 b e^2 + 393216 (b^2 + 1)^5 (44 b^2 - 279) b^2 e + 46137344 b^3 (b^2 + 1)^6, \end {aligned}\end {equation*}


$m_{8}(b,e)$


$\{m_{4}(b,e) = 0, m_{6}(b,e) = 0\}$


\begin {equation}\label {pt1} (b^*, e^*) = \left (\gamma , - \frac {\gamma (1392580 \gamma ^4 + 544194 \gamma ^2 - 1145761)}{62169}\right ),\end {equation}


$\gamma $


\begin {equation*}g(\gamma ) = 9604 \gamma ^6 - 1470 \gamma ^4 - 9797 \gamma ^2 + 4232.\end {equation*}


$W^{[1]}_{4}(b^*, e^*) = W^{[1]}_{6}(b^*, e^*) = 0$


$g$


$\gamma $


\begin {equation*}\begin {aligned} W^{[1]}_{8}(b^*, e^*) &= \frac {753747879498059507302400000}{10557} \gamma ^5 + \frac {14617417205145737048883200000}{517293} \gamma ^3 \\ & \quad - \frac {3294809732513451317657600000}{57477} \gamma . \end {aligned}\end {equation*}


$m_4$


$m_6$


\begin {equation*}\begin {aligned} {\text det}\, {\text Jac}(b^*, e^*) &= \frac {1163618760932343152640}{901} \gamma ^4 + \frac {3223719345310777999360}{6307} \gamma ^2 \\ & \quad - \frac {6539723921076330168320}{6307}. \end {aligned}\end {equation*}


$g$


$\gamma $


$\mathcal {K}_2$


$Z\in \mathcal K_2,$


$4(x-1)-3(y-1)=0$


$(1,1),$


$W_k$


$\mathcal {K}_2$


$e\neq 0,$


$\mu =(b,e)\in \R ^2,$


$\lambda =(p_{10},p_{20},q_{11},q_{21})\in \R ^4,$


$i=1,2$


$4(x-1)-3(y-1)=0.$


$(1,1),$


$CC$


$(1,1)$


$(1,1)$


\begin {align*}X_{c}&=\;y+bx^2 + (b^3 - b^2e + b + e)yx/e + by^2,\nonumber \\ Y_{c}&=\;-x -(b^2 + 1)xy/e,\nonumber \\ X_i&=\;q_{i1}x- (p_{i0} - q_{i1})b y + 2q_{i1}bxy- (p_{i0} b^2 - q_{i1}b + p_{i0})by^2/e+q_{i1}x^2,\nonumber \\ Y_i&=p_{i0}y(1 + (b^2 + 1)y/e).\end {align*}


$\mathcal {W}^{[2]}_{j},$


\begin {equation*}\Delta (r)=\sum _{j=1}^6w_jr^j+O(r^7),\end {equation*}


$w_j\in \R ,$


$j=1,\ldots ,6.$


\begin {equation}\label {secondorder} \begin {aligned} \mathcal {W}^{[2]}_{1}=\;&\omega _1+W^{[2]}_{1}, & \mathcal {W}^{[2]}_{2}=\;&\omega _2+W^{[2]}_{2}, & \mathcal {W}^{[2]}_{3}=\;&W^{[1]}_{3}+W^{[2]}_{3},\\ \mathcal {W}^{[2]}_{4}=\;&\omega _4+W^{[2]}_{4}, & \mathcal {W}^{[2]}_{5}=\;&W^{[1]}_{5}+W^{[2]}_{5},& \mathcal {W}^{[2]}_{6}=\;&\omega _6+W^{[2]}_{6}, \\ \end {aligned}\end {equation}


\begin {equation}\label {seconorder1} \begin {aligned} W^{[1]}_{3}=\;&\frac {1}{2^43^2 5^6}\frac {L_3(b,e)}{e^2}\omega _1-\frac {1}{3(5)^3}\frac {M_3(b,e)}{e}\omega _2, \\ W^{[1]}_{5}=\;&\frac {1}{2^83^45^{12}}\frac {L_5(b,e)}{e^4}\omega _1-\frac {1}{3^35^9}\frac {M_5(b,e)}{e^3}\omega _2 -\frac {2}{5^3}\frac {R_5(b,e)}{e}\omega _4, \end {aligned}\end {equation}


$L_3,M_3, L_5, M_5,$


$R_5,$


$W^{[2]}_{j}$


$W^{[2]}_{j}=N^{[2]}_{j}/D^{[2]}_{j}(b,e)$


$N^{[2]}_{j}$


$2$


$\omega _1,$


$\omega _2,$


$\omega _4,$


$\omega _6,$


$D^{[2]}_{j}(b,e)$


$b, e,$


$W^{[1]}_{7}, W^{[1]}_{8}$


$W^{[1]}_{5},$


$\omega _1, \omega _2,$


$\omega _4.$


$3$


\begin {equation*}\begin {aligned} \widetilde {\mathcal {W}}^{[2]}_{3}=\;&\mathcal {W}^{[2]}_{3}-\left (\frac {1}{2^43^25^6}\frac {L_3(b,e)}{e^2} \mathcal {W}^{[2]}_{1} -\frac {1}{3(5)^ 3}\frac {M_3(b,e)}{e} \mathcal {W}^{[2]}_{2}\right ),\\ \widetilde {\mathcal {W}}^{[2]}_{5}=\;&\mathcal {W}^{[2]}_{5}-\left (\frac {1}{2^8 3^45^{12}}\frac {L_5(b,e)}{e^4}\mathcal {W}^{[2]}_{1}-\frac {1}{3^35^9}\frac {M_5(b,e)}{e^3}\mathcal {W}^{[2]}_{2}-\frac {2}{5^3}\frac {R_5(b,e)}{e}\mathcal {W}^{[2]}_{4}\right ), \end {aligned}\end {equation*}


$\widetilde {\mathcal {W}}^{[2]}_{j}=\widetilde {N}^{[2]}_{j}/\widetilde {D}^{[2]}_{j}(b,e)$


$\widetilde {N}^{[2]}_{j}$


$2$


$\omega _1,$


$\omega _2,$


$\omega _4,$


$\omega _6,$


$\widetilde {D}^{[2]}_{j}(b,e)$


$b,e,$


$j=3,5$


\begin {equation}\label {cv} \begin {aligned} \mathcal {W}^{[2]}_{1}=\;&\omega _1+\frac {N^{[2]}_{1}}{D(b,e)}, \quad \mathcal {W}^{[2]}_{2}=\;\omega _2+\frac {N^{[2]}_{2}}{D(b,e)}, \quad \widetilde {\mathcal {W}}^{[2]}_{3}=\;\frac {\widetilde {N}^{[2]}_{3}}{D(b,e)}, \\ \mathcal {W}^{[2]}_{4}=\;&\omega _4+\frac {N^{[2]}_{4}}{D(b,e)}, \quad \widetilde {\mathcal {W}}^{[2]}_{5}=\;\frac {\widetilde {N}^{[2]}_{5}}{D(b,e)}, \quad \mathcal {W}^{[2]}_{6}=\;\omega _6+\frac {N^{[2]}_{6}}{D(b,e)}, \end {aligned}\end {equation}


$D(b,e),$


$\omega _1=\omega ^2 \widetilde {\omega }_1,$


$\omega _2=\omega ^2 \widetilde {\omega }_2,$


$\omega _4=\omega ^2 \widetilde {\omega }_4,$


$\omega _6=\omega .$


\begin {equation*}\begin {aligned} \mathcal {W}^{[2]}_{1}=\;&\omega ^2\widetilde {\omega }_1+O(\omega ^3), & \mathcal {W}^{[2]}_{2}=\;&\omega ^2 \widetilde {\omega }_2+O(\omega ^3),\\ \widetilde {\mathcal {W}}^{[2]}_{3}=\;&\omega ^2 e^8 R(b,e)\frac {L(b,e)}{D(b,e)}+O(\omega ^3),& \mathcal {W}^{[2]}_{4}=\;&\omega ^2 \widetilde {\omega }_4+O(\omega ^3),\\ \widetilde {\mathcal {W}}^{[2]}_{5}=\;&\omega ^2e^6R(b,e)\frac {M(b,e)}{D(b,e)}+O(\omega ^3),& \mathcal {W}^{[2]}_{6}=\;&\omega +O(\omega ^2), \end {aligned}\end {equation*}


\begin {equation*}R(b,e)=63 b^3-63 b^2 e-4 b^2+8 b e+63 b+18 e-4,\end {equation*}


$L(b,e)$


$M(b,e)$


$\{L(b,e)=M(b,e)=0\}$


$D(b,e)\neq 0,$


$f.$


$g$


$(b^*,e^*)=(z,g(z))$


$z$


$f.$


$(b^*,e^*)\approx (-0.3589344145,1.09217769345).$


$D$


$f$


$z$


$(b^*,e^*),$


$\widetilde {\omega }_1=\widetilde {\omega }_2=\widetilde {\omega }_4=0,$


$\omega $


$\Sigma $


$(\alpha ,\beta )=(4,3)$


$(\alpha ,\beta )\in \{(1,2), (2,1), (3,1)\}$
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It is worth noting that the dynamics of polynomial piecewise differential systems of degree 𝑛 are richer than those of smooth 
systems of the same degree. For instance, it is well known that linear differential systems do not admit limit cycles. However, in 
piecewise linear systems with two zones separated by a straight line, examples exist with at least three limit cycles. A configuration 
with three limit cycles was first detected numerically by Huan and Yang[4], and later confirmed analytically by Llibre and Ponce[5]. 
The existence of three limit cycles has also been obtained via perturbations of a center: Buzzi et al. [6] found three limit cycles arising 
from a fourth-order piecewise linear perturbation of a linear center, while Llibre et al. [7] achieved the same result using a first-order 
perturbation of a specific piecewise linear center. See also Freire et al. [8] for bifurcating them from infinity.

Bautin [9] proved that planar quadratic systems can have at most three small-amplitude limit cycles bifurcating from a monodromic 
equilibrium, and this remains the only complete classification, with respect to degree, for which the center-focus problem is fully 
solved. Recently, at least twelve limit cycles have been found for polynomial piecewise quadratic systems; see [10].

A similar situation occurs in quadratic differential systems with an invariant straight line. Cherkas, Zhilevich, and Rychkov [11–13] 
proved that such systems have at most one limit cycle. This problem was revisited in Coll and Llibre[14]. In the corresponding 
piecewise class, however, it was shown in da Cruz and Torregrosa[15] that systems with at least seven limit cycles exist. Recall also 
that quadratic systems with two transversal invariant straight lines have no limit cycles but rather a continuum of periodic orbits, as 
in the Lotka–Volterra class. It is well known that the absence of limit cycles in this case is due to the existence of a Dulac function 
when the system is not integrable. This result can be found in several classical textbooks, such as Chicone[16], Perko[17].

