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Abstract
A real analytic differential system having a center at the origin of coordinates after a linear
change of variables and a rescaling of the time can be written in one of the following three
forms:

ẋ = −y + X2(x, y), ẏ = x + Y2(x, y),

called a linear type center,

ẋ = y + X2(x, y), ẏ = Y2(x, y)

called a nilpotent center, and

ẋ = X2(x, y), ẏ = Y2(x, y)

called a degenerate center, where X2(x, y) and Y2(x, y) are real analytic functions without
constant and linear terms, defined in a neighborhood of the origin.
While there are many papers dedicated to study phase portraits of different classes of linear
type centers, few papers studied the phase portraits of the nilpotent and degenerate centers.
Here we classify the global phase portraits in the Poincaré disc of reversible nilpotent centers
with cubic nonlinearities.
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1 Introduction and statement of themain results

These last years a big interest has appeared for understand better the nilpotent centers, see
for instance [5–7, 9, 11–13, 15, 16]. In the present paper we study a new class of nilpotent
centers.
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The main goal of this study is to classify the phase portraits in the Poincaré disc of the
differential systems

ẋ = y + a0x
3 + a1x

2y + a2xy
2 + a3y

3, ẏ = b0x
3 + b1x

2y + b2xy
2 + b3y

3, (1)

with ai , bi ∈ R, having at the origin a symmetric nilpotent center with respect to the y-axis.
From Theorem 3.5 of [10] in order that system (1) has a center or a focus we must have

b0 < 0.
The nilpotent center at the origin of coordinates of system (1) is symmetric with respect to

the y-axis if and only if system (1) is invariant under the change (x, y, t) −→ (−x, y,−t).
Thus the differential system (1) is reduced to the differential system

ẋ = y + a1x
2y + a3y

3, ẏ = b0x
3 + b2xy

2.

When b0 < 0 these polynomial differential systems have a nilpotent center at the origin due
to the mentioned symmetry.

In summary the objective of this paper is to characterize the phase portraits in the Poincaré
disc of the differential systems

ẋ = y + ax2y + by3, ẏ = cx3 + dxy2, (2)

with a, b, c, d ∈ R and c < 0.
Roughly speaking the Poincaré disc D2 is the closed unit disc in the plane R2, where its

interior has been identified with the whole plane R2 and its boundary, the circle S1, has been
identified with the infinity of R2. Note that in the plane R

2 we can go or come from the
infinity in as many directions as points has the circle S1. A polynomial differential system
defined in R2 can be extended analytically to the Poincaré disc D2. In this way we can study
the dynamics of the polynomial differential systems in a neighborhood of the infinity. In the
Appendix we summarize how to work in the Poincaré disc.

In the next proposition we reduce the four parameters of the differential system (2) to at
most two parameters.

Proposition 1 Differential system (2), with c < 0, after doing the following rescaling of the
variables (x, y, t) = (αx, β y, γ t) becomes one of the following five systems:

(a) If d > 0:

ẋ = y + a′x2y + by3, ẏ = −x3 + xy2, (3)

where a′, b ∈ R, by choosing α = −d−1/2, β = −(−c)1/2/d and γ = (−d/c)1/2.
(b) If d < 0:

ẋ = y + a′x2y + by3, ẏ = −x3 − xy2, (4)

where a′, b ∈ R, by choosing α = (−d)−1/2, β = (−c)1/2/d and γ = −(d/c)1/2;
(c) If d = 0 and a > 0:

ẋ = y + x2y + a′y3, ẏ = −x3, (5)

where a′ ∈ R, by choosing α = −a−1/2, β = −(−c)−1/2/a and γ = (−a/c)1/2;
(d) For d = 0 and a < 0:

ẋ = y − x2y + a′y3, ẏ = −x3, (6)

where a′ ∈ R by choosing α = (−a)−1/2, β = (−c)1/2/a and γ = −(a/c)1/2;
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Fig. 1 Phase portraits of the differential system in the Poincaré disc

(e) If d = a = 0:

ẋ = y + a′y3, ẏ = −x3, (7)

where a′ ∈ R, by choosing α = 1 and β = (−c)1/2, and γ = (−c)−1/2.

In what follows we shall write a instead of a′ in the differential systems of Proposition 1.
The proof of Proposition 1 is trivial and we do not write it.

Theorem 2 The phase portrait of the differential system (2) in the Poincaré disc is topologi-
cally equivalent to one of the phase portraits of Fig. 1. More precisely, the phase portrait of
Fig. 1

(a) is realized by system (3) when either b > (1− a)2/4, or b = (1− a)2/4 > 0 and a > 1,
or 0 < b < (1− a)2/4 and a > 1, or by system (4) with either 0 < b < (1+ a)2/4 and
a − b ≥ 0, or 0 < b = (1 + a)2/4, or by system (5) with a > 0, or by system (6) with
a > 1/4, or by system (7) with a > 0;
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(b) is realized by system (3) when 0 < b < (1 − a)2/4, −1 < a < 1 and a + b ≥ 0, or by
system (4) with 0 < b < (1 + a)2/4 and a − b < 0, or by system (5) with a = 0, or by
system (6) with a = 1/4;

(c) is realized by system (3) when either b = (1 − a)2/4 > 0 and a < 1, or b = 0 and
a ≥ 1, or by system (4) with b = 0 and a ≥ 0, or by system (7) with a = 0;

(d) is realized by system (3) when either 0 < b < (1 − a)2/4, a < −1 and a + b ≥ 0, or
0 < b < (1 − a)2/4, −1 < a < 1 and a + b = 0, or 0 < b < (1 − a)2/4, a < −1 and
a + b ≥ 0, or by system (6) with 0 < a < 1/4;

(e) is realized by system (3) when either 0 < b < (1 − a)2/4, −1 < a < 1 and a + b < 0,
or 0 < b < (1 − a)2/4 and a = −1, or 0 < b < (1 − a)2/4, a < −1 and a + b < 0;

( f ) is realized by system (3) when b = 0 and a ≥ 1;
(g) is realized by system (3) when b = 0 and 0 ≤ a < 1;
(h) is realized by system (3) when b < 0 and a < 0;
(i) is realized by system (3) when b < 0 and a ≤ −1, or b < 0, a > −1 and a + b < 0;
( j) is realized by system (3) when b < 0, a > −1 and a + b ≥ 0;
(k) is realized by system (4) with b = 0 and −1 ≤ a < 0;
(l) is realized by system (4) with b = 0 and a < −1, or by system (6) with a = 0;

(m) is realized by system (4) with b < 0, or by system (5) with a < 0, or by system (6) with
a < 0, or by system (7) with a < 0.

Theorem 2 is proved along the Sect. 2, 3, 4, 5, 6. The five differential systems of Propo-
sition 1 are integrable, their first integrals are given at beginning of Sect. 2, 3, 4, 5, 6,
respectively.

2 Analysis of system (3)

In this section for the differential system (3), first we provide its first integrals, after we study
the local phase portraits at the finite and infinite singular points, and finally we show the
global phase portraits in the Poincaré disc.

2.1 First integrals

In what follows we use log and coth to represent, respectively, the logarithmic and hyperbolic
cotangent functions.

