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ABSTRACT. Deterministic dynamical systems often exhibit behaviors that appear ran-
dom and unpredictable, blending order and chaos in intricate ways. Traditional meth-
ods for analyzing these systems struggle with systems featuring irregularities like dis-
continuities, singularities, or difficult-to-analyze invariant measures. This survey ex-
plores the application of transfer operator methods, Besov spaces and measure spaces
with grids as tools for addressing these challenges. Focusing on piecewise expanding
maps as a key example, we demonstrate how these methods provide a flexible frame-
work for studying statistical properties of dynamical systems in irregular settings. Besov
spaces capture localized irregularities, while measure spaces with grids facilitate sys-
tematic discretization and computational analysis. Together, these tools offer a power-
ful approach to understanding the intricate interplay between deterministic dynamics
and statistical regularities.
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1. INTRODUCTION

In some dynamical systems, deterministic rules give rise to behaviors that can ap-
pear random and unpredictable. These systems challenge our understanding of order
and chaos, blending intricate patterns with statistical regularities. Over decades of re-
search, tools from analysis and probability have been developed to study the long-term
statistical behavior of these systems, uncovering profound connections between deter-
ministic dynamics and randomness.

Yet, as the field has advanced, so too has the need for methods that handle increas-
ingly complicated and irregular systems. Many real-world and theoretical dynamical
systems defy the smoothness assumptions of classical approaches, with observables,
phase spaces, or invariant measures that exhibit discontinuities, singularities, or even
fractal-like structures. This is where transfer operator methods, Besov spaces and mea-
sure spaces with grids play a pivotal role.

Why Piecewise Expanding Maps? Piecewise expanding maps are a central and illustra-
tive example of the challenges and opportunities in studying irregular dynamical sys-
tems. These maps arise naturally in many settings, from interval dynamics to models
of population growth, symbolic dynamics, and hyperbolic systems. They are defined by
deterministic rules that are smooth within individual regions but may exhibit disconti-
nuities at the boundaries of these regions.

The irregular nature of piecewise expanding maps makes them an ideal test case for
exploring statistical properties, as they often possess:

o Invariant measures with intricate structures, such as those that are absolutely
continuous with respect to a reference measure but supported on fragmented
or irregular sets.

+ Discontinuous dynamics, where smoothness breaks down at well-defined bound-
aries, challenging classical analytical methods.

« Sharp transitions between regions, necessitating tools that can handle local-
ized irregularities and fragmented dynamics.

Studying piecewise expanding maps has important implications. These systems are
both theoretically rich and practically relevant, serving as a bridge between smooth
dynamical systems and those with more complicated irregular behavior. They also
highlight the power of Besov spaces, measure spaces with grids, and transfer operator
methods in addressing questions about invariant measures, statistical properties, and
long-term dynamics in settings where traditional tools often fall short.

Why Transfer Operators? Transfer operators are a central tool in the study of dynam-
ical systems, particularly when investigating statistical properties. By encoding how
measures are transformed under the dynamics, transfer operators allow us to study the
invariant measures of a system and their statistical behavior. This approach has several
advantages:

o They provide a direct link between the dynamics of the system and its statistical
properties, such as decay of correlations, large deviations, and Central Limit
Theorem.

« Transfer operators are well-suited for numerical computations, making them a
powerful tool for studying irregular systems where explicit analytical results are
difficult to obtain.
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« They allow for a spectral perspective, connecting the asymptotic behavior of the
system to the eigenvalues and eigenfunctions of the operator.

However, the effectiveness of transfer operators often depends on the choice of func-
tion spaces in which they are analyzed. Classical spaces have been extensively used, of-
fering insights into the smoothness of observables and their interaction with invariant
measures. While these spaces form the backbone of ergodic theory for smooth dynam-
ical systems, they may not fully capture the irregular or fragmented nature of piecewise
expanding maps and other similar systems. This motivates the use of Besov spaces and
measure spaces with grids, which offer greater flexibility for analyzing such cases.

Why Besov Spaces? Besov spaces extend the classical Sobolev framework by incorpo-
rating a multiscale perspective on regularity. This makes them particularly effective for
analyzing transfer operators associated with piecewise-defined or irregular dynamical
systems. Besov spaces provide:

¢ A natural framework for studying functions or measures that exhibit localized
irregularities or oscillations.

« Tools to analyze the statistical properties of systems, such as decay of correla-
tions and the central limit theorem, even when the underlying dynamical sys-
tems are not smooth.

« A multiscale structure that aligns well with the spectral analysis of transfer op-
erators.

By using Besov spaces, we gain a more refined understanding of the interplay be-
tween regularity and statistical properties, extending the reach of classical tools.

Why Measure Spaces with Grids? While Besov spaces provide a functional framework,
measure spaces with grids offer a complementary perspective by enabling the system-
atic discretization of the phase space. This approach is particularly useful for studying
transfer operators and irregular dynamical systems. Grids allow us to:

» Approximate the action of transfer operators on irregular invariant measures,
dynamics, and phase spaces.

« Handle piecewise-defined or discontinuous dynamics in a structured way, with-
out requiring global smoothness.

« Connect theoretical insights with computational approaches, enabling numer-
ical studies of spectral properties and statistical behavior.

This discretized framework provides a practical and robust way to study systems and
observables that might otherwise be intractable using other methods. For piecewise
expanding maps, grids align naturally with the fragmented structure of the dynamics,
facilitating analysis and computation in these challenging settings.

2. PIECEWISE EXPANDING MAPS

Let (I, d) be a metric space. A map
T:1—-1

is piecewise expanding if it "locally" expands distances. More precisely, one can find a
countable partition

2.1) I1=u;I;j,
and A > 1 such that for every j
a(T(x), T(y) =z Ad(x,y)



4 D. SMANIA

for all x, y € I;. Sometimes it is convenient to consider also subsets I; that cover almost
all 1, that is, except for a subset with zero measure, for some given measure m on 1.

Due to local expansion, orbits with close initial points tend to diverge. If I is a
bounded metric space, such divergence can not continue forever. The combination of
the local exponential divergence and the boundedness of the phase space often leads
to a quite complicated, chaotic behaviour. Indeed, piecewise expanding maps are the
simplest dynamical models with such chaotic behaviour, and they appear everywhere,
from pure to applied mathematics.

3. EXAMPLES

There is a really long list of examples of piecewise expanding maps. The following list
is not exhaustive, but certainly contains some of the most representative examples.

3.1. One-dimensional maps. The first expanding maps to be studied were one- dimen-
sional maps, that is, maps whose phase space are either an interval or a circle, and its
partition as in (2.1) is made of intervals. For instance, consider a partition of I = [0, 1] by
intervals I; = [a}, b;) in such way that

T:laj,bj)—10,1]
extends to a C' map on [a;, b;] satisfying
IT'(x)=A>1

forevery j and x € I;. On can say that the study of these maps have two main percursors.
They appear for the first time in a letter of Gauss to Laplace [29]. Gauss wondered about
the frequency of entries in the continuous fraction expansion of randomly chosen real
numbers (uniform distribution). He says that he cannot tell the distribution of the nth
term in the expansion, but he is able to tell exactly the limit of the distribution when n
goes to infinity. The continuous fraction expansion is a system of numeration related
with the now called Gauss map G: (0,1] — (0, 1] defined by

Gx)=1/x-[1/x].

Indeed G? is piecewise expanding. Here [y] denotes the integer part of .
The Borel’s contribution on normals numbers [27] can be seen as an early study of
ergodic properties of the piecewise expanding map F: [0,1] — [0, 1] given by

F(x)=10x-[10x].

due the connection of the dynamics of such maps with decimal expansions of real
numbers. Gauss and Borel were not interested in specific continued fraction or decimal
expansions, since they were aware of the infinite variety of behaviours of such expan-
sions, but either in the probability of a behaviour (in Gauss’s case) or the frequency of
events in a typical expansion (in Borel’s case). It is not a coincidence that both were
pioneers of probability theory.