In this paper, we focus on planar piecewise quadratic differential systems with two transversal invariant straight lines, i.e. a natural 
restriction on the general class of piecewise autonomous planar Kolmogorov systems. As usual, after an affine change of coordinates 
if necessary, we can assume that these systems can be written as

(𝑥̇, 𝑦̇) = (𝑥𝑃 (𝑥, 𝑦), 𝑦𝑄(𝑥, 𝑦)),

where 𝑃  and 𝑄 are polynomials of degree one in the variables 𝑥 and 𝑦. Recently, a particular case which exhibits at least one limit 
cycle and known as Palomba’s model has beeen studied in Carvalho et al. [18]. Kolmogorov systems are frequently used to model 
the interaction of two species occupying the same ecological niche [19,20]. In fact, many natural phenomena can be modeled by 
Kolmogorov systems, for instance, in mathematical ecology and population dynamics, chemical reactions, plasma physics, hydrody-
namics, etc. Probably the most well-known Kolmogorov systems are the Lotka–Volterra systems [21,22], which correspond to the 
case where 𝑃 (𝑥, 𝑦) = 𝛼 − 𝛽𝑦 and 𝑄(𝑥, 𝑦) = −𝛾 + 𝛿𝑥, with all parameters positive.

Although there are many works on the dynamics of Kolmogorov systems, as far as the authors know, there are no results concerning 
the bifurcation of limit cycles in piecewise quadratic Kolmogorov systems.

In this work, we prove the existence of piecewise Kolmogorov quadratic systems separated by a straight line that have at least 
six limit cycles (see Theorem 1.1). More concretely, we consider planar piecewise systems in the set 2, the class of Kolmogorov 
quadratic differential systems defined in two zones separated by a straight line, i.e., systems of the form

𝑍𝑖 ∶

{

𝑥̇ = 𝑥(𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦),
𝑦̇ = 𝑦(𝑑𝑖 + 𝑒𝑖𝑥 + 𝑓𝑖𝑦),

if (𝑥, 𝑦) ∈ Σ𝑖 = (𝑥, 𝑦) ∶ (−1)𝑖ℎ(𝑥, 𝑦) > 0, (1)

where 𝑖 = 1, 2, and Σ = {ℎ(𝑥, 𝑦) = 0}, with ℎ a degree one polynomial. Observe that each system in 2 admits the two invariant straight 
lines 𝑥 = 0 and 𝑦 = 0.

Summarizing, the contributions of this paper lie in the study of an extension of the classical center-focus and cyclicity problems 
to non-smooth planar systems in the class 2. More specifically, we study the stability of monodromic equilibrium points on Σ, the 
order of weakness, and the number of crossing limit cycles that bifurcate from them. Recall that a crossing limit cycle is an isolated 
periodic orbit that intersects both zones defined by the separation line Σ without a sliding segment. As in the smooth case, we say 
that such a limit cycle is of small amplitude if there exists a small neighborhood of the pseudo-equilibrium 𝑝 in which the limit cycle 
is entirely contained. More details on this bifurcation and the definition of pseudo-equilibrium will be given in what follows.

The main results of this paper are described below.
Theorem 1.1. There exist planar piecewise Kolmogorov quadratic differential systems, defined as in (1), having at least six crossing limit 
cycles of small amplitude.

In Section 4, we will see that the number of crossing limit cycles in 2 depends on the separation straight line Σ. Hence, we will 
provide different results depending on the choice of the separation line.

The definition of a weak focus order for an equilibrium point in the class of piecewise differential systems differs from the classical 
smooth scenario and will be introduced in Section 2. In this section, we also discuss the notion of a degenerate Hopf bifurcation in 
the piecewise setting. In this context, even though we obtain limit cycles using a versal unfolding of a degenerate Hopf bifurcation 
point of sixth-order in Theorem 1.1, the problem of the highest weakness is more intricate. In fact, we prove the existence of weak 
focus points of eighth-order, but without a versal unfolding in 2, in this case, we obtain only five limit cycles.

The complete characterization of the center problem in the 2 class is very difficult; the next result gives a partial answer. We 
restrict our analysis to the case where both systems in (1) have a common equilibrium point on Σ with purely imaginary eigenvalues 
in their Jacobian matrices. It can be checked that these conditions are sufficient to guarantee that the equilibrium point of each system 
𝑍𝑖, 𝑖 = 1, 2, is a center. We call such points of the 𝐶𝐶-equilibrium type. In this context, d𝑒𝑡 J𝑎𝑐𝑍(𝑥0, 𝑦0) denotes the determinant of 
the Jacobian matrix of 𝑍 evaluated at the point (𝑥0, 𝑦0).
Theorem 1.2. Let 𝑍 ∈ 2 be defined as in (1), and let (𝑥0, 𝑦0) be a monodromic 𝐶𝐶-equilibrium point on Σ, with d𝑒𝑡 J𝑎𝑐𝑍𝑖(𝑥0, 𝑦0) = 𝐷𝑖
for 𝑖 = 1, 2. Then, the next statements hold.
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Fig. 1. Definition of the vector field on Σ following Filippov’s convention in the crossing, escaping, and sliding regions.5.

(i) If ℎ(𝑥, 𝑦) = 𝑥𝑦0 − 𝑦𝑥0 then 𝑍 has a center at (𝑥0, 𝑦0) if, and only if, 
𝐷2

1𝐷
2
2(𝑏1𝑒2 − 𝑏2𝑒1) − 𝑥20𝐷

2
1𝑏2𝑒1(𝑏2 − 𝑒2)2 + 𝑥20𝐷

2
2𝑏1𝑒2(𝑏1 − 𝑒1)2 = 0.

(ii) If ℎ(𝑥, 𝑦) = 𝑦 − 𝑦0 then 𝑍 has a center at (𝑥0, 𝑦0) if, and only if, 
𝐷2

1𝑏
2
2 −𝐷2

1𝑏2𝑒2 −𝐷2
2𝑏

2
1 +𝐷2

2𝑏1𝑒1 = 0.

(iii) If ℎ(𝑥, 𝑦) = 𝑥 − 𝑥0 then 𝑍 has a center at (𝑥0, 𝑦0) if, and only if, 
𝐷2

1𝐷
2
2(𝑏1𝑒2 − 𝑏2𝑒1) − 𝑥20𝐷

2
1𝑏

2
2𝑒1(𝑏2 − 𝑒2) + 𝑥20𝐷

2
2𝑏

2
1𝑒2(𝑏1 − 𝑒1) = 0.

This paper is structured as follows. In Section 2, we present different types of bifurcations of small-amplitude limit cycles, namely the 
well-known Hopf and pseudo-Hopf types. The proof of Theorem 1.2 and the characterization of centers for a specific class of 2 are 
given in Section 3. Finally, in Section 4, the bifurcation of limit cycles in 2 is investigated, which includes the proof of Theorem 1.1.

2.  Preliminaries on Hopf-bifurcations type, limit cycles and center characterization

In this section we present several technical results that are required for the statements and proofs developed in the next sections. 
More concretely, in Section 2.1 we outline the main features and differences of Hopf-type bifurcations in smooth and piecewise 
smooth settings, particularly regarding the bifurcation of limit cycles of small amplitude. How this bifurcation applies near centers is 
analyzed in Section 2.2. A special case is the analysis of the return map near a monodromic point of 𝐶𝐶-equilibrium type, which is 
addressed in Section 2.3. To assist the computations, we introduce a suitable small parameter and study the Taylor series of the return 
map near a center with respect to this parameter; this is done in Section 2.4. Since the classical center conditions are insufficient 
for our purposes in piecewise families, a new criterion is introduced in Section 2.5. We finish with the analysis of the existence of a 
limit cycle from a monodromic equilibrium when a sliding segment appears and changes the stability. Previous results on unfoldings 
of this bifurcation do not apply here, as they fall outside our family. We require a new adapted result that guarantees the unfolding 
remains within our Kolmogorov class. This is developed in Section 2.6.

Let be a piecewise planar differential systems 𝑍 = (𝑍1, 𝑍2) and denote by Σ its separation line. Points on the separation line where 
both 𝑍1, 𝑍2 simultaneously, point outward or inward from Σ define the escaping (Σ𝑒) and sliding region (Σ𝑠), respectively. The interior 
of the complement of Σ𝑒 ∪ Σ𝑠 on Σ defines the crossing region (Σ𝑐). The boundaries of these regions are constituted by tangential points 
of 𝑍1, 𝑍2 with Σ. Even though in Σ𝑒 and Σ𝑠 the vector field 𝑍 is multi-valuated, it is possible to define 𝑍 by using the Filippov’s 
convention, see Fig. 1. Here we are interested only in the bifurcation analysis of crossing limit cycles and we do not present more 
details about the remaining concepts, for more details we refer the reader to Filippov[3].

2.1.  Return map near a monodromic point and weak focus order

In smooth piecewise systems defined in two zones separated by a straight line, there are three distinct monodromic pseudo-
equilibrium points: equilibrium-equilibrium, equilibrium-fold, and fold-fold. As in the smooth case, given a transversal section, the 
return map is defined in a neighbourhood of the pseudo-equilibrium point. For convenience, we use the separation straight line as 
the transversal section. Here, we will consider only the bifurcation of limit cycles from the first type. Let 𝑍 = (𝑍1, 𝑍2) ∈ 2. Then the 
points 𝑝 ∈ Σ are simultaneously equilibria for both systems 𝑍1 and 𝑍2, but with a well-defined return map in a small neighbourhood, 
i.e., a monodromic behaviour. These are particular cases of the general concept of pseudo-equilibrium; see again [3]. Moreover, we 
focus on the equilibrium-equilibrium points such that the Jacobian matrix of 𝑍𝑖, 𝑖 = 1, 2, at each equilibrium has complex conjugated 
eigenvalues with nonzero imaginary part. Consequently, the return map can be obtained by the composition of the two half-return 
maps, denoted by Π1(𝜌) and Π2(𝜌), associated to each component of 𝑍. When 𝑍1, 𝑍2 are analytic then the return map also is. By 
simplicity, instead of using the composition of both maps, we will compute the difference map that is equivalent for our purposes. It 
is given by

Δ(𝜌) =
(

Π2
)−1(𝜌) − Π1(𝜌) (2)

where, the function (Π2
)−1(𝜌) is the inverse of the negative half-return map Π2(𝜌), as it is illustrated in Fig. 2. For more details see 

Coll et al. [23], Gasull and Torregrosa[24].
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Fig. 2. The positive and negative half-return maps Π1 and 
(

Π2
)−1, respectively.

By analyticity, the return map, more precisely, each half-return map, can be expressed as a Taylor series near 𝜌 = 0. As in the 
smooth scenario, the first nonvanishing coefficient of the Taylor series of Δ is called the 𝑘th-order Lyapunov quantity. It is denoted 
by 𝑊𝑘 and is defined only modulo {𝑊1 = … = 𝑊𝑘−1 = 0}.