Proposition 3 The first integrals H = H(x, y) ∈ C[x, y] of the differential systems (3) are:
(a) If (a − 1)2 − 4b �= 0, then

H(x, y) =(2(1 + a) coth−1

( √
(a − 1)2 − 4b(1 + (a + b)y2)

(1 + a + 2ax2 + 2bx2 + (a − 1)(a + b)y2)

)
+

√
(a − 1)2 − 4b · log(1 + (a + b)x4 + (a + 2b − 1)y2 + b(a + b)y4+

x2(1 + a + (a − 1)(a + b)y2)).

(b) If (a − 1)2 − 4b = 0 and a �= 1, then

H(x, y) = (4 + (1 + a)2y2)

(4 + 2(1 + a)x2 + (a2 − 1)y2)
+ log(4 + 2(1 + a)x2 + (a2 − 1)y2).
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(c) If (a − 1)2 − 4b = 0 and a = 1, then

H(x, y) = 1 + y2

1 + x2
+ log(4(1 + x2).

Proof Let (x(t), y(t)) be an arbitrary solution of the differential Eq. (3). Since for all the func-
tions H of the different statements of the proposition under the corresponding assumptions
satisfy

dH(x(t), y(t))

dt
= ∂H(x, y)

∂x

dx

dt
+ ∂H(x, y)

∂ y

dy

dt
= 0,

the functions H are first integrals. �	

2.2 The finite singular points

See Subsect. 7.1 of the Appendix for the definitions of hyperbolic, semihyperbolic and
nilponent singular points.

Proposition 4 The finite singular points of the differential system (3) are:

(a) The nilpotent center at the origin;

(b) if b < 0 the points P± =
(
0,±

√
1

−b

)
are centers; and

(c) if a + b < 0 the four additional points Q1± =
(√

−1
a+b ,±

√
−1
a+b

)
and Q2± =(

−
√

−1
a+b ,±

√
−1
a+b

)
are hyperbolic saddles.

Proof It is immediate to check that the origin, P± and the points Q1± and Q2± are the
possible finite singular points. Furthermore, P± are real if and only if b < 0 and the points
Q1± and Q2± are real if and only if a + b < 0, so statement (a) is proved. For b < 0, for the
Jacobian matrix of the differential system (3) at P±, the eigenvalues are ±(−2/b)1/2 i , i.e.
purely imaginary, so these singular points must be centers or foci, and since these points lies
in the y-axis and the system is invariant under the change (x, y, t) −→ (−x, y,−t), we get
that P± are centers. For a + b < 0, the determinant of the Jacobian matrix of the differential
system (3) at the points Q1± and Q2± is 4/(a + b), therefore by Theorem 2.15 of [10] these
points are hyperbolic saddles and the proposition is proved. �	

2.3 The infinite singular points

Proposition 5 The infinite singular points in the local chart U1 of system (3) are shown in
Table 1, where

p± =
(

± 1√
1 − a

, 0

)
, s± =

(
±

√
1 − a

2b
, 0

)
,

r± =
⎛
⎝±

√
1 − a − √

(1 − a)2 − 4b

2b
, 0

⎞
⎠ , m± =

⎛
⎝±

√
1 − a + √

(1 − a)2 − 4b

2b
, 0

⎞
⎠ .

Proof From Subsect. 7.3 the Poincaré compactification of system (3) in the local chartU1 is

u̇ = −1 + u2 − au2 − bu4 − u2v2, v̇ = −uv(a + bu2 + v2). (8)
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Assume that b > (1 − a)2/4. Then the possible infinite singular points r± and m± are
complex.

Assume that b = (1 − a)2/4 > 0 and a > 1. Then the possible infinite singular points
p± are complex.

Assume that b = (1−a)2/4 > 0 and a < 1. Then system (3) has the two infinite singular
points p±. The Jacobian matrix of system (3) evaluated at p± is identically zero. Doing blow
ups as in the proof of the next Proposition 6 we obtain that the local phase portrait of the
infinite singular points p± is formed by two hyperbolic sectors, and consequently the two
separatrices are on the line of infinity.

Assume that 0 < b < (1 − a)2/4 and a > 1. Then the possible infinite singular points
r± and m± are complex.

Assume that 0 < b < (1 − a)2/4, −1 < a < 1 and a + b > 0. Then system (3) has the
infinite singular points r± and m±. Using Theorem 2.15 of [10] m± are hyperbolic nodes,
m− is unstable (we denote it as mu−), and m+ is stable (we denote it as ms+), and r± are
hyperbolic saddles.

Assume that 0 < b < (1 − a)2/4, −1 < a < 1 and a + b = 0. Then system (3) has the
infinite singular points r± and m±. Using Theorem 2.15 of [10] m± are hyperbolic nodes,
m− is unstable (we denote it as mu−), and m+ is stable (we denote it as ms+), and r± usign
Theorem 2.19 of [10] are semihyperbolic saddles.

Assume that 0 < b < (1 − a)2/4, −1 < a < 1 and a + b < 0. Then system (3) has
the infinite singular points r± and m±, all of them are hyperbolic nodes by Theorem 2.15 of
[10], m− and r+ are unstable, and m+ and r− are stable.

Assume that 0 < b < (1 − a)2/4 and a = −1. Then system (3) has the infinite singular
points r± and m±, all of them are hyperbolic nodes by Theorem 2.15 of [10], m− and r+ are
unstable, and m+ and r− are stable.

Assume that 0 < b < (1−a)2/4, a < −1 and a+b > 0. Then system (3) has the infinite
singular points r± and m±, all of them are hyperbolic and by Theorem 2.15 of [10], m± are
saddles, and r+ is an unstable node and r− is a stable node.

Assume that 0 < b < (1−a)2/4, a < −1 and a+b = 0. Then system (3) has the infinite
singular points r± and m±. By Theorem 2.19 m± are semihyperbolic saddles. By Theorem
2.15 of [10], r± are hyperbolic nodes, r+ is unstable and r− is stable.

Assume that 0 < b < (1−a)2/4, a < −1 and a+b < 0. Then system (3) has the infinite
singular points r± and m±, all of them are hyperbolic nodes by Theorem 2.15 of [10], m−
and r+ are unstable, and m+ and r− are stable.

Assume that b = 0 and a ≥ 1. Then the possible infinite singular points p± are complex.
Assume that b = 0 and 0 < a < 1. Then system (3) has the two infinite singular

points p±. The Jacobian matrix of system (3) evaluated at p± has eigenvalues ±2
√
1 − a

and ∓a/
√
1 − a. Using Theorem 2.15 of [10] the infinite singular points p± are hyperbolic

saddles.
Assume that b = 0 and a = 0. Then system (3) has the two infinite singular points p±.

The Jacobian matrix of system (3) evaluated at p± has eigenvalues ±2
√
1 − a and 0. Using

Theorem 2.19 of [10] the infinite singular points p± are semihyperbolic saddles.
Assume that b = 0 and a < 0. Then system (3) has the two infinite singular points p±. The

Jacobian matrix of system (3) evaluated at p± has eigenvalues ±2
√
1 − a and ∓a/

√
1 − a.

Using Theorem 2.15 of [10] the infinite singular points p± are hyperbolic nodes, p+ unstable
and p− stable.