As far as I know, the recognization of such contributions as early examples of ques-
tions on dynamical systems and ergodic theory came much later in our history. We note
that Birkhoff’s ergodic theorem (G. D. Birkhoff, 1931) was originally proved just for in-
vertible maps (indeed for flows on manifolds). The general theorem we learn today was
stated by E Riesz [66] in 1945, and indeed he was perhaps the first to realized that Borel’s
results (and the extension by Raikov [62] for arbitrary integrable observables) could be
seen as a consequence of the ergodicity of F.
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Indeed the work of Boltzman on ergodic theory is based on models from statistical
mechanics that are conservative, that is, there is a priori natural invariant measure for
the model. In the map 10x—[10x] this is also true, however for the Gauss map a natural
invariant measure is far from obvious and, indeed, Gauss’s main contribution was to
see that a special absolutely continous invariant measure plays an essential role in his
problem, that we now recognize as the natural invariant measure for the Gauss map.
Finding such a natural measure (sometimes called physical measure) for a piecewise
expanding maps is a problem that was the main driving force of most of the history of
their study, and only had significant progress much later, in the end of 60’s and 70’s.

Indeed, those examples of piecewise expanding maps are onto, that is, for each branch
we have T(X;) = X. Those are particular examples for what is now called Markovian
maps. A piecewise expanding map is Markovian if for each j the set T(X;) is a union of
elements of the partition {X}};. In this case {X}}; is called a Markov partition of f.

For piecewise expanding maps that are non-Markovian, proving the existence of an
absolutely continuous invariant measure is typically more challenging. Consider, for
example, the §-transformation gg: [0,1] — [0, 1] defined by

gp(x) = fx— Bxl,

where 8 > 1. If B is irrational, this map is non-Markovian. In 1957, Rényi [64] proved the
existence of an ergodic, absolutely continuous invariant measure for this system. Later,
Gel’'fond [30] and Parry [57] provided an explicit formula for this invariant measure.

This is, as far as I know, the first such result for non-Markovian maps. Further
progress on non-Markovian maps was pretty much non-existent until the seminal work
of Lasota and Yorke [43] in the 70s, that proved the existence of absolutely continuous
invariant probabilities for piecewise C? expanding maps on intervals. Indeed, much, if
not all early work on ergodic theory of expanding maps is concentrated on the proof
of the existence of absolutely continuous invariant probabilities.

While one-dimensional maps are the first to appear in literature, they were and con-
tinue to be a source of inspiration for new methods in smooth ergodic theory.

One may notice that all early contributions by Gauss, Borel, and later Gel'fond and
Rényi [65], that gave conditions for the existence of absolutely continuous invariant
probabilities for certain Markovian expanding maps on the interval, are all related with
various systems of numeration. We can represent a real number as a sequence of in-
tegers in various ways (continued fraction, decimal expansions, binary expansion, §-
expansion). This was much later connected with the more general symbolic dynamics, a
way to study dynamical systems associating orbits with sequence of symbols. The next
example is related with this method.

3.2. Unilateral shift map. LetN be the natural numbers (including 0). Consider a finite
set «/ with more than one element. The unilateral shift map

o: N — N
is defined by

o (xg, X1,...) = (X1, X2,...).

The metric
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turns /N into a Cantor set. Here x = (xi)ien, ¥ = (¥i)ien and

0, ifa=nb
6a,b= .
1, ifa#b.

We can define a partition of o/ given by
Xa={(x0,x1,...) such that xo = a},

for every a € of . This partition is a Markov partition for o, that is, 0(X,) is an union of
elements of the partition (indeed, the whole X). Note that

d(o(x),0(y)) =2d(x,y)

forevery x,y € X, and a € &«/. So o is a (Markovian) piecewise expanding map.

Symbolic dynamics appears for the first time in the study of geodesic flow on sur-
faces of negative curvature by Hadamard. Its systematization in the study of dynamical
systems by Morse and Hedlund in 1938 had a lasting impact. They see it as a part of a
method to study recurrence and transitivity [51].

3.3. (Piecewise) Expanding maps on manifolds. The first examples of multi-dimensional
piecewise expanding maps are expanding maps on manifolds equipped with a volume
form, introduced in Shub’s PhD thesis [72] [73]. Consider a compact manifold I en-
dowed with a Riemannian metric || - ||, p € I. Alocal Ct diffeomorphism T: I — I is an
expanding mapif ||D,T||p > 1 for every p € I. The simplest example is given by the map
F:S' — S! defined as F(z) = z°.

They are quite interesting endomorphisms as Shub proved they are structural stable
and yet have a quite chaotic dynamics: periodic points are dense and they have dense
orbits. Soon after their introduction, Krzyzewski and Szlenk [42] proved the existence
of absolutely continuous invariant probabilities for C?> expanding maps on manifolds.
This result is quite influential, in particular for the argument used there to control the
(measure) distortion of high iterates of an expanding nonlinear map, a method used
multiple times since then.

The study of non-Markovian piecewise expanding maps on manifolds with dimen-
sion large than one appears in the literature much later (1990’s and 2000’s).

3.4. Expanding maps with singularities (Lorenz maps). Those are unidimensional maps,
however the derivative can blow up at some points. More precisely let

{laj, bj)}j<n,
be a finite family of intervals that is a partition of [0,1) and
T: uj(aj,b;) —10,1]
be a map such that
T: (aj,bj) —[0,1]
is C1, it satisfies
1T =A>1
and for every p € {a}, b;} there is §, € (0,1] and a diffeomorphism ¢, defined close to p
such that
T(x) = ¢p(1x— plPr).
These maps looks somewhat artificial, but they indeed appear naturally studying
so called singular hyperbolic flows, and in particular the Lorenz flow, a quite simple
polynomial vector field on R® with a hyperbolic singularity at the origin, introduced
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by Lorenz in 1963 as a toy model in the study of atmospheric convection. Geomet-
ric Lorenz flows were introduced (Guckenheimer and Williams [34] and Williams [385]),
which have many of the features conjectured for the Lorenz flow by Lorenz. Finally
Tucker [82] gave a computer-assisted proof that original Lorenz flow is indeed a geo-
metric Lorenz flow.

Lorenz maps appear in the study of geometric Lorenz flow in the following way: the
hyperbolic singularity is smoothly linearizable (assuming some non-ressonant condi-
tions on its eigenvalues). Considering an appropriate 2-dimensional Poincaré section,
we see that its first return map has an invariant smooth stable foliation . Taking the quo-
tient of the action of the first return map by this foliation we obtain a one-dimensional
mabp thatis an expanding map with singularities. The values of §, depend on the eigen-
values of the singularity. See Aratjo and Pacifico [1] for more details on singular hyper-
bolic flows.

3.5. Hyperbolic Julia Sets. One of the most fascinating examples of expanding dynami-
cal systems is the Julia set of a hyperbolic rational map. Consider a rational map T: C —
C where all critical points converge to a (hyperbolic) attracting periodic orbit. Such a
map T is called a hyperbolic rational map. The complement of the set of points at-
tracted to these periodic orbits is known as the Julia set J(T) of T. This set is non-empty,
compact, and perfect. Moreover, the map 7: J(T) — J(T) is expanding.

There is arich body of literature on the thermodynamic formalism and transfer oper-
ators for holomorphic dynamical systems. Notably, Bowen [11] made seminal contribu-
tions to this field. For comprehensive introductions, see the works of Zinsmeister [39]
and Przytycki and Urbarnski [60].

4. CHAOTIC BEHAVIOUR

The dynamics of piecewise expanding maps are often quite complicated. For in-
stance

A. Their periodic points can be dense in the phase space.
B. They may have dense orbits in the phase space.
C. They may have uncountably many possible dynamical behaviors for its orbits.

The list of piecewise expanding maps with those properties is long (for instance Mar-
kovian piecewise expanding maps, tent maps, expanding maps on manifolds). This re-
sults in the behavior of its orbits being too diverse to be fully understood. So from the
beginning researchers started looking for statistical properties of its orbits, and in par-
ticular properties that hold for most of their orbits.