In the study of smooth planar vector fields, the first nonvanishing coefficient of the return map always has an odd subscript: 
𝐿𝓁 = 𝑊2𝓁+1 ≠ 0. It can be seen that, generically, the number of limit cycles that bifurcate from a monodromic point is at most 𝓁. In 
this case, we say that the weak focus order is also 𝓁, because the order is related to the number of limit cycles that a versal unfolding 
has using a generic analytic perturbation. The usual approach to study this bifurcation is to restrict the analysis to perturbations 
without constant or linear terms. In this case, 𝑊1 = 𝑊2 = 0, and the coefficients 𝑊𝑘 are polynomials in the perturbation parameters. 
Generically, 𝐿1 = 𝑊3 is nonvanishing and determines the stability of the origin. A limit cycle of small amplitude may appear when 
the stability changes due to the inclusion of the trace parameter. This is the well-known codimension-1 Hopf bifurcation. More 
limit cycles can appear when this first coefficient vanishes, in what is called a degenerate Hopf bifurcation, which has codimension 
higher than 1. In this case, the Bautin ideal  = ⟨𝑊3,… ,𝑊𝑘,…⟩ is introduced. This ideal has a finite number of generators when the 
perturbation class is polynomial, and it is generated only by the elements with odd subscripts. See, for example, Cima et al. [25], Liu 
et al. [26], Romanovski and Shafer[27]. This property implies that the number elements in  decreases by half, and when the 
bifurcation is versal 𝓁 limit cycles appear from a weak focus of order 𝓁, in this case there exist perturbation parameters such that the 
elements in the Bautin ideal alternate in sign, or, alternatively, are “independent.” Although this bifurcation is discussed in classical 
references such as Andronov et al. [28], Roussarie[29], a more detailed analysis will be presented later.

The same phenomenon is observed in the smooth piecewise scenario when the equilibrium point is of fold-fold type (i.e., when 
both vector fields have coincident invisible tangency points on Σ). In this case, however, the relevant quantities have even subscripts, 
with the first nonvanishing one determining the stability behavior. Hence, when 𝐿𝓁 = 𝑊2𝓁 ≠ 0, we say that the origin has a weak 
focus of order 𝓁. Generically, as in the classical high-codimension Hopf bifurcation, 𝓁 crossing-type limit cycles bifurcate from the 
origin under a generic perturbation. In the literature, this equivalent bifurcation is known as the pseudo-Hopf bifurcation. It was first 
discovered by Filippov[3], and the term was coined in Kuznetsov et al. [30]. See Esteban et al. [31], Novaes and Silva[32] for more 
details on the higher-codimension case.

The special symmetry present in the above cases is not satisfied in a generic piecewise perturbation near a monodromic point. A 
monodromic equilibrium 𝑝 ∈ Σ is said to be a weak focus of order 𝓁 when 𝑊𝑗 = 0 for 1 ≤ 𝑗 ≤ 𝓁 − 1 and 𝑊𝓁 ≠ 0. Its stability, as usual, 
is determined by the sign of the first nonzero Lyapunov quantity 𝑊𝓁 , and under a generic perturbation, 𝓁 small-amplitude limit cycles 
bifurcate from the equilibrium point, which can be taken at the origin. This bifurcation is also known as the degenerate or higher-
codimension pseudo-Hopf bifurcation, and the existence of a generic versal unfolding is established in Gouveia and Torregrosa[33]. 
To apply it within our Kolmogorov family, the analysis of the bifurcation of the limit cycle associated with the appearance of a sliding 
segment requires a refinement; see Section 2.6.

2.2.  The bifurcation of limit cycles from a center family in piecewise systems

Christopher [34] explains how the 𝑘th order Taylor approximation of the Lyapunov quantities can be used to obtain lower bounds 
on the number of limit cycles near center-type equilibrium points in smooth systems. These bounds are related to the intersection of 
algebraic varieties and the transversality properties of Taylor expansions, either at the linear level or at higher orders. Similar results 
can be found in Chicone and Jacobs[35,36], Han[37].
Proposition 2.1  ([34]). Suppose that 𝑠 is a point on the center variety and that the first 𝑘 Lyapunov quantities, 𝑊1,… ,𝑊𝑘, have independent 
linear parts (with respect to the expansion of 𝑊𝑗 about 𝑠), then 𝑠 lies on a component of the center variety of codimension at least 𝑘 and 
there are bifurcations which produce 𝑘 limit cycles locally from the center-type equilibrium point corresponding to the parameter value 𝑠. If, 
furthermore, we know that 𝑠 lies on a component of the center variety of codimension 𝑘, then 𝑠 is a smooth point of the variety, and the 
cyclicity of the center for the parameter value 𝑠 is exactly 𝑘. In the latter case, 𝑘 is also the cyclicity of a generic point on this component of 
the center variety.

The subsequent proposition, also due to Christopher [34], is an extension of the above result which shows that sometimes we can 
obtain more limit cycles using high-order Taylor developments of the Lyapunov quantities.
Proposition 2.2  ([34]). Suppose that we are in a point 𝑠 where Proposition 2.1 applies. After a change of variables if necessary, we 
can assume that 𝑊1 = 𝑊2 = … = 𝑊𝑘 = 0 and the next Lyapunov quantities 𝑊𝑗 = ℎ𝑗 (𝜆) + 𝑂𝑚+1(𝜆), for 𝑗 = 𝑘 + 1,… , 𝑘 + 𝑙, where ℎ𝑗 are 
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homogeneous polynomials of degree 𝑚 ≥ 2 and 𝜆 = (𝜆𝑘+1,… , 𝜆𝑘+𝑙). If there exists a line , in the parameter space, such that ℎ𝑗 () = 0,
𝑗 = 𝑘 + 1,… , 𝑘 + 𝑙 − 1, the hypersurfaces ℎ𝑖 = 0 intersect transversally along  for 𝑗 = 𝑘 + 1,… , 𝑘 + 𝑙 − 1, and ℎ𝑘+𝑙() ≠ 0, then there are 
perturbations of the center which can produce 𝑘 + 𝑙 limit cycles.

The same method can be applied to perturbations of a family of piecewise polynomial systems with a monodromic pseudo-
equilibrium point of center type. Proposition 2.3 is an extended version of Proposition 2.1, originally due to Gouveia and Torre-
grosa[38]. Before stating it, we introduce some notation.

Following the notation introduced in this paper, we consider two regions separated by a straight line passing through the origin, 
each denoted by 𝑖 = 1, 2. We study the piecewise family of vector fields 𝑍 = (𝑍1,𝜇 , 𝑍2,𝜇), defined by the solutions of the differential 
equations (𝑥̇, 𝑦̇) = (𝑃 𝑖

𝑐 (𝑥, 𝑦, 𝜇), 𝑄
𝑖
𝑐 (𝑥, 𝑦, 𝜇)), where each system is polynomial of degree 𝑛, depending on a parameter 𝜇 ∈ ℝ𝓁 , and has a 

center equilibrium point at the origin. That is, we consider the perturbed polynomial system
𝑥̇ = 𝑋𝑖,𝑐 (𝑥, 𝑦, 𝜇) + 𝑃𝑖(𝑥, 𝑦, 𝜆),
𝑦̇ = 𝑌𝑖,𝑐 (𝑥, 𝑦, 𝜇) +𝑄𝑖(𝑥, 𝑦, 𝜆),

(3)

where 𝑃𝑖 and 𝑄𝑖 are polynomials of degree 𝑛. In particular,

𝑃𝑖(𝑥, 𝑦, 𝜆) =
𝑛
∑

𝑘+𝑙=0
𝑎𝑖𝑘,𝑙𝑥

𝑘𝑦𝑙 , 𝑄𝑖(𝑥, 𝑦, 𝜆) =
𝑛
∑

𝑘+𝑙=0
𝑏𝑖𝑘,𝑙𝑥

𝑘𝑦𝑙 ,

with 𝜆 = (𝑎𝑖00, 𝑎
𝑖
10, 𝑎

𝑖
01,… , 𝑏𝑖00, 𝑏

𝑖
10, 𝑏

𝑖
01,…) ∈ ℝ𝑀 , where 𝑀 = 2𝑛2 + 6𝑛 + 4. We denote 𝑋𝑐 = 𝑋𝑖,𝑐 and 𝑌𝑐 = 𝑌𝑖,𝑐 when the centers are the 

same on both sides. The next proposition holds in this context.
Proposition 2.3  ([38]). We denote by 𝑊 [1]

𝑗 (𝜆, 𝜇) the first-order development, with respect to 𝜆 ∈ ℝ𝑀 , of the 𝑗-Lyapunov quantity of 
system (3), for each fixed value of 𝜇 ∈ ℝ𝓁 . We assume that, after a change of variables in the parameter space if necessary, we can write

𝑊𝑗 =

⎧

⎪

⎨

⎪

⎩

𝜆𝑗 + 𝑂2(𝜆),  for 𝑗 = 1,… , 𝑘 − 1,
𝑘−1
∑

𝑙=1
𝑔𝑗,𝑙(𝜇)𝜆𝑙 + 𝑓𝑗−𝑘(𝜇)𝜆𝑘 + 𝑂2(𝜆),  for 𝑗 = 𝑘,… , 𝑘 + 𝑙,

where with 𝑂2(𝜆) we denote all the monomials of degree higher or equal than 2 in 𝜆 with coefficients analytic functions in 𝜇. If there exists a 
point 𝜇∗ such that 𝑓0(𝜇∗) = … = 𝑓𝑙−1(𝜇∗) = 0, 𝑓𝑙(𝜇∗) ≠ 0, and the Jacobian matrix of (𝑓0,… , 𝑓𝑙−1) with respect to 𝜇 has rank 𝑙 at 𝜇∗, then 
system (3) has 𝑘 + 𝑙 hyperbolic limit cycles of small amplitude bifurcating from the origin.
Usually, as previously described, in higher-codimension Hopf-type bifurcations the strategy to obtain small-amplitude limit cycles 
begins by analyzing the perturbation without linear or constant terms. After identifying the resulting limit cycles, we obtain an 
additional one by including the linear terms, changing the sign of the trace while keeping the equilibrium at the origin, and finally 
another by including the constant terms, which affect stability through the sliding segment. All of these are taken into account in the 
result above.

As noted in Roussarie[29], the main obstruction to obtaining an unfolding of limit cycles near a Hopf point lies in the difficulty 
of analyzing the independence of the Lyapunov quantities, or in ensuring that they alternate in sign. The results of this section offer 
a computational approach to reach such conclusions near a center point. Similar results can be established near a weak focus point, 
since the methodology is primarily based on the intersection analysis of polynomial varieties in the parameter space.

2.3.  The difference map in piecewise systems near a 𝐶𝐶-type equilibrium point

Here we present how to obtain the coefficients 𝑊𝑖 of the difference map (2) near a monodromic pseudo-equilibrium, (𝑥0, 𝑦0), of a 
piecewise polynomial system 𝑍 = (𝑍1, 𝑍2) of degree 𝑛, where Σ is a straight line passing through (𝑥0, 𝑦0), using first integrals of 𝑍1
and 𝑍2.

We can assume, after an adequate affine change of variables if necessary, that (𝑥0, 𝑦0) = (0, 0) and Σ is the 𝑥-axis. For our purposes, 
we will assume that each 𝑍𝑖 has a first integral 𝐻𝑖 ∶ ℝ2 → ℝ, for 𝑖 = 1, 2, which we will assume to be analytic and whose Taylor 
series are written as 𝐻𝑖(𝑥, 𝑦) = 𝐴𝑖𝑥2 + 𝐵𝑖𝑥𝑦 + 𝐶𝑖𝑦2 + 𝑂3(𝑥, 𝑦). As we are analyzing the solutions near 𝑦 = 0, the monodromy condition 
guarantees that 𝐴𝑖 ≠ 0, and by dividing the first integrals by 𝐴𝑖, we can take 𝐴𝑖 = 1.