Assume that b < 0 and a ≤ −1. Then system (3) has the two infinite singular points r±.
Using Theorem 2.15 of [10] the infinite singular points r± are hyperbolic nodes, r+ unstble,
r− stable.
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Fig. 2 The blow up of the infinite singular point at the origin of the local chart U2 of system (9): a for a < 0,
b for 0 ≤ a < 1, and c for a ≥ 1. The three pictures of the first row of this figure correspond to differential
system (11). The three pictures of the second row of this figure correspond to differential system (10). Finally
the three pictures of the third row of this figure correspond to differential system (9), i.e. to the local phase
portrait at the origin (0, 0) of the chart U2

Assume that b < 0, a > −1 and a + b > 0. Then system (3) has the two infinite singular
points r±. Using Theorem 2.15 of [10] the infinite singular points r± are hyperbolic saddles.

Assume that b < 0, a > −1 and a + b > 0. Then system (3) has the two infinite singular
points r±. Using Theorem 2.19 of [10] the infinite singular points r± are semihyperbolic
saddles.

Assume that b < 0, a > −1 and a + b < 0. Then system (3) has the two infinite singular
points r±. Using Theorem 2.15 of [10] the infinite singular points r± are hyperbolic nodes,
r+ unstble, r− stable.

This completes the proof of the proposition. �	

Proposition 6 The origin of the local chart U2 of system (3) is an infinite singular point if
and only if b = 0. Its local phase portrait is given in Fig. 2a if a < 0, 2b if 0 ≤ a < 1, and
2c if a ≥ 1.
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Proof From Subsect. 7.3 the Poincaré compactification of system (3) in the local chart U2

u̇ = b − (1 − a)u2 + v2 + u4, v̇ = −uv + u3v (9)

Therefore the origin of U2 is an infinite singular point if and only if b = 0. In this case
the Jacobian matrix of the differential system (9) at the origin is identically zero, and for
the analysis of the local phase portrait at the origin, we will apply vertical blow ups, see
Subsect. 7.2 of the Appendix.

We are able to do the vertical blow up (u, v) = (u1, u1v1), since u = 0 is not a charac-
teristic direction. Rewriting the system in the coordinates u1 and v1 we get

u̇1 = u21(a − 1 + u21 + v21), v̇1 = −u1v1(a + v21). (10)

Eliminating the common factor u1 in the expressions of u̇1 and v̇1 by rescaling the time
variable we get the differential system

u̇1 = u1(a − 1 + u21 + v21), v̇1 = −v1(a + v21). (11)

So along the axis u1 = 0, the differential system (11) has three singular points (0, 0) and
(0,±√−a) if a < 0 and only the origin if a ≥ 0.

By Theorems 2.15 and 2.19 of [10] we obtain that (0,±√−a) are hyperbolic stable nodes,
and for (0, 0) we have that it is a semihyperbolic saddle if a = 1, a hyperbolic stable node if
0 ≤ a < 1, a semihyperbolic stable node if a = 0 and a hyperbolic saddle if a > 1 or a < 0.

With these information going back through the blow ups we obtain Fig. 2, and we finish
the proof of proposition. �	

2.4 Phase portraits in the Poincaré disc

Combining the Propositions 4, 5 and 6 we obtain the following for the differential system
(3).

Assume that b > (1− a)2/4. Then the unique finite singular point is the nilpotent center
at (0, 0), and there are no infinite singular points. We claim that the center at (0, 0) is global,
i.e. R2 \ {(0, 0)} is filled with periodic orbits. Indeed, if the center is not global let γ be the
last periodic orbit surrounding the center. Consider the Poincaré map or the first return map
defined on a small transversal segment � intersect the orbit γ . This is an analytic map of
one variable that on the piece of the segment � contained in the bounded region limited by
γ is the identity map. So this map is the identity on the whole segment �, in contradiction
with the assumption that γ was the last orbit surrounding the center (0, 0). Hence the phase
portrait in the Poincaré disc is topologically equivalent to the phase portrait of Fig. 1a.

Assume that b = (1− a)2/4 > 0 and a > 1. Again the unique finite singular point is the
nilpotent center at (0, 0), and there are no infinite singular points. Using the same arguments
than in the case b > (1 − a)2/4, it follows that the phase portrait in the Poincaré disc is
topologically equivalent to the phase portrait of Fig. 1a.

Assume that b = (1 − a)2/4 > 0 and a < 1. Then the unique finite singular point is
the nilpotent center at (0, 0), and the two infinite singular points p± in the local chart U1

are formed by two hyperbolic sectors, of course we also have two infinite singular points in
the local chart V1 formed by two hyperbolic sectors. Hence using the arguments in the proof
of the case b > (1 − a)2/4 the center (0, 0) is global. Therefore, using the first integral of
system (3) in this case, the phase portrait in the Poincaré disc is topologically equivalent to
the phase portrait of Fig. 1c.
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Assume that 0 < b < (1 − a)2/4 and a > 1. The unique finite singular point is the
nilpotent center at (0, 0), and there are no infinite singular points. Using the same arguments
than in the case b > (1 − a)2/4, it follows that the phase portrait in the Poincaré disc is
topologically equivalent to the phase portrait of Fig. 1a.

Assume that 0 < b < (1− a)2/4, −1 < a < 1 and a + b > 0. The unique finite singular
point is the nilpotent center at (0, 0), and has four infinite singular points in the local chart
U1, i.e. m± are hyperbolic nodes, m− is unstable and m+ is stable and r± are hyperbolic
saddles. Of course, we have the symetric four infinite singular points with respect to the
origin of coodinates in the local chart V1. Hence the phase portrait in the Poincaré disc is
topologically equivalent to the phase portrait of Fig. 1b.

Assume that 0 < b < (1 − a)2/4, −1 < a < 1 and a + b = 0. In this case we get
the same phase portrait in the Poincaré disc than in the previous case 0 < b < (1 − a)2/4,
−1 < a < 1 and a + b > 0, the unique difference is that the infinite singular points r± and
their symmetric in the chart V1 are semihyperbolic saddles.

Assume that 0 < b < (1 − a)2/4, −1 < a < 1 and a + b < 0. Then there are five finite
singular points, the nilpotent center (0, 0), and the four hyperbolic saddles Q1± and Q2±.
And there are four infinite singular points in the chart U1 that are hyperbolic nodes, m− and
r+ are unstable, and m+ and r− are stable, and of course the symmetric four nodes in the
chart V1. Therefore, using the first integral of system (3) in this case, we obtain the phase
portrait in the Poincaré disc is topologically equivalent to the phase portrait of Fig. 1e.

Assume that 0 < b < (1− a)2/4 and a = −1. The proof of this case is exactly the same
than the previous case 0 < b < (1 − a)2/4, −1 < a < 1 and a + b < 0.

Assume that 0 < b < (1− a)2/4, a < −1 and a + b > 0. Then the unique finite singular
point is the nilpotent center at (0, 0), and the four infinite singular points m± and r± in the
local chartU1,m± are saddles, and r+ is an unstable node and r− is a stable node. Of course,
we also have the symmetric four infinite singular points in the chart V1. Therefore, using the
first integral of system (3) in this case, the phase portrait in the Poincaré disc is topologically
equivalent to the phase portrait of Fig. 1d.

Assume that 0 < b < (1 − a)2/4, a < −1 and a + b = 0. In this case we get the same
phase portrait in the Poincaré disc than in the previous case 0 < b < (1−a)2/4, a < −1 and
a + b > 0, the unique difference is that the infinite singular points m± and their symmetric
in the chart V1 are semihyperbolic saddles.