5. STATISTICAL PROPERTIES OF OBSERVABLES

Consider a measurable dynamical system 7: I — I with an ergodic invariant proba-
bility measure p, thatis

w(T1A) = u(A)
for every measurable set A, and for every invariant set (T~1 A = A) we have either u(A) =

0 or u(A) = 1. Birkhoff’s Ergodic Theorem (G. D. Birkhoff, 1931) tells us that for every
¢ € L' (u) and p-almost every point x

o1 P
lim+ Y 97 = [ ¢ dp.

i<N
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A particulary illustrative case is when ¢ is the characteristic function of a measurable
set, that is, ¢ = 1 4. In this case, the left-hand side expresses the frequency with which a
typical orbit visits the set A. It is remarkable one can say so much about the frequency
of these events knowing so little about the dynamical system T'.

This result likely reminds the reader of the strong law of large numbers for sequences
of independent identically distributed random variables. One can asks if the sequence
of functions

(5.2) ¢, poT,...

has more statistical similarities with this probabilistic setting.
Exponential decay of correlations. It is easy to see that in most cases ¢ and ¢ o T"
are notindependent variables but one can ask if they are nearly independent when 7 is

large. We say that a pair of functions ¢1, ¢ € L?(u) has exponential decay of correlations
if thereis A € [0,1) and C > 0 such that

<CA".

’f‘PﬂPZOTnd#—f(Pl dyf¢2d,u

Central Limit Theorem. Let ¢ € Ll(u). We say that the sequence (5.2) satisfies the
Central Limit Theorem if there is o > 0 such that

t
lim,u(x: L > (¢oT"(x)—f¢du)<r)=f e 17 gx.
n Nn<N -0

Large Deviations. Let ¢ € L' (u). We say the sequence (5.2) has Large Deviations if for
every € >0 thereis A€ [0,1) and C > 0 such that

1
u(x: ‘N > </>°T”(x)—f¢>du

n<N

> e) <CA"

It is fair to ask why would we focus on such statistical properties? There is not a sat-
isfactory answer for that, except that processes that we all agree are quite random, as
sequences of flips of a fair coin, do have those properties, so we see them together as a
tell-tale sign for strong randomness of the process. Perhaps one of the major achieve-
ments of the theory of dynamical systems in the 20th century is the discovery that de-
terministic dynamical system can behave in a quite random way.

A lot of dynamical systems do have invariant probabilities. Oxtoby and Ulam [56]
tell us that every continuous map on a compact metric space has an invariant proba-
bility measure. Indeed many piecewise expanding maps have infinitely many periodic
points. Every periodic orbit gives rise to an invariant probability measure supported on
it, although this measure is rather uninteresting.

Moreover dynamical systems may have uncountably many invariant probabilities.
Such a phenomenon may arise even in simple systems, such as those with at least two
periodic orbits, since having just two ergodic measures already leads to uncountably
many invariant measures via convex combinations.

Indeed, the geometry of the set of invariant probability measures can be quite intri-
cate. For example, every compact metrizable Choquet simplex can be realized as the
set of invariant probabilities supported on a minimal set of a logistic map (Cortez and
Rivera-Letelier [23]).
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It is worth noting that the set of ergodic invariant probability measures can be un-
countable. A typical example is provided by the family of Gibbs equilibrium states for a
C'*P expanding map on the circle.

So, do we see those strong statistical properties on every dynamical system with an
invariant measure? The answer is no. Dynamical systems and invariant probabilities
came in various shapes and sizes, and not all of them have those strong statistical prop-
erties. See for instance Dolgopyat, Dong, Kanigowski and Nandori [26], where they pro-
vide examples of dynamical systems that satisfy the Central Limit Theorem (CLT) but
do not necessarily exhibit other desirable statistical properties.

Irrational rotations on the circle, for instance, admit a natural invariant measure (the
arc-length), which is also the unique invariant measure. However, the corresponding
observables do not exhibit strong statistical properties. Indeed, under certain Diophan-
tine conditions on the rotation number, every sufficiently regular observable ¢ with zero
average is cohomologous to zero (Herman [37]); that is, there exists a continuous func-
tion ¥ such that

p=yoT -y,
which implies that the Central Limit Theorem does not hold. For far more general
examples, see Liardet and Volny [46].

However, certain invariant measures for piecewise expanding maps often do have
very strong statistical properties, provided the observable ¢ is regular enough. Moreover
those invariant measures are quite natural, since they are absolutely continuous with
respect to the "ambient measure". For instance, they may be absolutely continuous
with respect to the Lebesgue measure for one-dimensional maps, and with respect to
the volume form for expanding maps acting on manifolds. Those invariant measures
show that those dynamics systems have a behavior that is as random as one can get.

6. MONSTERS

The study of piecewise expanding maps is well developed. Many variations of these
systems have been introduced over the years, and a wide range of examples is now avail-
able. In particular some of those have an “exotic” behavior, that is strikingly distinct
from early examples.

For instance, there are one-dimensional, piecewise linear expanding maps on an in-
terval, with an infinite partition, such that

A. They have orbits which are dense on the interval.
B. There is a point p such that almost every orbit converges to p.

The following example is presented by Nowicki and van Strien [54]. Let « € (0, 1), and
define amap T: [0,1) — [0,1) as follows. The map T is affine on each interval [a”*"!, a™)
for every n = 0, mapping:

e [a,1) onto [0,1), and
« each [a™*!,a™) onto [0, 1) for n = 1.
Then the derivative satisfies the uniform lower bound
1
|IDT(x)| = ——.
l-a
This is a Markov map, and one can show that it has dense orbits and that periodic

points are dense in [0,1). Moreover, if a is sufficiently close to 1, then almost every
point converges to 0.
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In particular those maps do not have an absolutely continuous invariant probability
and the behavior of almost every orbit is really quite distinct from a classical expanding
map on the interval with a finite Markov partition. That kind of example has an inter-
esting application. It allows the construction of unimodal maps (smooth maps with
just one turning point) that possess a wild attractor (see Milnor [50]). A map has a wild
attractor if its attractor in the topological sense differs from its attractor in the measure-
theoretical sense. See Bruin and Keller, Nowicki and van Strien [14] and Bruin, Keller
and St. Pierre, Matthias[15] for results on the existence of wild attractions.

In higher dimensions, even piecewise expanding maps that have a finite partition
may have exotic behavior.

Theorem 6.3 (Buzzi [18]). For r < oo there are piecewise C" expanding maps on the
square (with a finite partition) that do not have absolutely continuous invariant mea-
sures.

So that is why we are careful to say that a lof of examples of expanding maps has
strong ergodic and statistical properties, but decisively not all of them have those. When
we lower the regularity of the map, sometimes things get tricky. Quas [61] showed that
a residual set of C! expanding maps acting on a compact manifold do not have an ab-
solutely continuous invariant measure. Piecewise expanding maps on manifolds with
dimension higher than one do not seem less regular than its one-dimensional cousins,
however the partition of the iterated map can get far more irregular than its first iter-
ation in higher dimensions. Even very smooth one-dimensional piecewise expanding
maps with infinite many branches may have an exotic behaviour.

Another exotic example comes from the study of rotational subsets associated with
the angle doubling map T(z) = z% on the unit circle $! (see Bullett and Sentenac [16]).
Given a closed semicircle S ¢ S!, one can consider its maximal T-invariant subset Qg c
S. The restriction T: Qg — Qg is clearly expanding. However, for certain choices of S,
the set Qg is a minimal Cantor set with zero Hausdorff measure. In particular, there are
no periodic orbits.

This leads us to question the minimal regularity needed to be able to obtain the ex-
istence of absolutely continuous invariant probabilities with nice statistical properties.
The wide variety of examples for which those properties do hold also raises the ques-
tion of the existence of a unified approach to deal with those, even those with very low
regularity.