Let (𝜌, 0) and (𝜎, 0) be two points defined by the intersection of a level curve of the first integral 𝐻1 with the separation straight 
line 𝑦 = 0. Then, they satisfy the equation 𝐻1(𝜌, 0) −𝐻1(𝜎, 0) = (𝜌 − 𝜎)1(𝜌, 𝜎) = 0 for an analytic function 1(𝜌, 𝜎).

As the Taylor series of 1(𝜌, 𝜎) near (0, 0) is written as 𝜌 + 𝜎 + 𝑂2(𝜌, 𝜎), the Implicit Function Theorem allows us to write 𝜎 as a 
function of 𝜌. In fact, this is the half-return map Π1, defined previously. Moreover, we can obtain, in a recursive way, the series

Π1(𝜌) = −𝜌 +
∞
∑

𝑘=2
𝑊1,𝑘𝜌

𝑘.

With the same technique, we can obtain the value of 𝜎 for the first integral 𝐻2, which gives the inverse of the function Π2, yielding 
the series

(Π2)−1(𝜌) = −𝜌 +
∞
∑

𝑘=2
𝑊2,𝑘𝜌

𝑘,
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from the function 2(𝜌, 𝜎). Hence, the difference map (2) is

Δ(𝜌) = (Π2)−1(𝜌) − Π1(𝜌) = −
∞
∑

𝑘=2
(𝑊2,𝑘 −𝑊1,𝑘)𝜌𝑘 = −

∞
∑

𝑘=2
𝑊𝑘𝜌

𝑘. (4)

In the following, we present the expressions of 𝑊1,… ,𝑊8. These coefficients can be determined from the Taylor series

𝐻𝑖(𝜌, 0) = 𝜌2 +
∞
∑

𝑘=3
ℎ𝑖,𝑘𝜌

𝑘.

Then, using the mechanism described above, we obtain the coefficients of the half-return maps:
𝑊𝑖,2 = −ℎ𝑖,3,

𝑊𝑖,3 = −ℎ2𝑖,3,

𝑊𝑖,4 = −2ℎ3𝑖,3 + 2ℎ𝑖,3ℎ𝑖,4 − ℎ𝑖,5,

𝑊𝑖,5 = −4ℎ4𝑖,3 + 6ℎ2𝑖,3ℎ𝑖,4 − 3ℎ𝑖,3ℎ𝑖,5,

𝑊𝑖,6 = −9ℎ5𝑖,3 + 19ℎ3𝑖,3ℎ𝑖,4 − 11ℎ2𝑖,3ℎ𝑖,5 − 4ℎ𝑖,3ℎ2𝑖,4 + 3ℎ𝑖,3ℎ𝑖,6 + 2ℎ𝑖,4ℎ𝑖,5 − ℎ𝑖,7,

𝑊𝑖,7 = −21ℎ6𝑖,3 + 56ℎ4𝑖,3ℎ𝑖,4 − 34ℎ3𝑖,3ℎ𝑖,5 − 24ℎ2𝑖,3ℎ
2
𝑖,4 + 12ℎ2𝑖,3ℎ𝑖,6 + 16ℎ𝑖,3ℎ𝑖,4ℎ𝑖,5

− 4ℎ𝑖,3ℎ𝑖,7 − 2ℎ2𝑖,5,

𝑊𝑖,8 = −51ℎ7𝑖,3 + 165ℎ5𝑖,3ℎ𝑖,4 − 104ℎ4𝑖,3ℎ𝑖,5 − 112ℎ3𝑖,3ℎ
2
𝑖,4 + 43ℎ3𝑖,3ℎ𝑖,6

+ 93ℎ2𝑖,3ℎ𝑖,4ℎ𝑖,5 + 8ℎ𝑖,3ℎ3𝑖,4 − 18ℎ2𝑖,3ℎ𝑖,7 − 12ℎ𝑖,3ℎ𝑖,4ℎ𝑖,6 − 17ℎ𝑖,3ℎ2𝑖,5
− 4ℎ2𝑖,4ℎ𝑖,5 + 4ℎ𝑖,3ℎ𝑖,8 + 2ℎ𝑖,4ℎ𝑖,7 + 3ℎ𝑖,5ℎ𝑖,6 − ℎ𝑖,9.

In this case, for a general problem, we obtain the first nonvanishing coefficients of the difference map (2). We notice that, by 
construction, 𝑊1 = 0 and, after straightforward simplifications, for 𝑘 = 2,… , 8 and under the conditions {𝑊1 = 𝑊2 = … = 𝑊𝑘−1 = 0}, 
we get 𝑊3 = 𝑊5 = 𝑊7 = 0 and

𝑊2 = −ℎ1,3 + ℎ2,3,

𝑊4 = 2ℎ1,3ℎ1,4 − 2ℎ1,3ℎ2,4 − ℎ1,5 + ℎ2,5,

𝑊6 = −3ℎ31,3ℎ1,4 + 3ℎ31,3ℎ2,4 − 4ℎ1,3ℎ21,4 + 4ℎ1,3ℎ1,4ℎ2,4 + 3ℎ1,3ℎ1,6

− 3ℎ1,3ℎ2,6 + 2ℎ1,4ℎ1,5 − 2ℎ1,5ℎ2,4 − ℎ1,7 + ℎ2,7,

𝑊8 = 11ℎ51,3ℎ1,4 − 11ℎ51,3ℎ2,4 + 28ℎ31,3ℎ
2
1,4 − 28ℎ31,3ℎ1,4ℎ2,4 − 11ℎ31,3ℎ1,6 + 11ℎ31,3ℎ2,6

− 11ℎ21,3ℎ1,4ℎ1,5 + 11ℎ21,3ℎ1,5ℎ2,4 + 8ℎ1,3ℎ31,4 − 8ℎ1,3ℎ21,4ℎ2,4 − 12ℎ1,3ℎ1,4ℎ1,6

+ 6ℎ1,3ℎ1,4ℎ2,6 + 6ℎ1,3ℎ1,6ℎ2,4 − 4ℎ21,4ℎ1,5 + 4ℎ1,4ℎ1,5ℎ2,4 + 4ℎ1,3ℎ1,8

− 4ℎ1,3ℎ2,8 + 2ℎ1,4ℎ1,7 + 3ℎ1,5ℎ1,6 − 3ℎ1,5ℎ2,6 − 2ℎ1,7ℎ2,4 − ℎ1,9 + ℎ2,9.

We remark that in the above simplification one can see the same phenomenon of vanishing half-terms in the Taylor developments 
as in the fold-fold equilibrium. Consequently, after the center problem is solved, the number of limit cycles that will bifurcate from 
the origin will depend on the perturbation. If the perturbation vector fields are centers on both sides, only even terms are useful 
and the bifurcation mechanism of the fold-fold equilibria applies. Note that the above expressions of 𝑊2𝑖 are independent because of 
the linear terms −ℎ1,2𝑖+1 + ℎ2,2𝑖+1, but, as we will see, this is not the case when we fix the perturbation family. Hence, the unfolding 
analysis is more intricate. If the perturbation is generic, as we will see in a later section, then the above expressions are not enough 
to study the difference map, because the odd terms also appear and, consequently, more limit cycles can arise.

A natural consequence of this analysis is that when we consider piecewise vector fields having centers on both sides, the expected 
number of limit cycles is lower, in fact, less than half, than in the general case. This fact can be seen in the piecewise linear class, 
where the total number found so far is three, as we have mentioned in the introduction, but no limit cycles of crossing type appear 
when both sides have a center. A very simple proof of this fact follows from the algorithm described in this section. The first integrals 
of a linear system having a center are polynomials of degree two in 𝑥, 𝑦. In this case, it is not restrictive to assume that the separation 
line is 𝑦 = 0. Then the return map follows from 1(𝜌, 𝜎) = 𝑎𝜌 + 𝑎𝜎 + 𝑏 for some real constants 𝑎, 𝑏. Then, as the half-return map is 
written as 𝜎 = −𝜌 − 𝑏∕𝑎, the difference map is constant; consequently, it has no zeros.

2.4.  Taylor series of the return map with respect to a privileged small parameter

Perturbation theory usually requires, more or less explicitly, the knowledge of a solution. Here, we briefly recall the algorithm 
described in more detail in Braun et al. [10] for computing the Taylor series with respect to 𝜀 of a solution which, for 𝜀 = 0, corresponds 
to a center. This algorithm is inspired by the one introduced in Gasull and Torregrosa[24]. Assume that 𝑍 = (𝑍1,𝜇 , 𝑍2,𝜇) is a piecewise 
polynomial system having the origin as a monodromic pseudo-equilibrium in which there exists a neighbourhood where all the 
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trajectories are periodic for any value of the parameter 𝜇, for simplicity we say that this is a monodromic pseudo-equilibrium of 
center type. Denotes by 𝑍𝑖,𝜀 a piecewise perturbation as in (3) of degree 𝑛 of 𝑍𝑖,𝜇 , then

𝑍𝑖,𝜀 ∶ (𝑥̇, 𝑦̇) = 𝑍𝑖,𝜇(𝑥, 𝑦) + 𝜀𝑍𝑖(𝑥, 𝑦),  if (𝑥, 𝑦) ∈ Σ𝑖, (5)

with 𝜀 > 0, 𝑍𝑖,𝜇 = (𝑋𝑖,𝑐 (𝑥, 𝑦, 𝜇), 𝑌𝑖,𝑐 (𝑥, 𝑦, 𝜇)) and 𝑍𝑖(𝑥, 𝑦) =
(

𝑋𝑖(𝑥, 𝑦, 𝜆), 𝑌𝑖(𝑥, 𝑦, 𝜆)
)

, 𝑋𝑖, 𝑌𝑖 are polynomial vector fields of degree 𝑛 without 
constant terms, for 𝑖 = 1, 2. Here, we also denote 𝑋𝑐 = 𝑋𝑖,𝑐 , and 𝑌𝑐 = 𝑌𝑖,𝑐 when the centers are the same in both side.