Assume that 0 < b < (1−a)2/4, a < −1 and a+b < 0. The proof of this case is exactly
the same than the case 0 < b < (1 − a)2/4, −1 < a < 1 and a + b < 0.

Assume that b = 0 and a ≥ 1. Then the unique finite singular point is the nilpotent center
(0, 0), and system (3) has no infinite singular point in the chartU1, but the origin of the chart
U2 is an infinite singular point formed by two hyperbolic sectors. Of course, the origin of
the chart V2 is also an infinite singular point formed by two hyperbolic sectors. Using the
arguments of the proof of the case b > (1−a)2/4 the nilpotent center is global. So the phase
portrait in the Poincaré disc is topologically equivalent to the phase portrait of Fig. 1f.

Assume that b = 0 and 0 < a < 1. Then the unique finite singular point is the nilpotent
center (0, 0). In the chart U1 system (3) has the two saddles p±, and of course the two
symmetric saddles in the chart V1. Moreover, the origin of the chart U2 has the local phase
portrait of Fig. 2b, and we have its symmetric infinite singular point in the origin of the chart
V2. Therefore, using the first integral of system (3) in this case, the phase portrait in the
Poincaré disc is topologically equivalent to the phase portrait of Fig. 1g.

Assume that b = 0 and a = 0. In this case we get the same phase portrait in the Poincaré
disc than in the previous case b = 0 and 0 < a < 1, the unique difference is that the infinite
singular points p± and their symmetric in the chart V1 are semihyperbolic saddles.
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Assume that b = 0 and a < 0. Then system (3) has five finite singular points, the nilpotent
center at (0, 0) and four saddles at Q1± and Q2±; and at infinity it has two nodes p± in the
chart U1, being p+ unstable and p− stable, and their symmetric in the chart V1. Also the
origins of the charts U2 and V2 are infinite singularites, their phase portraits are shown in
Fig. 2a. Therefore, using the first integral of system (3) in this case, the phase portrait in the
Poincaré disc is topologically equivalent to the phase portrait of Fig. 1h.

Assume that b < 0 and a ≤ −1. Then system (3) has seven finite singular points, the
nilpotent center at (0, 0), two centers at P± and four saddles at Q1± and Q2±; and at infinity
it has two nodes r± in the chart U1, being r+ unstable and r− stable; and their symmetric
nodes in the chart V1. Therefore, using the first integral of system (3) in this case, the phase
portrait in the Poincaré disc is topologically equivalent to the phase portrait of Fig. 1i.

Assume that b < 0, a > −1 and a + b > 0. Then system (3) has three finite singular
points, the nilpotent center at (0, 0) and two centers at P±; and at infinity it has two saddles
r± in the chart U1; and their symmetric saddles in the chart V1. Therefore, using the first
integral of system (3) in this case, the phase portrait in the Poincaré disc is topologically
equivalent to the phase portrait of Fig. 1j.

Assume that b < 0, a > −1 and a+b = 0. In this casewe get the same phase portrait in the
Poincaré disc than in the previous case b < 0, a > −1 and a + b > 0, the unique difference
is that the infinite singular points r± and their symmetric in the chart V1 are semihyperbolic
saddles.

Assume that b < 0, a > −1 and a + b < 0. The proof of this case is exactely the proof
of the case b < 0 and a ≤ −1.

In summary, Theorem 2 is proved when the differential system (1) is equivalent to the
differential system (3) of Proposition 1.

3 Analysis of system (4)

As in the previous section we divide the study of the differential systems (4) into four
subsections.

3.1 First integrals

Proposition 7 The first integrals H = H(x, y) of the differential systems (4) are:

(a) If ((1 + a)2 − 4b) �= 0, then

H = 2(a − 1) coth−1

( √
(a + 1)2 − 4b(y2(a − b) − 1)

(a + 1)y2(a − b) + 2ax2 − a − 2bx2 + 1

)
+√

(a + 1)2 − 4b log
(
x4(b − a) + x2

(− (
(a + 1)y2(a − b)

) + a − 1
) +

by4(b − a) − y2(a − 2b + 1) + 1
)
.

(b) If (1 + a)2 − 4b = 0 and a �= −1, then

H = (a − 1)2y2 + 4(
a2 − 1

)
y2 + 2(a − 1)x2 + 4

+ log
((
a2 − 1

)
y2 + 2(a − 1)x2 + 4

)
.

(c) If (1 + a)2 − 4b = 0 and a = −1, then H = x4 + y4 + 2y2(1 + x2).

The proof of Proposition 7 is essentially the proof of Proposition 3.
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3.2 The finite singular points

Proposition 8 The finite singular points of the differential system (4) are:

(a) the nilpotent center at the origin (0, 0); and

(b) if b < 0 the two additional P± =
(
0,±

√
−1
b

)
hyperbolic saddles.

Proof It is immediate to check that the singular points are the origin and additionally P±
when b < 0. Since the determinant of the Jacobian matrix of the differential system (4) at
the singular points P± is 2/b, by Theorem 2.15 of [10] these two singularitis are hyperbolic
saddles. �	

3.3 The infinite singular points

Proposition 9 The infinite singular points in the local chart U1 of system (4) are:

(a) two infinite singular points p± = (±1/
√−1 − a, 0) if b = 0 and a < −1, p− is a

hyperbolic stable node and p+ is a hyperbolic unstable node;

(b) two infinite singular points q± = (±
√

(1 + a + √
(a + 1)2 − 4b)/(−2b), 0) if either

b < 0, or a ≤ 1 and 0 < b < (1 + a)2/4, then q± are hyperbolic saddles if 0 <

b < (1 + a)2/4 and −1 < a ≤ 1. While q± are hyperbolic nodes if either b < 0, or
0 < b < (1 + a)2/4 and a < 0;

(c) two infinite singular points r± = (±
√

(1 + a − √
(a + 1)2 − 4b)/(−2b), 0), if a < −1

and 0 < b < (1 + a)2/4, then r± are hyperbolic saddles.
(d) two infinite singular points s± = (±√

2/(−1 − a), 0) if b = (1 + a)2/4. Then s± are
semihyperbolic saddle-nodes.

Proof From Subsect. 7.3 the Poincaré compactification of system (3) in the local chartU1 is

u̇ = −1 − (1 + a)u2 − bu4 − u2v2, v̇ = −uv(a + bu2 + v2). (12)

If b = 0 the possible infinite singular points of the differential system (12) are p±. Clearly
these points are real if and only if a < −1. So statement (a) is proved for b = 0. For a < −1
the eigenvalues of the Jacobian matrix of the differential system (12) at p− are −2

√−a − 1
and a/

√−a − 1, so by the Hartman-Grobman Theorem (see for instance [8]) or Theorem
2.15 of [10] p− is a hyperbolic stable node. Since such eigenvalues for the singular point
p+ are 2

√−a − 1 and −a/
√−a − 1, hence p+ is a hyperbolic unstable node. This proves

statement (a).
If b �= 0 the possible infinite singular points of the differential system (12) are q± and r±.

It is easy to verify that the points q± are real if either b < 0, or a ≤ 1 and 0 < b < (1+a)2/4,
and that the points r± are real if a < −1 and 0 < b < (1 + a)2/4.