7. TRANSFER OPERATORS

7.1. Transfer operator and invariant measures. Given a finite measure y on the phase
space I, we can interpret it as a distribution of mass over I, where the mass assigned to
asubset A c I is given by u(A). A natural question is how this mass distribution evolves
under the action of a dynamical system T: I — I. That is, if the mass located at a point
X is transported to the point T'(x), what will the resulting distribution look like?

This evolution is described by the push-forward operator T,, which acts on measures
on I. The new distribution is the finite measure T u defined by

Tep(A) := (T A),
for every measurable set A c I. Note that p is T-invariant if and only if it is a fixed point
of Ty, ie., Tyupu=p.
However, in the case of piecewise expanding maps, working directly with the op-
erator T, on the space of all finite measures is generally not desirable. As previously
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discussed, such systems can admit many invariant measures, while our primary inter-
est lies in those that are absolutely continuous with respect to a reference measure m.
To address this issue and fine-tune our search for invariant measures that are absolutely
continuous with respect to the reference measure m, we need to introduce transfer op-
erators .

Suppose that

T: Upep Il —1
is a piecewise injective map with inverse branches
hr: Jr —1Ir

indexed by a countable set A, and suppose that m is a reference measure such that for
every finite measure u < m with densityy, thatis

umri[wdmnmmweLHmeza
A

If we have (h,);1 m <« m then the push-forward of the measure u
Top=Y (h)3'p
r

can be written as
i) = [ o) dm,
where the density ®(y) is the function defined by
(7.4) Q) (x) := Zr:gr(x)w(hr(x» -1y, (%),
and g,: J, — Ris an appropriate function, called the Jacobian of h, with respect to m.
It is not difficult to see that ® extends to a bounded linear operator
@: L'(m) — L' (m),

and that it is a positive operator; that is, if f = 0, then ®(f) = 0. Moreover

[Dl1 (g = 1.

The operator @ is known as the transfer operator, also referred to as the Ruelle — Perron
— Frobenius operator, associated with the pair (T, m).

In short, the push-forward operator T, preserves the class of measures that are ab-
solutely continuous with respect to m—in other words, m is quasi-invariant under T.
The transfer operator ® describes the action of T, on the densities of such measures. In
particular

Mm=fpdm
A
is an invariant probability for T if and only if
Dp =p, withszandfpdmzl.

Thus, the problem of finding absolutely continuous invariant measures for T reduces
to studying the existence of nontrivial, non-negative functions p in the 1-eigenspace of
® acting on LY(m).
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Rechard [63] introduced the transfer operator operator as a tool to study the exis-
tence of absolutely continuous invariant measures of one-dimensional maps T': [ — I,
where [ is an interval. In this case m is the Lebesgue measure on an interval and

_ ! _
&) =1 0= 1 Gt

As Ulam [83] (see also Stein and Ulam [79]) makes clear, those linear operators are
analogous to positive matrices in an infinite-dimensional setting, and he asks whether
an analogue of the Perron-Frobenius theorem holds in this context. This would allow
not only a way to show the existence of such natural measures, but also potentially a
practical, numerical method to find them.

Indeed the idea of approximating the dynamics of a system by a finite-state Markov
process dates back to Ulam’s pioneering vision in the 1960s. In his influential book [83],
Ulam proposed discretizing the phase space into finitely many pieces and approximat-
ing the action of the transfer operator by tracking how mass is transferred between
these pieces. This leads to the study of associated Perron-Frobenius matrices, laying
the foundation for what is now known as the Ulam method. This approach gained sig-
nificant traction in the late 1970s, particularly through the rigorous analysis of Li [45],
who proved convergence of the method under suitable conditions. See Liverani [47] and
the references therein for more information.

The first significant generalization of the Perron-Frobenius Theorem in the context
of transfer operators was developed through the pioneering work of Ruelle [68] on sym-
bolic dynamical systems, specifically shifts on a finite number of states.

7.2. Transfer operator and statistical properties. One of the most interesting appli-
cations of transfer operators is the study of the statistical properties of piecewise ex-
panding maps. All the statistical properties we are interested in involve the Koopman
operator
y—vyeT,

which naturally raises the question of whether this operator should play a central role in
our analysis. However, the Koopman operator does not exhibit good spectral properties
when acting on function spaces such as L” (m), for p € [1,00].

For instance, in the case of well-behaved smooth expanding maps on the circle, the
Koopman operator is nearly an isometry: there exists a constant C, = 1 such that

Cip”'}/”Ll’(m) sllyeTlizeom = lyllLrom-

Here, m denotes the Haar measure on the circle. As a consequence, the spectral
radius of the Koopman operator on L”(m) is 1, but its spectrum near the unit circle
cannot consist of isolated eigenvalues with finite-dimensional generalized eigenspaces
near the circle of radius 1. In particular, its dynamical behavior may differ significantly
from that of a linear operator on a finite-dimensional space.

Although the Koopman operator is often well defined on more regular function spaces
that are continuously embedded in some LP (m), its spectral behavior remains similarly
poor, and in some cases, even worse. Indeed, for expanding maps on the circle its spec-
tral radius is greater than one when acting on spaces such as the space of functions of
bounded variation or the space of Holder continuous functions.

However its adjoint is the transfer operator. That means that

(7.5) fyo "y dm:fytbn(u/) dm
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FIGURE 1. Schematic picture of transfer operator associated with a
real-analytic expanding map of the circle, acting on various function
spaces.

for every w € L' (m) and y € L°(m). This allows us to rewrite important expressions in
terms of the transfer operator. For instance, if we are interested in decay of correlations
one must study

fyo "y dm,

that can be rewritten as the right-hand side of (7.5).

The primary advantage of working with the transfer operator rather than the Koop-
man operator lies in its often has more favorable behavior when acting on suitably reg-
ular function spaces. This distinction will become evident in Section 8.

8. QUASI-COMPACTNESS AND LASOTA-YORKE INEQUALITY

Both the Koopman operator and the transfer operator act on infinite-dimensional
spaces. At first glance, the fact that these operators are linear operators may be a re-
lief. However the dynamics of a general linear operator acting on infinite-dimensional
Banach space can be very complicated, indeed it can be as complicated as an arbitrary
non-linear map on a compact space (see Feldman [28] and Bayart and Matheron [7]).

However it turns out the spectral properties of the transfer operator are much nicer
than the Koopman operator.

8.1. Quasi-compactness. Fortunately transfer operators often act as quasi-compact
operators on properly chosen function spaces, what makes its dynamical behaviour
easier to understand.

Let L: B — B be a bounded linear operator on a Banach space B. We say that L is
quasi-compact if

(8.6) Tess(L, B) <1(L, B),

where r(L, B) denotes the spectral radius of the operator L acting on the Banach space
B, and regs(L, B) denotes its essential spectral radius. These are, respectively, the radii of
the spectrum and the essential spectrum of L.

There exist multiple, non-equivalent definitions of the essential spectrum in the lit-
erature. However, they all aim to capture the “wild” part of the spectrum—namely, the
part that is stable under compact perturbations and typically lacks the nice spectral
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properties of isolated eigenvalues with finite multiplicity of linear operators acting in
finite-dimensional spaces.

Remarkably, a result by Nussbaum [55] shows that, regardless of which reasonable
definition of essential spectrum is adopted, the radius of this set remains the same.
More precisely, he proved the formula

8.7) Fess(L,B) = lim [|L"||1/"
n—oo

comp’

where
I Lllcomp := inf{||L+ K||: K is a compact operator}.

Indeed, if L is quasi-compact on B, then the elements of its spectrum A satisfying
|A| > ress(L, B)—behave in a particularly nice way: they are isolated eigenvalues with
finite-dimensional generalized eigenspaces.

More precisely, for such A we have

dim{vEB: (L—/Hd)kvzoforsomekzl}<oo.