Applying polar coordinates (𝑥, 𝑦) = (𝑟 cos 𝜃, 𝑟 sin 𝜃), in the perturbed center (5), and making 𝜃 as the new independent variable, we 
get the solution of the differential equation associated to (5),

𝑟̇ = 𝑑𝑟
𝑑𝜃

= 𝐹 (𝜃, 𝑟) = 𝐹0(𝜃, 𝑟) +
𝑚
∑

𝑗=1
𝜀𝑗𝐹𝑗 (𝜃, 𝑟) + 𝑂(𝜀𝑚+1),

in which 𝐹𝑗 = (𝐹1,𝑗 , 𝐹2,𝑗 ), 𝑗 = 0,… , 𝑚. Such a solution can be written as 𝜑(𝜃, 𝑟) = (𝜑1,𝑁 (𝜃, 𝑟), 𝜑2,𝑁 (𝜃, 𝑟)) where 𝜑𝑖,𝑁 (𝜃, 𝑟) =
∑𝑁

𝑘=0 𝜀
𝑘𝜑𝑖,𝑘(𝜃, 𝑟), for 𝑖 = 1, 2, and 𝑁 a natural number. Thus, we define the 𝑘-difference function as
𝛿𝑘(𝑟) = 𝜑1,𝑘(𝜋, 𝑟) − 𝜑2,𝑘(−𝜋, 𝑟),

where 𝜑𝑖,0, 𝑖 = 1, 2, is the solution of the initial value problem
𝑧′(𝑠) = 𝐹𝑖,0(𝑠, 𝑧(𝑠)), 𝑧(0) = 𝑟,

and 𝜑𝑖,𝑘’s, for 𝑘 ≥ 1, are given recursively adapting [39]. Then, from this we can defined the 𝑁-jet of the difference function as

Δ𝑁 (𝑟, 𝜀) =
𝑁
∑

𝑘=1
𝜀𝑘𝛿𝑘(𝑟). (6)

Observe that, as the origin of the non-perturbed vector field is of center type, 𝜑1,0(𝜋, 𝑟) − 𝜑2,0(−𝜋, 𝑟) = 0, so 𝛿0 does not appear. Clearly, 
each simple zero of 𝑟 ↦ Δ(𝑟, 𝜀) provides a hyperbolic limit cycle of (5). To compute the 𝑘th order Lyapunov quantities, we propose 
another approach: instead of looking for explicit formulas for 𝛿𝑙(𝑟), we consider their Taylor expansions in 𝑟. This leads to an algorithm 
that only requires integrating trigonometric functions. Moreover, we also propose a type of blowing up technique in such a way that 
the 𝑁-jet of the difference functions (6), is written as follows

Δ𝑁 (𝑟) =
∞
∑

𝑗=1
 [𝑁]

𝑗 𝑟𝑗 ,

where  [𝑁]
𝑗 =

∑𝑁
𝑘=1 𝑊

[𝑘]
𝑗 , with 𝑊 [𝑘]

𝑗  is the homogeneous polynomial of degree 𝑘 of the 𝑗th Lyapunov quantity in the coefficients 𝜆.
Since each coefficient 𝑊𝑗 has an analytic dependence with respect to the perturbation parameters. So, we can conclude that the 𝑗th 
Lyapunov quantity, with a slight abuse of notation, as 𝑊𝑗 =  [∞]

𝑗 =
∑∞

𝑘=1 𝑊
[𝑘]
𝑗 , and the complete difference functions as

Δ(𝑟) =
∞
∑

𝑗=1
𝑊𝑗𝑟

𝑗 .

Henceforth, we will write either 𝑊 [1]
𝑗  or  [1]

𝑗  to refer to the same object.

2.5.  Sufficient conditions to be a center in piecewise systems

For smooth systems, if the equilibrium point is of monodromic type and there is a first integral, then the equilibrium point is a 
center. However, for non-smooth systems, we must prove that the positive and negative half-return maps satisfy (Π2

)−1(𝜌) − Π1(𝜌) = 0
for any 𝜌 > 0, see (2) and Fig. 2. Different situations about how to check this condition can be seen, for example, in da Cruz and 
Torregrosa[15]. In particular, getting the first integrals in each region is not enough to have a local first integral well defined and 
continuous in an open set. So we will say that a piecewise system 𝑍 = (𝑍1, 𝑍2) has a Σ-first integral if 𝑍1 and 𝑍2 have first integrals 
in each region, Σ1 and Σ2, respectively. The usual definition of first integral, that is, a non-constant function that is constant along 
the solutions implies the continuity condition. Consequently, if we have a continuous piecewise first integral around a monodromic 
pseudo-equilibrium we will have a center. This situation will be enough for this paper.

Here, we take the 𝑥-axis as the separation line to simplify the reading in the following result. The result can be easily generalized, 
considering other separation lines. For example, another straight line, when necessary, is enough to apply a rotation.
Proposition 2.4. Let 𝑍 = (𝑍1, 𝑍2) be a planar piecewise differential system with a monodromic pseudo-equilibrium at the origin and 
Σ = {𝑦 = 0}. If there exist first integrals 𝐻𝑖 of 𝑍𝑖 satisfying 𝐻1(𝑥, 0) = 𝐻2(𝑥, 0), where 𝑖 = 1, 2. Then, 𝑍 has a center at the origin.

2.6.  The pseudo-Hopf bifurcation form

As previously mentioned, in piecewise differential systems, a limit cycle can arise from a monodromic pseudo-equilibrium, since 
the stability of the point can be altered by adding a sliding or escaping segment. This phenomenon for fold-fold equilibria was 
termed a pseudo-Hopf bifurcation in Kuznetsov et al. [30], and it had already been proven in Filippov[3]. See Fig. 3. A collection of 
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Fig. 3. The Hopf-type bifurcation.

Fig. 4. Some Hopf-type bifurcations. The invisible equilibrium is drawn in the doted straight line 𝑦 − 𝑥 = 0.

similar Hopf-type bifurcations can be found in Simpson[40]. The next Theorem 2.5 ensures this fact in a general context, as in Freire 
et al. [8], Braun et al. [10]. However, as we need a perturbation within the Kolmogorov class, a new result needs to be stated, because 
the perturbations must preserve the invariant lines 𝑥 = 𝑦 = 0. We will see that the stability of the monodromic pseudo-equilibrium 
with respect to the relative position of the separation straight line is essential to guarantee this bifurcation of a limit cycle. The way 
to overcome this obstacle in order to obtain a Hopf-type bifurcation can be seen in the proof of Proposition 2.6. In all cases, the 
perturbed system has no visible equilibria outside the separation line, and the limit cycles inherit the stability from the equilibrium. 
An illustration is shown in Fig. 4.

Theorem 2.5. Let 𝑍 = (𝑍1, 𝑍2) be a planar piecewise differential system and (𝑥0, 𝑦0) ∈ Σ a monodromic pseudo-equilibrium point, stable 
(resp. unstable). Then, if an escaping segment (resp. sliding segment) appears in the neighbourhood of (𝑥0, 𝑦0) ∈ Σ, we obtain a stable (resp. 
unstable) limit cycle, and this phenomenon is called pseudo-Hopf or Hopf-type bifurcation.

Proof.  The proof is a direct consequence of the Poincaré–Bendixon Theorem for piecewise differential systems, see Buzzi et al. [41]. 
Directly, having a monodromic pseudo-equilibrium point stable, and doing an repulsing escaping segment over Σ appears, changing 
the stability of the neighbourhood of the point 𝑝 ∈ Σ and an stable limit cycle of small amplitude bifurcates. We observe that choosing 
an suitable perturbation of a monodromic pseudo-equilibrium an escaping (or sliding) segment appears. ∎

Proposition 2.6. Let 𝑍 = (𝑍1, 𝑍2) be the piecewise Kolmogorov system defined by 𝑍𝑖 ∶= (𝑥̇, 𝑦̇) = (𝑥𝑓𝑖(𝑥, 𝑦), 𝑦𝑔𝑖(𝑥, 𝑦)) for 𝑖 = 1, 2 with the 
separation straight line 𝛼(𝑥 − 1) − 𝛽(𝑦 − 1) = 0 being (𝛼, 𝛽) ≠ (0, 0), 𝛽 > 0, and 𝛼 + 𝛽 ≠ 0. Let (1, 1) be a monodromic pseudo-equilibrium 
such that the vector field rotates counter-clockwise. Then, if |𝛼| ≥ 𝛽 and the equilibrium is unstable (resp. |𝛼| ≤ 𝛽 and stable) there exists a 
perturbation inside Kolmogorov class such that a unstable (resp. stable) limit cycle bifurcates from it.

Proof.  For each 𝑖 = 1, 2 we consider the perturbed system 𝑍𝑖,𝜀 of 𝑍𝑖 obtained under the homothetic change (𝑥, 𝑦) → ((1 + 𝜀)𝑥, (1 + 𝜀)𝑦). 
Fixing 𝛼, 𝛽, the proof follows by choosing an appropriate sign for 𝜀 and perturbing only one vector field. When 𝛼∕𝛽 ≥ 1, as (1, 1) is 
unstable, the vector field (𝑍1,𝜀, 𝑍2) exhibits a Hopf-type bifurcation, creating an unstable limit cycle of small amplitude around (1, 1)
for small 𝜀 > 0. Similarly, when 0 ≤ 𝛼∕𝛽 ≤ 1, the equilibrium is stable, and the limit cycle, which is also stable, bifurcates when 𝜀 < 0. 
The proof for the other conditions follows similarly, taking (𝑍1, 𝑍2,𝜀) with 𝜀 > 0. ∎

We note that the zone being changed and the sign of 𝜀 depend on the homothetic transformation we have chosen with respect to 
the separation line.
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3.  Caracterization of some classes of centers in 𝟐

In this section, we will work on the characterization of the center problem for some classes of 2. As mentioned before, we restrict 
our study to the case where the pseudo-equilibrium is a 𝐶𝐶-equilibrium point and some specific separation straight lines. Charac-
terizing centers for every separation straight line is a very intricate task. To show the difficulty of this problem, in Proposition 3.1, 
we solve the center problem by fixing one parameter of the system and selecting a specific straight line of separation. As we have 
commented above, having two separate centers whose equilibria coincide is not enough to guarantee a coupling center of the original 
system. Due to the computational difficulties, our aim is not to provide a complete classification of the center problem; we can think 
of this as a first attempt at a generalization of the center problem for the classical Lotka–Volterra system. As we have also explained 
before, a system of type

{

𝑥̇ = 𝑥(𝑎 + 𝑏𝑥 + 𝑐𝑦),
𝑦̇ = 𝑦(𝑑 + 𝑒𝑥 + 𝑓𝑦),

(7)

having an equilibrium point in the first quadrant of monodromic type with zero trace of the Jacobian matrix is a center. We recall 
that the classical Lotka–Volterra system is a particular case of (7) taking 𝑏 = 𝑓 = 0, for which the first integral is implicitly obtained 
from a direct integration using the separation variables method. We will recover this system in Section 4, where it will be perturbed 
in the piecewise class 2. Obviously, the center property will not depend on the separation line in this case. Consequently, it will 
appear in the families described in Theorem 1.2 and Proposition 3.1.
Proof of Theorem 1.2.  System (1), when 𝑏𝑖𝑓𝑖 − 𝑐𝑖𝑒𝑖 ≠ 0 for 𝑖 = 1, 2, has an equilibrium point outside the coordinate axes, 𝑥0𝑦0 ≠ 0, 
located at

(𝑥0, 𝑦0) =
(

𝑐𝑖𝑑𝑖 − 𝑎𝑖𝑓𝑖
𝑏𝑖𝑓𝑖 − 𝑐𝑖𝑒𝑖

,
𝑎𝑖𝑒𝑖 − 𝑏𝑖𝑑𝑖
𝑏𝑖𝑓𝑖 − 𝑐𝑖𝑒𝑖

)

,  for 𝑖 = 1, 2.