If the determinant of the Jacobian matrix at an infinite singular point is negative we have
a hyperbolic saddle (see Theorem 2.15 of [10]), and if such determinant is positive we have
a hyperbolic node because a focus can not exist at infinity because the infinity is invariant
(see again Theorem 2.15 of [10]).

At the points q± the mentioned determinant is positive if and only if either b < 0, or
0 < b < (1 + a)2/4 and a < 0, and negative if and only if 0 < b < (1 + a)2/4 and
−1 < a ≤ 1.
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Fig. 3 The blow up of the infinite singular point at the origin of the local chart U2 of system (13): a for
a < −1, b for −1 ≤ a < 0 and c for a ≥ 0. The three pictures of the first row of this figure correspond to
differential system (15). The three pictures of the second row of this figure correspond to differential system
(14). Finally the three pictures of the third row of this figure correspond to differential system (13), i.e to the
local phase portrait at the origin of the chart U2

At the points r± the mentioned determinant is always negative. This proves statements
(b) and (c).

When b = (1+a)2/4 the uniwue infinite singular points of system (12) are the points s±.
By Theorem 2.19 of [10] they are semihyperbolic saddle-nodes. This completes the proof of
the proposition. �	

Proposition 10 The origin of the local chart U2 of system (4) is an infinite singular point
if and only if b = 0. Its local phase portrait is given in Fig. 3a if a < −1, in Fig. 3b if
−1 ≤ a < 0, and in Fig. 3c if a ≥ 0.

Proof From Subsect. 7.3 the Poincaré compactification of system (4) in the local chartU2 is

u̇ = b + (1 + a)u2 + v2 + u4, v̇ = uv(1 + u2). (13)
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Thus the origin of U2 is an infinite singular point if and only if b = 0. Then the Jacobian
matrix of the differential system (13) at the origin is identically zero. So for studying the
local phase portrait of the origin ofU2 we shall use vertical blow ups, see Subsect. 7.2 of the
Appendix.

Since u = 0 is not a characteristic direction we do the vertical blow up change of variables
(u, v) = (u1, u1v1). In the new variables (u1, v1) system (13) writes

u̇1 = u21(1 + a + u21 + v21), v̇1 = −u1v1(a + v21). (14)

Doing a rescaling of the time variable we eliminate the common factor u1 between u̇1 and
v̇1, and we get the differential system

u̇1 = u1(1 + a + u21 + v21), v̇1 = −v1(a + v21). (15)

The differential system (15) on the vertical axis u1 = 0 has three singular points (0, 0) and
(0,±√−a) if a < 0, and only the singular point (0, 0) if a ≥ 0.

Using Theorems 2.15 and 2.19 of [10] we obtain that the singular point (0, 0) is: a hyper-
bolic saddle if a < −1; a semihyperbolic unstable node if a = −1; a hyperbolic unstable
node if −1 < a < 0; a semihyperbolic saddle if a = 0, and a hyperbolic saddle if a > 0.
While the two singular points (0,±√−a) are hyperbolic saddles.

With these information going back through the blow ups we obtain Fig. 3, and the propo-
sition is proved. �	

3.4 Phase portraits in the Poincaré disc

AQUI AFEGIR AL TEOREMA 2
From Propositions 8, 9 and 10 we obtain the following for the differential system (4).
Assume that 0 < b < (1 + a)2/4 and a − b ≥ 0. Then the unique finite singular point is

the nilpotent center (0, 0) and system (4) has no infinite singular points. Then the local center
at the origin is a global center using the arguments of system (3) when b > (1 − a)2/4, see
Fig. 1a.

Assume that 0 < b < (1 + a)2/4 and a − b < 0. Then the unique finite singular point
is the nilpotent center (0, 0) and system (4) has the two infinite singular points s± thar are
semihyperbolic saddle-nodes. Then using the first integral of system (4) in this case we obtain
the phase portrait of system (4) is given in Fig. 1b.

Assume that 0 < b = (1 + a)2/4. Then the unique finite singular point is the nilpotent
center (0, 0) and system (4) has the two infinite singular points s± that are semihyperbolic
saddle-nodes. Then using the first integral of system (4) in this case we obtain the phase
portrait of system (4) is given in Fig. 1b.

Assume that b = 0 and a ≥ 0. Then the unique finite singular point is the nilpotent
center (0, 0) and the unique infinite singular points are the origins of the local charts U2

and V2, whose local phase portraits are given in Fig. 1c. The arguments used in the case
0 < b < (1 + a)2/4 and a − b ≥ 0 show that the (0, 0) is a global center, see Fig. 1c.

Assume that b = 0 and −1 ≤ a < 0. Then the unique finite singular point is the nilpotent
center (0, 0) and the unique infinite singular points are the origins of the local charts U2 and
V2, whose local phase portraits are given in Fig. 1b. In this case we have the two invariant
straight lines x = ±√−1/a. So the phase portrait of system (4) is given in Fig. 1k.

Assume that b = 0 and a < −1. Then the unique finite singular point is the nilpotent
center (0, 0) and the infinite singular points are the origins of the local charts U2 and V2,
whose local phase portraits are given in Fig. 1a, together with the two infinite hyperbolic
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nodes, p± in the chart U1 and their two symmetric with respect to the origin in the chart V1.
Since in this case system (4) also has the invariant straight lines x = ±√−1/a its phase
portrait is shown in Fig. 1l.

Assume that b < 0 and a > b. Then system (4) has three finite singular points the center
(0, 0), and the two saddles P±, and the infinite singular points are the two hyperbolic saddles,
q± in the chart U1 and their two symmetric with respect to the origin in the chart V1. Then,
using the first integral of system (4) in this case, the phase portrait of system (4) is given in
Fig. 1m.

Assume that b < 0 and a ≤ b. In this case the proof is exactly the proof of the previous
case b < 0 and a > b.

In summary, Theorem 2 is proved when the differential system (1) is equivalent to the
differential system (4) of Proposition 1.

4 Analysis of system (5)

Nowwe continue the study of the differential system (5) andwe divide it into four subsections.

4.1 First integrals

Proposition 11 The fist integral H = H(x, y) of the differential system (5) are:

(a) If a �= 1/4, then

H(x, y) = − 2 coth−1

(√
4a − 1(1 + ay2)

1 + a(2x2 + y2)

)
+

√
4a − 1 log

(
ax4 + x2(1 + ay2) + (1 + ay2)2

)
.

(b) If a = 1/4, then

H(x, y) = 4 + y2

4 + 2x2 + y2
+ log

(
4 + 2x2 + y2

)
.

The proof of Proposition 11 is essentially the proof of Proposition 3.

4.2 The finite singular points

Proposition 12 The finite singular points of the differential system (5) are:

(a) the nilpotent center at the origin (0, 0); and

(b) if a < 0 the two additional P± =
(
0,±

√
−1
a

)
nilpotent saddles.