In this sense, the spectrum of L near the outer spectral radius |A| = r (L, B) resembles
that of a compact operator. That is, the "badly behaved" part of the spectrum—the
essential spectrum—is strictly contained within the spectral circle, while the dominant
part consists of isolated eigenvalues with finite multiplicity.

A practical way to verify that an operator L is quasi-compact on B is to find some
np > 0 and a compact operator K such that

(8.8) IL™ - K|l <r(L,B)"™.

This criterion follows from Nussbaum’s formula for the essential spectral radius and the
fact that the set of compact operators forms a two-sided ideal in the algebra of bounded
operators.

The main feature of a quasi-compact operator is that it is easier to understand it
dynamics. If L acting in B is quasi-compact one can write

L=A+K,

where K is a compact operator and A is a finite rank operator on B such that r(A, B) <
r(L,B) and AK = KA=0. In particular L" = A" + K.

8.2. Transfer Operators and Quasi-Compactness. Transfer operators associated with
piecewise expanding maps often act as quasi-compact operators on suitable function
spaces. Consider, for instance, a real-analytic expanding map acting on the circle S',
with the Haar measure m as the reference measure. The transfer operator ® has spec-
tral radius equal to 1 when acting on the Lebesgue space L! (m), on the space of Holder
continuous functions C#(S'), and on certain spaces of analytic functions defined on an-
nuli around S'. However, the spectral behavior of ® on each of these spaces is distinctly
different. (see Figure 1).

On the space of analytic functions, ® is a compact operator: its spectrum is count-
able, and all nonzero spectral values are isolated eigenvalues with finite-dimensional
generalized eigenspaces (Ruelle [69]).

On the other hand, the action of ® on L!(m) is highly irregular. The spectrum fills
the entire closed unit disk, and every complex number of modulus less than one is an
eigenvalue with infinite multiplicity (Collet and Isola [22]).

The intermediate case is the space C A(S!). Here, ® acts as a quasi-compact operator.
While the essential spectrum is still nontrivial and exhibits behavior similar to that in
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L'(m), it is strictly contained in a disk of radius less than one. Near the unit circle, the
spectrum consists solely of isolated, well-behaved eigenvalues (again, see Collet and
Isola [22]).

For more irregular dynamics, the space of Holder continuous functions may not even
be ®-invariant. In such cases, one must identify a function space B, dense in L' (m) and
continuously embedded in it, on which ® acts as a quasi-compact operator. Transfer
operators are positive linear operators with the additional properties

[@(wDIp =1yl and

(W) <Iflp,
that implies r(®,L') = 1 and the peripherical spectrum of ® on B is even more simple,
that is, there are a finite number of complex numbers A;, with i =0,...,n, |1;|=1, and
Ao =1, and linear projections P; with finite rank and an operator A, with r(A,B) <1
such that P;Pj = PjA= AP;=0for i # j and

(8.9) D=) AP+ A
i

8.3. Lasota-Yorke inequality. How do you show that the transfer operator is quasicom-
pact acting on a space of functions B? Lasota and Yorke [43] introduced the now called
Lasota-Yorke inequality in the study of transfers operators. We say that the pair of func-
tion spaces (B, LY) satisfies the Lasota-Yorke inequality if thereis A € (0,1) and C >0
such that

(8.10) [®W) g < Mwlp+Clylp
for every w € B and

e Bis continuously embedded in L.
o The unit ball of B is compactin L.
e Bisdensein L!.

Under these conditions, the operator @ acts quasi-compactly on B (see Ionescu and
Marinescu [39]). Indeed, it implies even more: It follows not only that absolutely con-
tinuous invariant probabilities do exist , but that all those probabilities have densities in
B.

Note that there are many slightly different versions of the Lasota—Yorke inequality in
the literature. To be fair, in practice, rather than proving (8.10) for ®, we usually show
that @ is a bounded operator on a Banach space B, and that there exist no = 1, € (0,1),
and C > 0 such that

|D™ (y)|g < Blwlp + Clylp.
A standard iteration argument then implies (see for instance Viana [84, Proof of Propo-
sition 3.1]) that there exists C > 0 such that, forevery n =1,

1" (w)|p = CA™wlg + Clylp,

for some A € (0,1). This estimate is sufficient to conclude that @ is quasi-compact on B,
and that every absolutely continuous invariant probability measure belongs to B.

8.4. Statistical properties and Lasota-Yorke inequality. If transfer operators are quasi-
compact and/or satisfies Lasota-Yorke when acting on some space B, then one can
often obtain nice statistical properties for the associated dynamics, such as ergodic-
ity, exponential decay of correlations and Central Limit Theorem for observables in B.
Some of these consequences as quite straightforward, others need some hard work.
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8.4.1. Ergodicity and exponential mixing. Let spp(®) be the spectrum of the operator
®: B — B. Suppose that

A. the transfer operator @ satisfies the Lasota-Yorke inequality for a pair (B, LY,

B. rp(®) =1,

C. spp(®)nS'={1}and

D. the 1-eigenspace in B is one-dimensional.
Then it is easy to show that T has a unique physical measure that is ergodic and every
observable in B has exponential decay of correlations. If the transfer operator satisfies
A-D then @ has spectral gap, that is, 1 is a simple eigenvalue, and the rest of the spec-
trum belongs to a ball around 0 with radius smaller than 1.

Usually properties C. and D. are obtained through topological properties of T. For
instance, if T is one-dimensional and B is the space of bounded variation functions then
a density of a physical measure of T needs to have bounded variation, and in particular
must be positive on a nonempty open set. If T is fopological mixing, that would imply
C. and D.

Conditions A— D implies exponential decay of correlations for all observables in B.

8.4.2. Central Limit Theorem. We do not know if under the same conditions above one
can obtain the Central Limit Theorem for observables in B. Indeed the method to obtain
CLT for dynamical systems is more convoluted and its origins traces back to Rousseau-
Egele [67] and Guivarc’h and Hardy [35], influenced by the early works of Nagaev [52] on
Markov chains and Le Page [44] on random matrices. Suppose that we want to obtain
CLT to an observable y. By Levy’s continuity theorem it is enough to show that the

characteristic function of
1

n—1
- Z w o Tk
n k=0
converges to the characteristic function of a normal distribution, that is, there is o > 0

such that ,

. 1 n-1 i
limfe”ffiﬁz":0 ver pdm=e"7.
n
The first step to prove this limit is to consider the function eV, with ¢ € R, and to
check ifit defines a multiplier acting on B, that is, define
M (f) =€V f.

Then M,y is a bounded operator on B. When B is a (quasi) Banach algebra, using
the Taylor expansion of exp(ity), one can easily check that every real-valued function
for v € B defines a multiplier. The space of bounded variation functions or the space
of Holder functions with a given exponent provide standard examples for B. However,
providing interesting examples of multipliers for more general classes of functions (such
as, for example, Sobolev and Besov spaces) can be tricky. The second step is to consider
perturbations of the transfer operator of the form

(Dt = (DOMeitu/

and see how its leading eigenvalue y; moves analytically with ¢ along this family (note
that yp = 1). Using the fact that @ is the transfer operator and p dm is invariant, we get

S -1 i 1 -1 i
fell’gﬁ l{l:O wOTl pdmzfQH(elfmz?zo UIOTl p)dm

:f(l)”i(p)dm.
vn
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Since ®; are also quasicompact, one can obtain a decomposition of ®; similar to (8.9)
and, after a few manipulations, obtain the CLT.

See Baladi [4] and Broise [13] for superb presentations of transfer operators for piece-
wise C? expanding maps on an interval. More recently Goiizel [33] gave us a very general
application of this method that allows us just to worry mainly with step one.

8.5. How regular must functions on B be? Once you get an ergodic measure y for a
map T, we can use Birkhoff’s ergodic theorem to get a "strong law of large numbers" for
all observables v € L! (u). One need to stress that is, even in optimal regularity assump-
tions, as when T is an C* expanding map on the circle, not all observables in L? (u), for
some p =1 and C°(S'), have exponential decay of correlations and satisfy CLT.