We can assume, interchanging 𝑥 with 𝑦 if necessary, that 𝑒𝑖 ≠ 0. Moreover, through straightforward computations, we obtain the 
necessary conditions

𝐷𝑖 = 2𝑏𝑖𝑒𝑖𝑥20 + 4𝑏𝑖𝑓𝑖𝑥0𝑦0 + 2𝑐𝑖𝑓𝑖𝑦20 + (𝑎𝑖𝑒𝑖 + 2𝑏𝑖𝑑𝑖)𝑥0 + (2𝑎𝑖𝑓𝑖 + 𝑐𝑖𝑑𝑖)𝑦0 + 𝑎𝑖𝑑𝑖 > 0,

with

𝑎𝑖 =
(𝑏𝑖𝑥0)2 − 𝑏𝑖𝑒𝑖𝑥20 +𝐷2

𝑖

𝑒𝑖𝑥0
, 𝑐𝑖 = −

(𝑏𝑖𝑥0)2 +𝐷2
𝑖

𝑒𝑖𝑥0𝑦0
, 𝑑𝑖 = (𝑏𝑖 − 𝑒𝑖)𝑥0, 𝑓𝑖 = −

𝑏𝑖.𝑥0
𝑦0

,

for 𝑖 = 1, 2, under which (𝑥0, 𝑦0) is a 𝐶𝐶-equilibrium point, that is, a point whose Jacobian matrices have zero trace and positive 
determinant. Although we could write the center conditions, detailed in the statement, depending only on the parameters of 𝑍, due 
to their size, we have chosen more compact expressions. Moreover, to simplify computations, we can also assume, rescaling and 
reparametrizing time if necessary, that the 𝐶𝐶-equilibrium point is located at (1, 1) and 𝐷𝑖 = 1 for 𝑖 = 1, 2.

Under the above hypotheses, each system 𝑍𝑖, for 𝑖 = 1, 2, has a first integral of the form

𝐻𝑖(𝑥, 𝑦) = 𝑥𝑏𝑖(𝑏𝑖−𝑒𝑖)𝑦−
𝑏𝑖
𝑒𝑖
(𝑏2𝑖 −𝑏𝑖𝑒𝑖+1)Λ𝑖(𝑥, 𝑦), (8)

where

Λ𝑖(𝑥, 𝑦) = (𝑏2𝑖 𝑒𝑖 − 𝑏𝑖𝑒
2
𝑖 )𝑥 + (𝑏2𝑖 𝑒𝑖 − 𝑏3𝑖 − 𝑏𝑖)𝑦 + 𝑏3𝑖 − 2𝑏2𝑖 𝑒𝑖 + 𝑏𝑖𝑒

2
𝑖 + 𝑏𝑖 − 𝑒𝑖.

Then, after a translation, the equilibrium point is located at the origin and the algorithm to compute the 𝑛th Lyapunov constant of 𝑍, 
detailed in Section 2.3, applies after adding the monodromic condition. We note that, in some cases, an extra rotation is necessary.

The strategy for proving all cases is the same. Straightforward computations provide the Lyapunov quantities. We note that the 
vanishing trace condition guarantees that 𝑊1 = 0. Then, after removing a nonvanishing factor depending on the parameters, we 
have that 𝑊2 only vanishes under each condition of the statement. Moreover, 𝑊3 = 𝑊4 = … = 𝑊8 = 0 when 𝑊2 = 0. So, we have 
only one necessary condition for having a center. The sufficient condition follows from Proposition 2.4, checking the continuity of 
expressions (8) defining each first integral. We remark that, after performing the inverse of the rescaling transformations, we recover 
the expression of the center condition given in the statement. ∎

Our second approach involves selecting a straight line different from those in Theorem 1.2. This adjustment rendered the problem 
even more challenging, the first Lyapunov constant is quite bigger, leading to a further increase in difficulty, as evidenced in our 
subsequent result. Therefore, we opted to restrict the center-focus problem even more, fixing one of the parameters.
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Proposition 3.1. Let 𝑍 ∈ 2 with a 𝐶𝐶-equilibrium point on Σ and 𝑏1 = 1. Assuming that the separation straight line is 4(𝑥 − 1) − 3(𝑦 − 1) =
0, 𝑍 has a center at the 𝐶𝐶-equilibrium point if, and only if, one of the next condition hold:

𝐶1 ∶𝑏2 − 1 = 𝑒1 − 𝑒2 = 0;

𝐶2 ∶𝑏2 + 1 = 𝑒1 + 𝑒2 = 0;

𝐶3 ∶3𝑒1 − 8 = 3𝑒2 − 4𝑏2 = 0;

𝐶4 ∶3𝑒1 − 8 = 3𝑒2𝑏2 − 4(𝑏22 + 1) = 0;

𝐶5 ∶3𝑒1 − 8 = (8𝑏2 − 7𝑒2)2 − 49(𝑏22 − 64) = 0;

𝐶6 ∶3𝑒1 − 4 = 3𝑒2 − 4𝑏2 = 0;

𝐶7 ∶3𝑒1 − 4 = 3𝑒2𝑏2 − 4(𝑏22 + 1) = 0;

𝐶8 ∶3𝑒1 − 4 = (8𝑏2 − 7𝑒2)2 − 49(𝑏22 − 64) = 0.

Proof.  Doing as in the proof of the previous result, we compute the first four (nonvanishing) Lyapunov quantities using the algorithm 
of Section 2.3. Recall that, as we have a 𝐶𝐶-equilibrium point, 𝑊1 = 0. Then, the necessary conditions on the parameters to have a 
center follow from solving (at least) the algebraic system with four equations and three parameters defined by

 = 𝑊2 = 𝑊4 = 𝑊6 = 𝑊8 = 0.

All expressions are, by definition, considered when the previous quantities vanish. So, the values of 𝑊3,𝑊5, and 𝑊7 vanish.
Here, instead of presenting the complete expressions of 𝑊𝑖, 𝑖 = 2, 4, 6, 8, for simplicity, we provide only some numerators due to 

the size of these expressions, denoted by 𝑊𝑖, which are polynomials with integer coefficients in the remaining parameters (𝑒1, 𝑏2, 𝑒2). 
In particular, from the last one, the different families in the statement can be seen by analyzing when each factor of 𝑊8 vanishes in 
the reals. The numerators of 𝑊4 and 𝑊6 are polynomials of degree 20 and 104, with 295 and 1832 monomials, respectively. Hence, 
we have:

𝑊2 = 27𝑏2𝑒1(9𝑒21 − 24𝑒1 + 32)𝑒42 − (1215𝑏22𝑒
3
1 − 3240𝑏22𝑒

2
1 + 243𝑒41 + 4320𝑏22𝑒1

− 1215𝑒31 + 2916𝑒21 − 3456𝑒1 + 2304)𝑒32 + 12𝑏2(189𝑏22𝑒
3
1 − 504𝑏22𝑒

2
1 + 54𝑒41

+ 672𝑏22𝑒1 − 216𝑒31 + 504𝑒21 − 576𝑒1 + 512)𝑒22 − 16(𝑏22 + 1)(117𝑏22𝑒
3
1

− 312𝑏22𝑒
2
1 + 27𝑒41 + 416𝑏22𝑒1 − 144𝑒31 + 348𝑒21 − 416𝑒1 + 256)𝑒2

+ 64𝑒1𝑏2(9𝑒21 + 24𝑒1 + 32)(𝑏22 + 1)2,

𝑊8 = 𝑒51(1458𝑒
8
1 − 15309𝑒71 + 78003𝑒61 − 248832𝑒51 + 535680𝑒41 − 781056𝑒31 + 755712𝑒21

−442368𝑒1 + 131072)3(𝑏2 + 1)(3𝑒1 − 8)2(3𝑒21 − 7𝑒1 + 8)2(27𝑒41 − 108𝑒31
+ 288𝑒21 − 384𝑒1 + 256)𝑏32(𝑏

2
2 + 1)7(9𝑒21 − 24𝑒1 + 32)4(3𝑒1 − 4)2(𝑏2 − 1)

(7015420248855589903862275823952189119801685375120618𝑒111
− 152357242285056016622382435380491647911148728341085013𝑒101
+ 1435336366582110818156465089095809417442072336316281705𝑒91
− 8043276072604152065018524298720295090916067001323121132𝑒81
+ 30283544465057925411860791413515197107177223647053806704𝑒71
− 81061414503281949781688061029238613292150397149292296448𝑒61
+ 158934347738141481809466504567893193833879482270751697792𝑒51
− 230418094422134302482528539805203263325388508317820726272𝑒41
+ 243754882522350777561809342871138194082313826638503997440𝑒31
− 179413407752255527803949903705145705530859993913011601408𝑒21
+ 81749048336969359284906573839660434291536221323282087936𝑒1
− 16511335007295362432559652316381263201043632657029660672).

The proof finishes by checking that 𝐶1,… , 𝐶8 are also sufficient conditions for having a center, using that 𝑍𝑖, 𝑖 = 1, 2, have a first 
integral of the form (8). Under the conditions 𝐶1 and 𝐶2, the first integrals coincide on the separation line, so it follows from 
Proposition 2.4 that the monodromic equilibrium point is a center. For the remaining conditions, it is necessary to manipulate it 
before applying again Proposition 2.4. For case 𝐶3, for example, the expressions of the first integrals in each zone can be written, up 
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to a multiplicative constant, as

𝐻1(𝑥, 𝑦) =
(3𝑦)1∕4(20𝑥 − 3𝑦 − 5)

4𝑥5∕3
,

𝐻2(𝑥, 𝑦) =
(3𝑦)(𝑏

2
2−3)∕4

(

4𝑏22𝑥 + (3 − 𝑏22)(3𝑦 + 1)
)

12𝑥𝑏
2
2∕3

,

for 𝑖 = 1, 2. Defining 𝐻̃1 = 𝐻12∕5
1  and 𝐻̃2 = 𝐻

12∕(𝑏22−3)
2 , both first integrals coincide on the straight line of separation:

𝐻̃𝑖

(

𝑥,
4(𝑥 − 1)

3
+ 1

)

=
(4𝑥 − 1)3

𝑥4
.

Consequently, we obtain a continuous first integral. The other cases follow analogously. ∎

4.  Bifurcation of limit cycles in 𝟐

In this section, we study the unfolding of small amplitude crossing limit cycles from a weak focus on Σ. We consider the perturbation 
of a 𝐶𝐶-equilibrium point with two different approaches, but in both cases we perturb an analytic quadratic Kolmogorov center. 
Firstly, we perturb maintaining (partially) integrable systems on both sides of the separation straight line. Secondly, we break this 
integrability condition. All limit cycles are of small size and bifurcate from a 𝐶𝐶-equilibrium point. In the first case, we have obtained 
weak foci of eighth-order, but due to the special structure of the perturbation family, only four or five limit cycles bifurcate depending 
on the perturbation class. In the second case, we have obtained a higher number of limit cycles, six, from weak foci of sixth-order 
that unfold in a versal way. Of course, under generic perturbation, we could unfold eight limit cycles, but the restriction to being 
in the Kolmogorov class makes the bifurcation analysis more intricate. We recall that, in the piecewise scenario, we have previously 
explained that from a weak focus of order 𝑘, one can generically unfold 𝑘 limit cycles using an analytic perturbation. See Gouveia 
and Torregrosa[33] for more details.

4.1.  Bifurcation of limit cycles in the center-center case

This section is devoted to the study of the limit cycles of crossing type in the class of piecewise quadratic Kolmogorov systems, 
2, but restricting the analysis to systems having a center in each piece. In Proposition 4.1, we analyze the bifurcation problem 
of limit cycles from a 𝐶𝐶-equilibrium point in this class but without sliding segment. This restriction is partially not considered in 
Corollary 4.2, getting one extra limit cycle. The bifurcation mechanism is the one introduced in Section 2.4 from the computation of 
the first-order terms of the Lyapunov quantities.