Proof It is easy to check that the singular points are the origin and P± when a < 0. Since the
Jacobian matrix of the differential system (5) at the singular points P± is a nilpotent matrix,
by applying Theorem 3.5 of [10] these two singularities are nilpontent saddles. �	

4.3 The infinite singular points

Proposition 13 The infinite singular points in the local chart U1 of system (5) are:
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Fig. 4 The blow up of the infinite singular point at the origin of the local chartU2 of system (17): a correspond
to differential system (19), b correspond to differential system (18) and c correspond to differential system
(17), i.e to the local phase portrait at the origin of the chart U2

(a) no infinite singular points if a ≥ 0; and

(b) two infinite singular points p± = (±
√

−(1 + √
1 − 4a)/(2a), 0) if a < 0, and p− is

hyperbolic stable node and p+ is hyperbolic unstable node.

Proof From Subsect. 7.3 the Poincaré compactification of system (5) in the local chartU1 is

u̇ = −1 − u2 − au4 − u2v2, v̇ = −uv(1 + au2 + v2). (16)

The possible infinite singular points of the differential system (16) are p± when a < 0 and

the points q± = (±(

√
(−1 + √

1 − 4a)/(2a)), 0) , the points q± are not real for all a ∈ R.
So the statement (a) is proved.

For a < 0 the only real points are p±, and the eigenvalues of the Jacobianmatrix of the dif-

ferential system (16) are−√
2/

√
−((1 + √

1 − 4a)/a) and−√
2 − 8a

√
−(1 + √

1 − 4a)/a

for p−, and
√
2/

√
−((1 + √

1 − 4a)/a) and
√
2 − 8a

√
−(1 + √

1 − 4a)/a for p+. There-
fore by Theorem 2.15 of [10] p− is hyperbolic stable node and p+ is hyperbolic unstable
node. This proves the statement (b). �	

Proposition 14 The origin of the local chart U2 of system (5) is an infinite singular point if
and only if a = 0. Its local phase portrait is given in Fig. 4c.

Proof From Subsect. 7.3, the Poincaré compactification of system (5) in the local chart U2

is

u̇ = a + u2 + v2 + u4, v̇ = u3v. (17)

Thus the origin of U2 is an infinite singular point if and only if a = 0. Then the Jacobian
matrix of the differential system (17) at the origin is identically zero. In order to study the
local phase portrait of the origin in U2, we shall use vertical blow ups, see Subsect. 7.2 of
the Appendix.

Since u = 0 is not a characteristic direction, we do a vertical blow up, i.e. the change of
variables (u, v) = (u1, u1v1). In the new variables (u1, v1), system (17) writes

u̇1 = u21(1 + u21 + v21), v̇1 = −u1v1(1 + v21). (18)

Doing a rescaling of the time variable we eliminate the common factor u1 between u̇1 and
v̇1, and we get the differential system

u̇1 = u1(1 + u21 + v21), v̇1 = −v1(1 + v21). (19)
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The differential system (19) on the vertical axis u1 = 0 has only the origin as singular point,
and the eigenvalues of the Jacobian matrix of the differential system (19) at the origin are
±1, so by Theorem 2.15 of [10] the singular point (0, 0) is a hyperbolic saddle.

Putting together these information and undoing the blow ups we obtain Fig. 4 and the
proof is completed. �	

4.4 Phase portraits in the Poincaré disc

Combining the information of Propositions 11, 12, 13 and 14 we obtain the following for the
differential system (5).

Assume that a > 0. Then the unique finite singular point is the nilpotent center (0, 0)
and the system (5) has no infinite singular points. In this case the phase portrait is given in
Fig. 1a.

Assume that a = 0. Then the unique finite singular point is the nilpotent center (0, 0)
and the infinite singular points are the origins of the local chart U2 and V2 whose local
phase portraits are formed by two hyperbolic sectors. Then the behavior of system (5) in the
Poincaré disc in this case is the one of Fig. 1b.

Assume that a < 0. Then system (5) has the nilpotent center (0, 0) and the nilpotent
saddles P± and two infinite points p± in the chart U1, p− is a stable node and p+ is an
unstable node, and their two symmetric with respect to the origin in the chart V1. In this case
taking into account the first Integral of system (5) the phase portrait is the same as the one
of Fig. 1m.

In summary, Theorem 2 is proved when the differential system (1) is equivalent to the
differential system (5) of Proposition 1.

5 Analysis of system (6)

Here the work is essentially the same then for system (5), and as before we have four
subsections.

5.1 First integrals

Proposition 15 The first integral H = H(x, y) of the differential system (6) are:

(a) If a �= 1/4, then

H(x, y) = − 2 coth−1

(√
4a − 1(1 + ay2))

−1 + 2ax2 − ay2

)
−

(
√
4a − 1) log

(
ax4 − x2(1 + ay2) + (1 + ay2)2

)
.

(b) If a = 1/4, then

H(x, y) = 4 + y2 + (4 − 2x2 + y2) log
(
4 − 2x2 + y2

)
.

The proof of Proposition 15 is essentially the proof of Proposition 3.
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5.2 The finite singular points

Proposition 16 The finite singular points of the differnetial system (6) are:

(a) the nilpotent center at the origin (0, 0); and

(b) if a < 0 the two additional P± =
(
0,±

√
−1
a

)
nilpotent saddles.

The proof of Proposition 16 is the same than the proof of Proposition 12.

5.3 The infinite singular points

Proposition 17 The infinite singular points in the local chart U1 of system (6) are:

(a) no infinite singular points if a > 1/4;

(b) two infinite singular points p± =
(
±√

2/
√
1 + √

1 − 4a, 0
)
if a ≤ 1/4, p− is a hyper-

bolic stable node and p+ is a hyperbolic unstable node when a < 1/4, and p± are
semihyperbolic saddle nodes when a = 1/4;

(c) two infinite singular points q± =
(

±
√

(1 + √
1 − 4a)/(2a), 0

)
if 0 < a < 1/4, and

the points q± are hyperbolic saddles.

Proof From Subsect. 7.3 the Poincaré compactification of the differential system (6) in the
local chart U1 is

u̇ = −1 + u2 − au4 − u2v2, v̇ = −uv(−1 + au2 + v2). (20)

The possible infinite singular points of the differential system (20) are p± and q±. But p±
are real if and only if a ≤ 1/4, meanwhile q± are real if and only if 0 < a ≤ 1/4. Note that
p± = q± if a = 1/4. So statement (a) is proved.

For 0 < a < 1/4, the eigenvalues of the Jacobian matrix of the differential system (20)

at p− are −
√
1 + √

1 − 4a/
√
2 and −2

√
2(1 + √

1 − 4a − 4a)/(1 + √
1 − 4a)

3
2 and at

p+ are
√
1 + √

1 − 4a/
√
2 and 2

√
2(1+ √

1 − 4a − 4a)/(1+ √
1 − 4a)

3
2 . So by applying

Theorem 2.15 of [10], we obtain that p± are hyperbolic nodes, unstable in the case of p−
and stable for p+. In a similar way for 0 < a < 1/4, by using the same theorem we get that
points q± are hyperbolic saddles. This proves statement (b) for a < 1/4 and statement (c)
for 0 < a < 1/4.

In order to complete the proof of statement (b) we assume that a = 1/4. Then the second
eigenvalue of both points p± are zero, therefore these two singular points are semihyperbolic.
By using Theorem 2.19 of [10] we obtain that p± are saddle nodes. And this completes the
proof of the proposition. �	

Proposition 18 The origin of the local chart U2 of system (6) is an infinite singular point if
and only if a = 0. Its local phase portrait is given in Fig. 5c.