This is indeed related with the bad spectral properties of the transfer operator acting
on LP(m). Collet and Isola [22] showed that for a transfer operator of Markov expanding
map acting in an interval the essential spectral radius and the spectral radius of the
transfer operator in C° coincide, so in particular we do not have quasi-compactness.

8.6. Short history and a question. There is a long list of piecewise expanding maps for
which one can find a Banach space of functions on which the action of the transfer op-
erator is quasi-compact. The most classical examples are subshifts of finite type with a
Hélder potential. In this case the a space of Holder functions fits the bill. Parry and Pol-
licott [58] is a good reference on this development. This is an important example since
the discovery that Markov partitions are ubiquos for hyperbolic dynamical systems by
Sinai [74] allows the use of such result for a wide variety of dynamics (See Bowen [10]).
However, dealing with non-Markovian expanding maps was out of reach until the
pioneering work of Lasota and Yorke [43] for piecewise C? expanding maps. Hofbauer
and Keller [38] generalized this to piecewise expanding maps with bounded variation
derivatives and also obtained many statistical properties of bounded variation observ-
ables. See also Rychlik [70] for maps with infinitely many branches. Keller [41] obtained
similar results for piecewise C'*% one-dimensional expanding maps, introducing a new
class of function spaces. Results for certain C? expanding maps on R” was obtained by

Gora and Boyarsky [32], for bounded variation observables, and Saussol [71] general-
ized [43] to the same setting, using a function space similar to that used by Keller [41].
Cowieson [25] obtained a result for generic piecewise expanding maps on R”.

We can ask for wider class of observables for which one can get the quasi-compactness
of the transfer operator of piecewise expanding maps. Thomine [30] (see also Baladi
[5]) obtained quasi-compactness for certain piecewise expanding maps of R” acting on
certain Sobolev spaces. Nakano and Sakamoto [53] have results for smooth expand-
ing maps on compact manifolds acting on Besov spaces. These results are limited to
dynamical systems acting on manifolds, using techniques of Fourier analysis.

However there are many interesting examples of piecewise dynamical systems acting
on a wider class of phase spaces, such as symbolic spaces, fractals (as for instance Julia
sets), real trees (geodesic metric spaces in which all triangles are tripods), etc, for which
classical harmonic analysis is often not available.

We ask if there is a minimal structure that all these phase spaces share in such way that
we can develop a rich and unified theory for transfer operators for piecewise expanding
maps?
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Arbieto and S. [2] and S. [75] established the quasi-compactness of the transfer oper-
ators associated with piecewise expanding maps when the phase space exhibits a sim-
ple structure: a probability space equipped with a sequence of finite partitions, referred
to as a grid. This framework allows the application of transfer operator methods to a
broad range of piecewise expanding maps, enabling the derivation of statistical proper-
ties for a wide class of observables belonging to Besov spaces with fractional regularity.
In the following sections, we provide an overview of these results.

9. MEASURE SPACES WITH GOOD GRIDS

A structure that is shared for all these phase spaces is that they are measure spaces
with a good grid, introduced in S. [77]. Let X be a measure space with a finite measure
m. For a measurable subset A we denote |A| = m(A). We say that a good gridon X is a
sequence of finite partitions 2", n=0,1,2,3,..., formed by measurable sets such that
"1 is finer than 2", and there are 11,1, € (0,1) satisfying

A < @ <Ay,
|P|
for every Q € 22"*!, P € 2" satisfying Q c P.

Measure spaces with good grids are a fairly general structure. One can find them in
many settings, as compact manifolds, real trees, homogeneous spaces (a measure space
with a doubling measure), symbolic spaces and fractals.

The simplest example is the unit interval endowed with the sequence of dyadic par-
titions
j j+1

. ok
ﬁ,z—k]y1<2 1

7|

and the Lebesgue measure. This is an importante example and the most used grid to
study piecewise expanding maps acting on the interval [0, 1].

Another simple example is a smooth compact manifold M with a volume form and
a smooth triangulation. We can choose succesive refinements of this triangulation to
generate a good grid. This good grid can be used to study transfer operator of piecewise
expanding maps acting on M.

For Markovian maps it sometimes convenient to choose good grids whose partitions
are Markov partitions. For a full shift endowed with a Gibbs measure of a given po-
tential, it is interesting to use the good grid generated by the cylinders in the symbolic
space.

There is a simple and general way to construct nice good grids for a compact dou-
bling space, and in particular for an Alhfors regular compact metric space, using a quite
famous result by Christ [21]. That can be used to obtain good grids on self-similar con-
formal fractals as Julia sets of hyperbolic polynomials, for instance. If such a fractal
has dimension d, then its d-dimensional Hausdorff measure is Ahlfors regular. Another
approach in the same setting is to use Markov partitions.

10. BESOV SPACES

Let X be a measure space with a finite measure m and a good grid & = (£2"),,. The
good grid structure is enough to study transfer operators because this quite weak struc-
ture allows us to do a lot of harmonic analysis on it, such as to define Besov spaces, and
in particular Sobolev spaces, provided we keep ourselves in the low, positive regularity
setting (that is, we work with function spaces rather than spaces of distributions). Let
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s>0and p € [1,00) be such that s < 1/p. A canonical (s, p)-Souza’s atom with support
in Q € U, 2" is the function ag: X — R given by

s=1/p :
an:{m i xEQ
0, ifx¢Q.

We must think Souza’s atoms as simple wavelets. Usually to define wavelets we need
a phase space on which one can talk about scalings and translations of functions (as in
R™). We have a mother wave and we obtain an orthogonal basis to L%(m) considering
scalings and translations of the mother wave. In an abstract measure space with a good
grid we do not have such homogeneous structure. However the grid gives us a way to
define distinct scales, and we can view ag and ay, with Q, J in the same partition 22", as
roughly translated versions of each other.

Ilft hq € [1,00]. A function y € L” (u) belongs to the Besov space .%;7’ q ifthereare cg € C
such that

(e8]
(10.11) =) > cqaq
n=0QePn

and with finite (s, p, q)-cost

o0
(10.12) (Y (Y leoiP)"P)V < 0.

n=0 Qeon
Note that the (s, p, p)-cost has a much simpler expression. The (s, 1, 1)-cost is even sim-
pler

o0

Y Y legl<oo.

n=0QeP"

A representation of ¢ as in (10.11) is called an atomic representation of y by (s, p)-
Souza’s atoms. If it exists, it is not unique. (10.12) gives the (s, p, g)-cost of this repre-
sentation. The norm |- | %5, 0N 98;, q is defined as the infimum of the cost of all possible
such representations. We have

Proposition 10.13 (S. [77]). Thereis Cy € (0,1) such that
Cr=llapllgs <1
foreveryPe 2.
It turn out that

Theorem A (S. [77]). LetO<s<1/p, pe[l,00) and q € [1,00]. We have that (%;'q,l-
|33;‘)q) is a Banach space. Moreover ,%;,,q c LY(m) and it is dense in L'(m), the inclusion

is continuous and the unit ball of%ls,,q is compact in LY(m).

We call those spaces of functions Besov spaces since they are generalisations of Besov
spaces in more classical settings. For instance if we choose the sequence of dyadic par-
titions on [0,1]¢ endowed with the Lebesgue measure we obtain the classical Besov
space in this setting. For a general compact homogeneous space we can consider a
sequence of partitions as defined by Christ [21], and using these partitions the corre-
sponding Besov spaces coincide with classical Besov spaces as defined by Han, Lu and
Yang [36]. See S. [76] for details.