Proposition 4.1. Consider the piecewise perturbed polynomial system of the form (3), given by:

𝑋𝑐 = 𝑥
(

𝑏𝑥 −
(𝑏2 + 1)

𝑒
𝑦 + 𝑏2 − 𝑏𝑒 + 1

𝑒

)

,

𝑌𝑐 = 𝑦(𝑒𝑥 − 𝑏𝑦 + 𝑏 − 𝑒),

𝑋𝑖 = 𝑥
(

𝑞𝑖𝑥 +
(1 + 𝑏2)𝑝𝑖 − (2𝑏 + 𝑞𝑖)𝑒𝑞𝑖

(𝑒 + 𝑝𝑖)𝑒
𝑦 −

(𝑏2 + 𝑒𝑞𝑖 + 1)𝑝𝑖 + (𝑒 − 2𝑏 − 𝑞𝑖)𝑒𝑞𝑖
(𝑒 + 𝑝𝑖)𝑒

)

,

𝑌𝑖 = 𝑦
(

𝑝𝑖𝑥 − 𝑞𝑖𝑦 + 𝑞𝑖 − 𝑝𝑖
)

, (9)

where (𝑒 + 𝑝𝑖)𝑒 ≠ 0 for 𝑖 = 1, 2, 𝜇 = (𝑏, 𝑒) ∈ ℝ2, 𝜆 = (𝑝1, 𝑞1, 𝑝2, 𝑞2) ∈ ℝ4 are small enough, and the separation straight line is 4(𝑥 − 1) − 3(𝑦 −
1) = 0. Then, there exist values of the parameters for this perturbed polynomial system that yield a eighth-order weak focus at (1, 1), which 
can unfold at least three crossing limit cycles of small amplitude.

Proof.  System (9), with 𝑝1 = 𝑞1 = 𝑝2 = 𝑞2 = 0, is the same on both sides of the separation line. Moreover, it has a center at (1, 1)
because it possesses a first integral of the form (8), satisfying that the trace is zero and the determinant is one. Consequently, in 
this case, we have a center for all separation lines passing through the 𝐶𝐶-equilibrium point. Each piece defining (9), for 𝑖 = 1, 2, is 
integrable of center type, but the center conditions for the piecewise system depend on the values of the parameters 𝜆.

By construction, system (9) has no sliding segment, so 𝑊0 = 𝑊1 = 0 and (1, 1) is an equilibrium point of weak focus type. Its 
stability can be determined using the algorithm of Section 2.3, but first, we need to perform a translation and a rotation so that the 
equilibrium point is located at the origin and the separation line 4𝑥 − 3𝑦 = 0 becomes 𝑦 = 0. Straightforward computations provide 
the first Lyapunov quantities 𝑊𝑗 for 𝑗 = 2,… , 8. As shown in Section 2.3, the Lyapunov quantities with odd subscripts are zero when 
the previous also are; only those with even subscripts can be used to study the number of zeros of the difference map (4). We find 
that they are rational functions that admit Taylor expansions in 𝜆, and the first-order jet can be computed, yielding, in this case:

𝑊 [1]
2 = 2𝑒

243
𝐿2(𝑏, 𝑒)(𝑞1 − 𝑞2) +

2
243

𝑀2(𝑏, 𝑒)(𝑝1 − 𝑝2),
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where

𝐿2 = −243𝑒6 − 1458𝑏𝑒5 + 8(27 − 31𝑏2)𝑒4 + 288(4𝑏2 + 3)𝑏𝑒3 + 192(42𝑏4 + 27𝑏2 − 5)𝑒2

+ 512𝑏(17𝑏2 + 5)(𝑏2 + 1)𝑒 + 1024(3𝑏2 + 1)(𝑏2 + 1)2,

𝑀2 = −243𝑏𝑒6 − 1296𝑏2𝑒5 − 972𝑏(3𝑏2 + 2)𝑒4 − 2016(2𝑏2 + 1)(𝑏2 + 1)𝑒3

− 192𝑏(22𝑏2 + 17)(𝑏2 + 1)𝑒2 − 3072𝑏2(𝑏2 + 1)2𝑒 − 1024𝑏(𝑏2 + 1)3.

Assuming that 𝐿2(𝑏, 𝑒) ≠ 0 and using the Implicit Function Theorem, we can express 𝑞1 in terms of (𝑝1, 𝑝2, 𝑞2). Therefore, the first-order 
jet of the next Lyapunov quantities, for 𝑙 = 2, 3, 4, can be computed as

𝑊 [1]
2𝑙 =

𝑀2𝑙(𝑏, 𝑒)
𝐿2(𝑏, 𝑒)

(𝑝1 − 𝑝2),

where

𝑀2𝑙(𝑏, 𝑒) = 𝑒2𝑙(4𝑏 + 3𝑒)2(4𝑏2 − 𝑏𝑒 − 3𝑒2 + 4)2(4𝑏2 + 3𝑏𝑒 + 4)2(16𝑏2 + 24𝑏𝑒 + 9𝑒2 + 16)2𝑙𝑚2𝑙(𝑏, 𝑒),

with

𝑚4(𝑏, 𝑒) = −27𝑏𝑒4 − (81𝑏2 − 162)𝑒3 − 36𝑏3𝑒2 + (8𝑏4 − 192𝑏2 − 272)𝑒 + 64𝑏(𝑏2 + 1)2,

𝑚6(𝑏, 𝑒) = −346428𝑏3𝑒12 − (31177872𝑏2 − 149328)𝑏2𝑒11 − (1739448𝑏4 − 8485776𝑏2

− 36551331)𝑏𝑒10 − (145881648𝑏6 − 172851732𝑏4 − 9128457𝑏2 − 33736662)𝑒9

+ (6624864𝑏6 + 1459224𝑏4 − 2776284𝑏2 − 162724464)𝑏𝑒8 + (451638𝑏8

+ 1337868𝑏6 − 12979584𝑏4 − 88322148𝑏2 − 223416)𝑒7 + (434294784𝑏9

+ 296182656𝑏6 − 46674𝑏4 − 2553264𝑏2 + 1383552)𝑏𝑒6 − (167878656𝑏10

+ 86413824𝑏8 − 1349768448𝑏6 − 26465832𝑏4 − 1792233216𝑏2 − 414288)𝑒5

− 27648(𝑏2 + 1)2(2768𝑏6 − 2678𝑏4 − 3559𝑏2 − 15344)𝑏𝑒4 − 496(68288𝑏6

+ 36774𝑏4 + 73641𝑏2 + 58141)(𝑏2 + 1)3𝑒3 + 49152(2816𝑏4 − 5634𝑏2

− 6551)(𝑏2 + 1)4𝑏𝑒2 + 393216(𝑏2 + 1)5(44𝑏2 − 279)𝑏2𝑒 + 46137344𝑏3(𝑏2 + 1)6,

and 𝑚8(𝑏, 𝑒) is a polynomial of degree 25. We have not presented it explicitly due to its size. The solutions of the algebraic system 
{𝑚4(𝑏, 𝑒) = 0, 𝑚6(𝑏, 𝑒) = 0} can be explicitly written as

(𝑏∗, 𝑒∗) =
(

𝛾,−
𝛾(1392580𝛾4 + 544194𝛾2 − 1145761)

62169

)

, (10)

where 𝛾 is each real root of the polynomial

𝑔(𝛾) = 9604𝛾6 − 1470𝛾4 − 9797𝛾2 + 4232.

Clearly, 𝑊 [1]
4 (𝑏∗, 𝑒∗) = 𝑊 [1]

6 (𝑏∗, 𝑒∗) = 0, and then, we can check that the next coefficient is nonvanishing because its resultant with 𝑔
with respect to 𝛾 is a non-zero rational number. In fact, we can obtain

𝑊 [1]
8 (𝑏∗, 𝑒∗) = 753747879498059507302400000

10557
𝛾5 + 14617417205145737048883200000

517293
𝛾3

− 3294809732513451317657600000
57477

𝛾.

Hence, we have curves of weak foci of eighth-order passing through each point of the form (10). Moreover, the intersection of 𝑚4
and 𝑚6 is transversal at such points because the determinant of the Jacobian matrix is

d𝑒𝑡 J𝑎𝑐(𝑏∗, 𝑒∗) = 1163618760932343152640
901

𝛾4 + 3223719345310777999360
6307

𝛾2

− 6539723921076330168320
6307

.

Again, the nonvanishing condition of the above polynomial is guaranteed after checking that its resultant with 𝑔, with respect to 𝛾, 
is a non-zero rational number. So, using Proposition 2.3, the proof follows. ∎

As we have commented, the above result has no sliding segment. With Proposition 2.6, we can add an extra limit cycle of small 
amplitude using a Hopf-type bifurcation while remaining within the 2 class. Hence, after an adequate perturbation, we will have a 
sliding or escaping segment. This description proves the next immediate consequence of Proposition 4.1.

Corollary 4.2. There exist 𝑍 ∈ 2, with separation straight line 4(𝑥 − 1) − 3(𝑦 − 1) = 0 and a weak focus of eighth-order at (1, 1), which 
unfold at least four crossing limit cycles of small amplitude in the center-center case.
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The previous result naturally motivates us to investigate the focus-focus case to achieve a complete unfolding, obtaining eight 
limit cycles in total. The proofs of the above two results make it clear that only half of the coefficients of the difference map play a 
role during the unfolding procedure to obtain a degenerate Hopf bifurcation. This is similar to what occurs in the analytic case. If we 
move beyond the center-center case by considering nonvanishing traces, the computations used to obtain the coefficients 𝑊𝑘 are not 
valid. However, we will discuss this problem extensively in the next section. From the proof of Proposition 4.1, it is evident that by 
adding only the trace parameters, a fifth limit cycle of small amplitude could be obtained in Corollary 4.2. But as more limit cycles 
can appear in the next section, we have not added this particular result here.

4.2.  Bifurcation of limit cycles in the focus-focus case

In this section, we will focus on studying limit cycles of the crossing type when we do not have first integrals in each piece defined 
by systems in the 2 class. That is, when both systems have equilibria (visible or invisible) of focus type, we refer to this as the 
focus-focus case. We will follow the same scheme as in the previous section, starting with a result, Proposition 4.3, that does not 
involve a sliding or escaping segment, and although the order of the weak focus is lower, the unfolding is versal, leading to higher 
cyclicity by perturbing the same center as in the previous section. The computations are more intricate because we need to analyze 
the jets of order two. As a consequence, using Proposition 2.6, the proof of our main result, Theorem 1.1, follows by again adding 
a limit cycle due to the birth of an escaping or sliding segment. Note that for the following result, after further investigation, we 
noticed that introducing additional perturbative monomials does not result in more limit cycles.