Proof From Subsect. 7.3 the Poincaré compactificaton of system (6) in the local chartU2 is

u̇ = a − u2 + u4 + v2, v̇ = u3v. (21)

Therefore the origin ofU2 is an infinite singular point if and only if a = 0. Since the Jacobian
matrix of the differential system (21) at the origin is identically zerowe proceed to use vertical
blow ups.
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Fig. 5 The blow up of the infinite singular point at the origin of the local chart U2 system (21): a correspond
to differential system (23), b correspond to differential system (22) and (c) correspond to differential system
(21), i.e to the local phase portrait at the origin of the chart U2

Since u = 0 is not a characteristic directionwe do the vertical blowup (u, v) = (u1, u1v1).
Rewriting system (21) in the variables (u1, v1) we have

u̇1 = u21(−1 + u21 + v21), v̇1 = −u1v1(v1 − 1)(1 + v1). (22)

If we eliminate the common factor u1 between u̇1 and v̇1 by doing a rescale of the time
variable, we get the differential system

u̇1 = u1(−1 + u21 + v21), v̇1 = −v1(v1 − 1)(1 + v1). (23)

So the differential system (23) has three singular points on the vertical axis: (0, 0) and (0,±1).
By using Theorem 2.15 and 2.19 of [10] we get that (0, 0) is a hyperbolic saddle and the
points (0,±1) are semihyperbolic saddles.

Therefore, using these information and undoing the blow ups we obtain Fig. 5 and this
finish the proof. �	

5.4 Phase portraits in the Poincaré disc

Combining the information of Propositions 15, 16, 17 and 18 we get the following for the
differential system (6).

Assume that a > 1/4. Then the unique finite singular point is the nilpotent center and
there is no infinite singular point. In this case the phase portrait in the Poincaré disc is given
in Fig. 1a.

Assume that a = 1/4. Then the unique finite singular point is the nilpotent center, and at
infinity system (6) has the infinite semihyperbolic saddles nodes p±. In this case using the
first initegral of system (6) the phase portrait in the Poincaré disc is given in the Fig. 1b.

Assume that 0 < a < 1/4. Then the unique finite singular point is the nilpotent center
and in the local chart U1 there are four infinite singular points the p± and q±, p− is a stable
node and p+ is an unstable node, and q± are saddles, and of course there are their symmetric
with respect to the origin in the chart V1. In this case using the first integral of system (6) the
phase portrait in the Poincaré disc is given in the Fig. 1d.

Assume that a = 0. Then the only finite singular point is the nilpotent center at (0, 0).
While the infinite singular points are located at the origins of the local charts U2 and V2.
Their corresponding local phase portraits are displayed in Fig. 5c, in the local chartU1 there
are the two infinite hyperbolic nodes p±, p− is a stable node and p+ is an unstable node, and
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their symmetric counterparts with respect to the origin in the chart V1. In this case system
(6) has the invariant straight lines x = ±1. Using these informations the phase portrait in the
Poincaré disc is the one of Fig. 1l.

Assume that a < 0. Then system (6) has three finite singular points, the nilpotent center
(0, 0) and the two saddles P±. At infinity system (6) has the two nodes p±, p− is a stable
node and p+ is an unstable node. In this case using the first integral of system (6) the phase
portrait in the Poincaré disc is given in the Fig. 1m.

In summary, Theorem 2 is proved when the differential system (1) is equivalent to the
differential system (6) of Proposition 1.

6 Analysis of system (7)

Lastly for the differential system (7) we have the following subsections.

6.1 First integrals

Proposition 19 The function H(x, y) = x4 + 2y2 + ay4 is a first integral of the differential
system (7).

The proof of Proposition 19 is the same than the proof of Proposition 3.

6.2 The finite singular points

Proposition 20 The finite singular points of the differential system (7) are:

(a) the nilpotent center at the origin (0, 0); and

(b) if a < 0 the two additional P± =
(
0,±

√
1

−a

)
nilpotent saddles.

The proof of Proposition 20 follows from the proof of Proposition 12.

6.3 The infinite singular points

Proposition 21 The infinite singular points in the local chart U1 of system (7) are:

(a) no infinite singular points if a ≥ 0; and

(b) two infinite points p± =
(
±( 1

−a )
1
4 , 0

)
if a < 0, and p− is a hyperbolic stable node and

p+ is a hyperbolic unstable node.

The proof of Proposition 21 essentially follows the steps of the previous propositions
about the infinite singular points in the local chart U1.

Proposition 22 The origin of the local chart U2 of system (7) is an infinite singular point if
and only if a = 0. Its local phase portrait is given in Fig. 4c.

Proof From Subsect. 7.3 the Poincaré compactification of the differential system (7) in the
local chart U2 is

u̇ = a + v2 + u4, v̇ = u3v. (24)
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Therefore the origin ofU2 is an infinite singular point if and only if a = 0. Since the Jacobian
matrix of the differential system (24) at the origin is identically zero, we study the local phase
portrait at this point using vertical blow ups.

Since u = 0 is not a characteristic direction we shall do the vertical blow up (u, v) =
(u1, u1v1). Therefore the differential system (24) in the new coordinates is

u̇1 = u21(u
2
1 + v21), v̇1 = −u1v

3
1 . (25)

Doing a rescaling of the time variable we are able to eliminate the common factor u1 between
u̇1 and v̇1, and we get

u̇1 = u1(u
2
1 + v21), v̇1 = −v31 . (26)

The differential system (26) on the vertical axis u1 = 0 has only the origin (0, 0) as singular
point. However, the Jacobian matrix of the differential system (26) at the origin is again
identically zero.

Since u1 = 0 is a characteristic direction of system (26), in order to do a vertical blow
up, we first need to do a twist, i.e. the change of coordinates (u1, v1) = (u2 − v2, v2). In the
new variables (u2, v2) the differential system (26) writes

u̇2 = u32 − 3u22v2 + 4u2v
2
2 − 3v32, v̇2 = −v32 . (27)

As before we do the vertical blow up (u2, v2) = (u3, u3v3), and we get the system

u̇3 = −u33(3v3 − 1 − 4v23 + 3v33), v̇3 = u23v3(v3 − 1)(1 − 2v3 + 3v23). (28)

We proceed the analysis by eliminating the common factor u23, by rescaling the time variable,
getting the system

u̇3 = −u3(3v3 − 1 − 4v23 + 3v33), v̇3 = v3(v3 − 1)(1 − 2v3 + 3v23). (29)

The infinite singular points of the differential system (29) which lies on the vertical axis
u3 = 0 are the points (0, 0) and (0, 1), and by Theorem 2.15 of [10] we obtain that both
points are hyperbolic saddles. Therefore undoing the blow ups the local phase portrait of the
differential system (24) at the origin is given in Fig. 4c. �	

6.4 Phase portraits in the Poincaré disc

The Propositions 20, 21 and 22 together with the first integral of the system provide the
necessary information for obtain the phase portrait in the Poincaré disc for the differential
system (7).

Assume that a > 0. Then the unique finite singular point is the nilpotent center (0, 0) and
system (7) has no infinite singular points. In this case the phase portrait in the Poincaré disc
is the one of Fig. 1a.