We stress that there are many alternative ways to define such Besov spaces. See Peetre
[59], S. [77] and the references therein. The definition using Souza’s atoms is the most
elementary, low-level way to do it.
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The main idea of a measure space with grids and Besov spaces in this setting is pix-
elization. We approximate functions by very simple functions that are constant on ele-
ments of 2K,

Besov spaces %

paq’
functions. For instance consider the cube [0, 1]° with the sequence of dyadic partitions

and the Lebesgue measure m. Then fD-Hélder functions belong to %), provided
0<s< fB<1. Forthecase D =1, functions with §-bounded variation ( > 1) belong to
‘%il with 0 < s < 1/ as well functions with singularities of the form |x|™", with y € (0,1)
sufficiently small. See S. [77] for details.

Using measure spaces with grids, multiresolution analysis, and Besov spaces opens
up exciting possibilities for studying dynamical systems, especially those with irreg-
ular behavior . Grids make it easy to break the phase space into smaller, manage-
able pieces, which is particularly helpful for systems with sharp transitions, fragmented
phase spaces, or piecewise dynamics. This localized approach not only enhances the-
oretical insights but also aligns naturally with elementary numerical methods, like fi-
nite element methods or wavelet-based approximations, which simplify implementa-
tion and computational analysis. When combined with the flexibility of Besov spaces
—designed to handle oscillations and irregularities— and associated multiresolution
analysis, these tools create a robust framework for tackling problems that traditional
methods often find challenging.

with s € (0,1/p), p € [1,00) and ¢ € [1,00] contain very general

10.1. On the parameters s, p, g. It’s easy to feel overwhelmed by the number of param-
eters in the definition of Besov spaces. To help make sense of them, let’s take a closer
look at the classical Besov spaces B;z, qon [0,1] to try to understand what each parameter
really means. Each of the three parameters — s, p, and g — captures a different aspect
of how the functions in the space behave:

The smoothness parameter s € R quantifies the degree of regularity, extending the
classical notion of differentiability to fractional orders. Notably, the space of s-Hélder
continuous functions C*([0, 1), s € (0, 1), coincides with the Besov space B, -

The line s = 1/p is known as the critical line. For s—1/p > 0, the embedding B;' ps
C5~1P holds, implying that such Besov spaces consist of continuous functions. How-
ever, in order to allow discontinuities—essential, for example, when studying the quasi-
compactness of transfer operators associated with piecewise expanding maps—it is nec-

essary to consider the regime s < 1/p. Piecewise s-Holder functions belong to ng for
B<s.
The integrability parameter p € [1,00] governs the L? integrability of the function or
its derivatives. For 0 < s < 1/p we have B;’ qC L, where
1 1
-=—-5
L p
In particular By, ; < LP. This inclusion also holds for our Besov spaces %, .

The summability parameter g € [1,00] is perhaps the least intuitive parameter. It
tells us how the function’s smoothness is distributed across different frequency scales.
in multiscale decompositions (e.g., wavelets or Littlewood-Paley blocks).

Another noteworthy example is the space Bg’z, which coincides with the Sobolev
space H*.

Together, the triple (s, p, q) allows for a refined classification of function spaces, in-
terpolating between Sobolev, Holder, and other classical spaces.



A SURVEY ON IRREGULAR DYNAMICS 21

10.2. On the Origins and Development of Besov Spaces. Besov spaces were originally
introduced by Oleg Besov in the 1960s [9] and have since become a central object of
study in modern analysis. One of the most appealing features of the Besov scale is
its inclusiveness: many classical spaces, such as Sobolev and Hélder spaces, emerge
as particular cases within this broader framework. Another remarkable aspect is the
rich variety of equivalent definitions for Bfg' q([R”)—ranging from Fourier-analytic and
interpolation-based to atomic and wavelet constructions.

For foundational treatments of Besov spaces on R”, we recommend the classical texts
by Stein [78], Peetre [59], and Triebel [31]. Readers interested in the historical develop-
ment and broader context will find valuable insights in Triebel’s comprehensive account
[81], as well as informative surveys by Jaffard [40], Yuan, Sickel, and Yang [88], and Besov
and Kalyabin [8].

11. EXISTENCE AND STRUCTURE OF INVARIANT ABSOLUTELY CONTINUOUS MEASURES

Consider the following cases of dynamical systems where irregularities arise.

Cl. Let T: Uyep I — I be a piecewise C'*F expanding map, where I, I, are intervals.
Let &2 be the sequence of dyadic partitions on I and g,(x) = |[Dh,(x)|. Let m be the
Lebesgue measure.

C2. Let T: Uyep I — I be a piecewise Cl1+BVup expanding map, where [, I, are intervals.
Here BVy/4 denote the space of bounded 1/ § variation. Let & be the sequence of dyadic
partitions on I and g (x) = |Dh,(x)|. Let m be the Lebesgue measure.

C3. Let T: Uyep Ir — I be a Lorenz map with non-flat singularities, where I, I, are in-
tervals. Let 22 be the sequence of dyadic partitions on I and g, (x) = |Dh,(x)|. Let m be
the Lebesgue measure.

C4. Let T: C — C be a hyperbolic rational map acting on its Julia set J(T). Let 2" be
the a sequence of Markov partitions of J(T) for T" and g, (x) = |[Dh,(x) |4, where d is the
Hausdoff dimension of J(T). Let m be the d-dimensional Hausdoff measure on J(T).

C5. Let o: o™ — /N be the unilateral shift with some finite alphabet «/. Let 22 be the
a sequence of partitions by cylinders. Let ¢ is f-Holder function with zero topological
pressure and g, (x) = e Let m be an eigenmeasure of the transfer operator asso-
ciated to the potential ¢.

C6. Let I be a compact Riemannian manifold. Let T: Uy,ep I, — I be a C1*P piecewise
expanding map, defined on a suitable residual set, such that the complexity of the par-
tition 22" induced by T" does not grow too rapidly (see Cowieson [24] and S. [75] for
details) and g,(x) = JacDf (h,(x)))"L. Let m be the measure generated by a volume
formon I.

Theorem B (Lasota-Yorke Inequality and Quasi-compactness-Arbieto and S. [2] and S.
[75]). On the assumption of each one of the cases C1-C6 there are0 < s<1/p, and p €
[1,00), q € [1,00) such that pair (%;'q,Ll(m)) satisfies the Lasota-Yorke inequality. In
particular ® acts as a quasi-compact operator on %;, q
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Theorem C (Arbieto and S. [2] and S. [75]). On each one of the cases C1-C6 there are
0<s<1/p, and p € [1,00), q € [1,00) such that T has an invariant probability that
absolutely continuous with respect to m whose density p belongs to %,, ,, and

S={xel: p(x)>0}
is, up to a set of zero m-measure, a union of elements of . Indeed, one can write

p=2 2 colpag

n=0QeZn
where cq(p) = 0 for every Q and

(f(i:wdmmwﬁw<w.

n=0 Qe2"

Theorem C generalizes the known result for C? piecewise expanding maps on an
interval, namely that their physical measure is supported on a union of intervals. In
these case the density is a bounded variation function, so its support is a countable
union of intervals and in certain cases a finife union of intervals. See Boyarsky and Géra
[12].

The choice of parameters s, p,q in Theorems B and C depends on the regularity
of the map T. For instance, for C'*# expanding maps on the circle, one can choose
s € (0, 8) and arbitrary parameters p € [1,00) and g € [1,00). However, when T is non-
Markovian, we usually choose p = g =1.

Moreover, if Theorems B and C hold for some choice of parameters s, p, g associated
to a given map T, then one can replace s by any § € (0, s) and obtain analogous results
for the same map T.

There are many other examples to which our methods can be applied. See Arbieto
and S. [2] and S. [75] for more applications.

12. WHY THE TRANSFER OPERATOR IS QUASI-COMPACT ON ‘%fl

In [75], we present a broad range of examples of piecewise expanding maps and po-
tentials for which the transfer operator satisfies the Lasota—Yorke inequality and acts as
a quasi-compact operator on the Besov space 9,, ,, provided that s, p, and g are cho-
sen appropriately. This includes the results stated in Theorem B. We now briefly outline
how these results are proven.

To keep this survey as straightforward as possible, we aim to outline the proof in the
specific case where the partition I is finite and p = g = 1. This case encapsulates the

core ideas of the argument.