Proposition 4.3. Consider the piecewise polynomial perturbed system of the form (5), with

(𝑋𝑐 , 𝑌𝑐 ) = (𝑥(𝑏𝑥 − (𝑏2 + 1)𝑦∕𝑒 + (𝑏2 − 𝑏𝑒 + 1)∕𝑒), 𝑦(𝑒𝑥 − 𝑏𝑦 + 𝑏 − 𝑒)),

(𝑋𝑖, 𝑌𝑖) = (𝑝𝑖0𝑥(𝑥 − 1), 𝑞𝑖1𝑦(𝑦 − 1)), (11)

where 𝑒 ≠ 0, 𝜇 = (𝑏, 𝑒) ∈ ℝ2, 𝜆 = (𝑝10, 𝑝20, 𝑞11, 𝑞21) ∈ ℝ4, with 𝑖 = 1, 2 small enough, and the straight separation line is 4(𝑥 − 1) − 3(𝑦 − 1) = 0.
Then, there exist values of the parameters such that the perturbed system has a curve of weak foci of sixth-order at (1, 1), which can unfold at 
least five crossing limit cycles of small amplitude.

Proof.  The perturbed system in the statement has a monodromic 𝐶𝐶-equilibrium at (1, 1). In order to use the mechanism described 
in Section 2.4, we translate (1, 1) to the origin and subsequently apply the affine transformation to write the Jacobian matrix at the 
equilibrium in its Jordan normal form. Then, the expressions in (11) become

𝑋𝑐 = 𝑦 + 𝑏𝑥2 + (𝑏3 − 𝑏2𝑒 + 𝑏 + 𝑒)𝑦𝑥∕𝑒 + 𝑏𝑦2,

𝑌𝑐 = −𝑥 − (𝑏2 + 1)𝑥𝑦∕𝑒,

𝑋𝑖 = 𝑞𝑖1𝑥 − (𝑝𝑖0 − 𝑞𝑖1)𝑏𝑦 + 2𝑞𝑖1𝑏𝑥𝑦 − (𝑝𝑖0𝑏2 − 𝑞𝑖1𝑏 + 𝑝𝑖0)𝑏𝑦2∕𝑒 + 𝑞𝑖1𝑥
2,

𝑌𝑖 = 𝑝𝑖0𝑦(1 + (𝑏2 + 1)𝑦∕𝑒).

Now, the origin of the unperturbed system is a non-degenerate center. We will need to carry out a second-order analysis of the first 
coefficients of the difference map, proving that their Taylor expansions (of order two), denoted by  [2]

𝑗 , are transversally independent. 
Hence, we can write the difference function as

Δ(𝑟) =
6
∑

𝑗=1
𝑤𝑗𝑟

𝑗 + 𝑂(𝑟7),

where 𝑤𝑗 ∈ ℝ, for 𝑗 = 1,… , 6. Straightforward computations show that some of the linear parts are linearly independent, allowing us 
to perform a change of variables in the parameter space to adopt them as new parameters. We then write

 [2]
1 = 𝜔1 +𝑊 [2]

1 ,  [2]
2 = 𝜔2 +𝑊 [2]

2 ,  [2]
3 = 𝑊 [1]

3 +𝑊 [2]
3 ,

 [2]
4 = 𝜔4 +𝑊 [2]

4 ,  [2]
5 = 𝑊 [1]

5 +𝑊 [2]
5 ,  [2]

6 = 𝜔6 +𝑊 [2]
6 ,

(12)

with

𝑊 [1]
3 = 1

243256
𝐿3(𝑏, 𝑒)

𝑒2
𝜔1 −

1
3(5)3

𝑀3(𝑏, 𝑒)
𝑒

𝜔2,

𝑊 [1]
5 = 1

2834512
𝐿5(𝑏, 𝑒)

𝑒4
𝜔1 −

1
3359

𝑀5(𝑏, 𝑒)
𝑒3

𝜔2 −
2
53

𝑅5(𝑏, 𝑒)
𝑒

𝜔4,
(13)

where 𝐿3,𝑀3, 𝐿5,𝑀5, and 𝑅5, have degree 6, 3, 12, 9, and 3, respectively. Moreover, each 𝑊 [2]
𝑗  is a rational function 𝑊 [2]

𝑗 =
𝑁 [2]

𝑗 ∕𝐷[2]
𝑗 (𝑏, 𝑒) where 𝑁 [2]

𝑗  are, by construction, homogeneous polynomials of degree 2 in 𝜔1, 𝜔2, 𝜔4, 𝜔6, with integer coefficients. 
The denominators 𝐷[2]

𝑗 (𝑏, 𝑒) are polynomials in 𝑏, 𝑒, with shared factors but different exponents. Due to their size, we omit them here. 
Additionally, the next two coefficients 𝑊 [1]

7 ,𝑊 [1]
8  are expressed as 𝑊 [1]

5 , i.e., linear functions in 𝜔1, 𝜔2, and 𝜔4. Then, using first-order 
analysis via Proposition 2.1, we obtain 3 small-amplitude limit cycles.
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The next step, equivalent to applying the Implicit Function Theorem, is to simplify (13) using (12), eliminating their linear parts 
by affine transformations. The resulting second-order terms are:

̃ [2]
3 =  [2]

3 −
(

1
243256

𝐿3(𝑏, 𝑒)
𝑒2

 [2]
1 − 1

3(5)3
𝑀3(𝑏, 𝑒)

𝑒
 [2]

2

)

,

̃ [2]
5 =  [2]

5 −
(

1
2834512

𝐿5(𝑏, 𝑒)
𝑒4

 [2]
1 − 1

3359
𝑀5(𝑏, 𝑒)

𝑒3
 [2]

2 − 2
53

𝑅5(𝑏, 𝑒)
𝑒

 [2]
4

)

,

where ̃ [2]
𝑗 = 𝑁̃ [2]

𝑗 ∕𝐷̃[2]
𝑗 (𝑏, 𝑒). Again, 𝑁̃ [2]

𝑗  are homogeneous polynomials of degree 2 in 𝜔1, 𝜔2, 𝜔4, and 𝜔6, with rational coefficients, 
and 𝐷̃[2]

𝑗 (𝑏, 𝑒) are polynomials in 𝑏, 𝑒, for 𝑗 = 3, 5. The transversality of the second-order terms is not affected by the denominators, 
which are nonvanishing. Then (12) becomes

 [2]
1 = 𝜔1 +

𝑁 [2]
1

𝐷(𝑏, 𝑒)
,  [2]

2 = 𝜔2 +
𝑁 [2]

2
𝐷(𝑏, 𝑒)

, ̃ [2]
3 =

𝑁̃ [2]
3

𝐷(𝑏, 𝑒)
,

 [2]
4 = 𝜔4 +

𝑁 [2]
4

𝐷(𝑏, 𝑒)
, ̃ [2]

5 =
𝑁̃ [2]

5
𝐷(𝑏, 𝑒)

,  [2]
6 = 𝜔6 +

𝑁 [2]
6

𝐷(𝑏, 𝑒)
,

(14)

where 𝐷(𝑏, 𝑒), is the nonvanishing common denominator. Now, consider new weighted variables, 𝜔1 = 𝜔2𝜔̃1, 𝜔2 = 𝜔2𝜔̃2, and 𝜔4 =
𝜔2𝜔̃4, 𝜔6 = 𝜔. Substituting into (14), we rewrite it as

 [2]
1 = 𝜔2𝜔̃1 + 𝑂(𝜔3),  [2]

2 = 𝜔2𝜔̃2 + 𝑂(𝜔3),

̃ [2]
3 = 𝜔2𝑒8𝑅(𝑏, 𝑒)

𝐿(𝑏, 𝑒)
𝐷(𝑏, 𝑒)

+ 𝑂(𝜔3),  [2]
4 = 𝜔2𝜔̃4 + 𝑂(𝜔3),

̃ [2]
5 = 𝜔2𝑒6𝑅(𝑏, 𝑒)

𝑀(𝑏, 𝑒)
𝐷(𝑏, 𝑒)

+ 𝑂(𝜔3),  [2]
6 = 𝜔 + 𝑂(𝜔2),

with

𝑅(𝑏, 𝑒) = 63𝑏3 − 63𝑏2𝑒 − 4𝑏2 + 8𝑏𝑒 + 63𝑏 + 18𝑒 − 4,

where 𝐿(𝑏, 𝑒) and 𝑀(𝑏, 𝑒) are polynomials of degree 18 and 24, respectively. We find 14 solutions of the system {𝐿(𝑏, 𝑒) = 𝑀(𝑏, 𝑒) = 0}
under the condition 𝐷(𝑏, 𝑒) ≠ 0, and only one yields transversal intersection points for each root of a given degree 36 polynomial 𝑓.
In fact, there exist a polynomial 𝑔 such that the intersection is written as (𝑏∗, 𝑒∗) = (𝑧, 𝑔(𝑧)) being 𝑧 a simple zero of 𝑓. One of these 
solutions is (𝑏∗, 𝑒∗) ≈ (−0.3589344145, 1.09217769345). The transversality is verified by checking that the determinant of the Jacobian 
matrix and the denominator 𝐷 do not vanish at this point. These last properties are confirmed by computing the resultants with 𝑓
with respect to 𝑧 and verifying that they are nonzero. The existence of a transversal curve of sixth-order weak foci follows by taking 
(𝑏∗, 𝑒∗), and 𝜔̃1 = 𝜔̃2 = 𝜔̃4 = 0, for small enough 𝜔. The proof follows again using Proposition 2.3. ∎

Other centers in Proposition 3.1 have also been considered and their bifurcation unfolding studied within Kolmogorov quadratic 
family, but fewer small-amplitude limit cycles were obtained. Therefore, we have not detailed them explicitly here.

5.  Conclusions and further remarks

In this work, we study the classical center-focus and cyclicity problems in the setting of piecewise quadratic Kolmogorov systems. 
For the first problem, we assume a natural condition on the equilibrium: it lies on the separation line and is of CC-equilibrium type. 
We provide a partial classification of centers for different separation lines. Achieving a complete classification, however, requires a 
considerable computational effort, in contrast with the smooth case where the solution is straightforward.

For the second problem, unlike the smooth quadratic case where no limit cycles exist, the piecewise scenario allows for the 
existence of at least six crossing limit cycles. Moreover, we identify foci of high weak order, eight in fact, that do not versally unfold 
into this maximum number of bifurcated limit cycles within the Kolmogorov class. This illustrates both the computational challenges 
and the distinctive differences between the two problems: the number of small-amplitude limit cycles and the order of weak foci in 
the piecewise context.

In Section 4, we restricted our analysis to the particular separation straight line Σ taking (𝛼, 𝛽) = (4, 3). We have obtained similar 
results for other choices, (𝛼, 𝛽) ∈ {(1, 2), (2, 1), (3, 1)}, which we have not included in order to avoid unnecessary repetitions. These 
cases reinforce the intuition that higher-order weak foci or additional small-amplitude limit cycles will not appear. We remark that 
the general problem is extremely intricate, but we do not expect it to yield new or qualitatively different results.

These findings highlight the richer dynamics of non-smooth systems. In particular, it has been necessary to adapt previous results 
to analyze the conditions that guarantee the existence of a pseudo-Hopf bifurcation in the framework of piecewise Kolmogorov 
systems. We believe that the technical tools and algorithms developed here will be useful for future studies on bifurcation phenomena, 
especially in contexts where classical bifurcation techniques must be adapted.
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