Assume that a = 0. Then the unique finite singular point is the nilpotent center (0, 0) and
the infinite singular points are the origins of the local chart U2 and V2, the phase portrait of
system (7) in the Poincaré disc in this case is given in Fig. 1c.

Assume that a < 0. Then system (7) has the nilpotent center (0, 0) and the nilpotent
saddles P± and two infinite singular points p± in the chartU1, p− is a stable node and p+ is
an unstable node, and their two symmetric with respect to the origin in the chart V1. In this
case the phase portrait in the Poincaré disc is the one of Fig. 1m.

In summary, Theorem 2 is proved when the differential system (1) is equivalent to the
differential system (7) of Proposition 1. This completes the proof of Theorem 2.
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7 Appendix

In this appendix we summarize some basic results that we use in this paper.

7.1 Singular points

A point (x0, y0) is a singular point of the differential system ẋ = P(x, y), ẏ = Q(x, y),
if P(x0, y0) = Q(x0, y0) = 0. The singular (x0, y0) is hyperbolic if all eigenvalues of the
Jacobian matrix of the differential system evaluated at (x0, y0) have real part different from
zero, and it is semi-hyperbolic if the Jacobian matrix presents only one eigenvalue equal
to zero. The singular (x0, y0) is nilpotent if both eigenvalues of the Jacobian matrix of the
differential system evaluated at (x0, y0) are zero, but the Jacobian matrix is not identically
zero.

The classification of the local phase portraits of the hyperbolic, semi-hyperbolic and
nilpotent singular points can be found in Theorems 2.15, 2.19 and 3.5 (or [2]) of [10],
respectively.

When the Jacobian matrix evaluated at a singular point is identically zero, the local phase
portrait at this singular point must be analysed through special changes of variables called
blow up’s (for more details on the blow up method, see for instance [1]).

7.2 Vertical blow up

Consider a real planar polynomial differential system given by

ẋ = P (x, y) = Pn (x, y) + . . . , ẏ = Q (x, y) = Qn (x, y) + . . . , (30)

with P and Q being coprime polynomials, Pn and Qn being homogeneous polynomials of
degree n ∈ N and the dots representing higher order terms in x and y. Since n > 0 the origin
is a singular point of system (30). Then the characteristic directions at the origin are given
by the straight lines trought the origin defined by the real linear factors of the homogeneous
polynomial Pn(x, y)y − Qn(x, y)x . It is known that the orbits that start or end at the origin
start or end tangent to the straight lines given by the characteristic directions. For more details
on the characteristic directions see for instance [3].

Suppose that we have a singular point at the origin of coordinates, as in the differential
system (30) and that this singular point is linearly zero. Then for studying its local phase
portrait we will do vertical blow up’s.

We define the vertical blow up in the y direction as the change of variables (u, v) =
(x, y/x). This change transforms the origin of system (30) in the straight lineu = 0, analyzing
the dynamics of the differential system (u̇, v̇) in a neighbourhood of this straight line we are
analyzing the local phase portrait of the singular point at the origin of system (30). But
before doing a vertical blow up in order that we do not lost information we must avoid that
the direction x = 0 be a characteristic direction of the origin of system (30). If x = 0 is a
characteristic direction we do a convenient twist (x, y) = (u, u + αv) with α �= 0 in order
that the new vertical straight line u = 0 not be a characteristic direction.
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7.3 The Poincaré compactification

In order to study the dynamics of a polynomial differential system in the plane R
2 near

infinity we need its Poincaré compactification. This tool was created by Poincaré in [17], for
more details see Chapter 5 of [10].

Consider the polynomial differential system

ẋ = P(x, y), ẏ = Q(x, y), (31)

where P and Q are polynomial being d the maximum of the degrees of the polynomials P
and Q.

We consider the plane {(x1, x2, 1); x1, x2 ∈ R} of R3 identified with the plane R2, where
we have the differential system (31). This plane is tangent at the nord pole (0, 0, 1) of
the 2-dimensional sphere S

2 = {(x1, x2, x3) ∈ R
3; x21 + x22 + x23 = 1}. We define the

northern hemisphere H+ = {(x1, x2, x3) ∈ S
2; x3 > 0}, the southern hemisphere H− =

{(x1, x2, x3) ∈ S
2; x3 < 0} and the equator S1 ≡ {(x1, x2, x3) ∈ S

2; x3 = 0} of the sphere
S
2.
Let f ± : R2 −→ H± be the central projections from the tangent plane R2 at the point

(0, 0, 1) of the sphere S2 to S
2 given by

f ±(x1, x2) = ±
(

x1
�(x1, x2)

,
x2

�(x1, x2)
,

1

�(x1, x2)

)

where �(x1, x2) =
√
x21 + x22 + 1. In other words f ±(x1, x2) is the intersection of

the straight line through the points (0, 0, 0) and (x1, x2, 1) with H±. Moreover, the
maps f ± induces over H± vector fields analytically conjugate with the vector field
of the differential system (31). Indeed, f + induces on H+ = U3 the vector field
X1(y) = Df +(ϕ3(y))X(ϕ3(y)), and f − induces on H− = V3 the vector field X2(y) =
Df −(ψ3(y))X(ψ3(y)). Note that f + = ϕ−1

3 and f − = ψ−1
3 . Thus we obtain a vector field

on S2\S1 that admits an analytic extension p(X) on S2. The vector field p(X) on S2 is called
the Poincaré compactification of the vector field X = (P, Q).

In order to study a vector field over S2 we consider six local charts that cover the whole
sphere S2. So, for i = 1, 2, 3, let

Ui = {(x1, x2, x3) ∈ S
2; xi > 0} and Vi = {(x1, x2, x3) ∈ S

2; xi < 0}.
Consider the diffeomorphisms ϕi : Ui −→ R

2 and ψi : Vi −→ R
2 given by

ϕi (x1, x2, x3) = ψi (x1, x2, x3) =
(
x j
xi

,
xk
xi

)

with j, k �= i and j < k. The sets (Ui , ϕi ) and (Vi , ψi ) are the local charts over S2.
Denote (u, v) = ϕi (x1, x2, x3) = ψi (x1, x2, x3). Then the expression of the differential

system associated to the vector field p(X) in the chart U1 is

u′ = vd
[
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

)]
, v′ = −vd+1P

(
1

v
,
u

v

)
.

The expression of p(X) in U2 is

u′ = vd
[
P

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

)]
, v′ = −vd+1Q

(
u

v
,
1

v

)
.
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The expression of p(X) in U3 is

u′ = P(u, v), v′ = Q(u, v).

For i = 1, 2, 3 the expression of p(X) in the chart Vi differs of the expression in Ui only by
the multiplicative constant (−1)d−1.

Note that we can identify the infinity ofR2 with the equator S1. Two points for each direc-
tion inR2 provide two antipodal points of S1. A singular point of p(X) on S1 is called infinite
singular point and a singular point on S

2\S1 is called a finite singular point. Observe that
the coordinates of the infinite singular points are of the form (u, 0) on the charts U1, V1,U2

and V2. Thus, if (x1, x2, 0) ∈ S
1 is an infinite singular point, then its antipode (−x1,−x2, 0)

is also a infinite singular point.
The image of the closed northern hemisphere of S2 under the projection (x1, x2, x3) →

(x1, x2, 0) is the Poincaré disc, denoted by D2.
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