12.1. On the Action of the Transfer Operator. The action of the transfer operator ® on
a function y € 98{ | is intricate and can be written as

W) (x) =Y g (Y (h(x) -1y, (hy(x)).

To analyze this action, we will decompose it into a sum of terms involving composi-
tion operators and pointwise multipliers. Here we explain why ® is a bounded operator
on 237 ;. In the next section we explain why @ is quasi-compact.

Restriction. Given v € %f 1» We must restrict y to each domain I; in the partition {I;},.
This is achieved via the pointwise multipliers
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Y= M, (W) =y-1f.

Thus, we must ensure that M, is a bounded operator on % . This is not guaran-
teed if the domain I, is too irregular. For this reason, we require that I, be a strongly
regular domain (see Section 13).

We refer to the decomposition of ¥ into functions supported within each I, as dy-
namical slicing (Step II). To carry this out, we first decompose i into a combination of
atoms with small support and atoms with large support. Atoms with small support in-
tersect fewer elements of the partition, allowing us to obtain better estimates for their
contributions during the dynamical slicing process.

Composition with the Inverse Branches. Once the support of ¥ -1;, is contained in I,
we can compose it with h;:

y-1p, — W-15)0h,.
This composition operator must also be bounded. In particular, if P is an element of
the grid inside I, then

lpoh, = lhr’l(P)
must belong to % ;. This requirement means that h;! must not distort the “geome-
try” of grid elements too severely. Specifically, we must assume that i, 1 (P) is a regular
domain (see Section 14.1).
Thanks to the atomic decomposition of functions in 38{'1 into sums of atoms, this
regularity condition is sufficient to guarantee the boundedness of the composition op-
erator.

Multiplication by the Jacobian as a Pointwise Multiplier. The final step is to multiply
by the Jacobian of i,

lpoh, = 1h;1(p) — Mg, (1poh,) = 8r (x)u/(hr (x)) - 1[,(hr(x))-

Thus, we need to show that M, is a bounded operator. If g, is constant, this is
straightforward. We will see that in many relevant cases—such as when g, is Holder
continuous—this operator acts as a bounded multiplier. See Section 14.4 for details.

12.2. Strategy to show quasi-compactness. Note that 7" has also a similar structure
with a dynamical partition {I;'},¢,, inverse branches

-1
and corresponding induced potential
gl ) =T}, g, (T' (h}! (x)).

where T~} (h?(x)) € I,.

The proof of the Lasota-Yorke inequality and quasi-compactness of the transfer op-
erator @ (Theorem B) is divided into four steps, with Step II (Dynamical Slicing) and
Step III (Contraction of Atoms with Small Support) being the most crucial. These steps
are discussed in detail in the following sections. Be aware that several constants appear
throughout the argument—some of which depend on n, while others do not. Control-
ling these constants is an important part of the analysis. We will denote them by Cj, Cy,
..., but at times we will also use C to represent a generic constant, which may vary from
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line to line in the argument.

Step 1. There are functionals cp € (LY (m))* and C, such that

y=) ) cpap

k pegpk
and
Y Y lep@)l < Collyllggs,
k pegpk
forevery y € %y ;.

Since the norm || - ||33i1 on %fl is defined as the infimum of the (s,1,1)-cost over
all such representations, the inequality above shows that these functionals effectively
select a (nearly) optimal representation of . This follows from the use of a Haar basis
in our setting and, as this is not related with the dynamical problems we are dealing
here, we will skip the details. See S. [77].

Given C3(n) € N we can decompose ¥ as the sum of two functions

Ysmall = Z Z cp(y)ap,

k=C3(n) pegpk
Viarge = Z Z cp(y)ap.
k=Cs(n) pegpk
Here, ¥sman denotes the contribution of atoms with “small” support in the representa-
tion of ¥, and Y1age denotes the contribution of those with “large” support. Note that
there are only a finite number of atoms with large support.

The choice of C3(n) depend on the geometry and topology of the partition {I}.
In many cases we want to choose C3(n) so that each element of 2GB intersects a
small number of elements of {I]'},. For instance, if T is an interval map such that {I,},
is a finite partition on intervals then we can choose C;(n) so large that every element of
2C intersects at most fwo intervals in {I,},.

We have the natural continuous linear projections

Tsmall,C3(n) (W) = Wsman, Tlarge,C3(n) (v) = Wlarge-
Note that [|smal,cym !l < Co, |Tlarge,csm |l = C2 and C does not depend on n and
Cg(l’l)
We can decompose ®" as the sum of two operators on %; ,
" =0"o Tlarge,C3(n) "o Tlsmall,C3(n)-

In particular,
Y= (Dn(WIarge) = (Dn(”large ()
is abounded operator of finite rank, and hence compact. Therefore, it has no impact on
the essential spectral radius of ®". Moreover, since cp € (LYHY*, we have

(12.14) [|®" O Targe,C3(n) (w)“%fl = ||(Dn(Wlarge)||93il = CiMlyllp.

Indeed, the constant C4(n) may be very large, but we are not concerned with that.
On the other hand, if we can choose n and Cs(n) such that

(12.15) ,Bn,Cg,(n) = ||q)n°7[small,C3(n)|| <1,

then, by the characterization of quasi-compactness (8.8), it follows that @ is quasi-compact.
Additionally, using (12.14), we obtain the Lasota-Yorke inequality for ®":

19" W)llz | < CatIYlI s + Byl |z -
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Furthermore, if one can show that there exist constants Cg > 0 and ﬁ € (0,1) such
that, for every n, there exists C3(n) satisfying

(12.16) Bucsm < Cef",
then Nussbaum’s formula (8.7) implies that
Tess (D, ‘%il) = ﬁA

Thus, the remaining task is to establish the bound in (12.16). This will be carried out
in Steps 11, I1I, and IV described below.

Step II (Dynamical slicing). If the geometry and topology of the partition {I}}, is regular
enough then we can decompose

Vsmall = Z U/smallllﬁy
T

with
(12.17) Vemalpn =) Y. €QaQ;
k Qe
QcIy
such that
Yy » IC(SISCs,(n)lllllllggf1
Tk Qexpk ‘
QcIy

There is the issue of controlling the (possible) growth of C5(n) with respect to n. In
the simplest cases—such as interval maps with a finite partition or Markovian maps—we
indeed have

(12.18) sup C5(n) < oco.
n

In some cases, the situation can be more subtle. There exist piecewise expanding maps
on R” that do not satisfy (12.18), as the topology of the partition {I]'},, can become very
complicated as n increases. However, generic maps of this kind do satisfy the condition.

We will show how Step II is carried out with precise control over the geometry and
topology of the partitions {I},.

Step III (Contraction of atoms with small support). The representation (12.17) is con-
venient since the support P of every atom ap in this representation is inside some I}, so
they do not see the discontinuities of T". So this step depends more on the regularity of
every branch and potential on T". Note that

@"(ap)=glapoh!' =PI ' g/ 1 np,

where h': J, — I, is an inverse branch of T" and g}’ is the corresponding induced
potential. We then show that there is § € (0, 1) and Cg such that

I|q>"(6lp)||gg§l = Ceﬁnlldpllggfl,

for every P € 2 with P c I,
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Step IV. Now we can put all together
IICD”(i//)II@f1 = ||(Dn(1//1arge)||33i1 + ||(I)n(1//small)||gail
s Cmliylipn + ||‘1>"(1//sma11)||gg;l

=amIylp+Y Y Y 1eleMag)ls;,
r ok Qe@k !

Qer?
=Cimllylip +Gep" 3. 3 Ieglllaglizg,

Tk Qegpk
Qelp

< Gyl + CoCo(mB" 1 llzs;

Provided we can show that
Cs(n) " < C p"
for some f3 € (0,1), we can then apply a classical argument to eliminate the dependence

of the constants C4(n) on n and obtain the Lasota—Yorke inequality (see for instance
Viana [34, Proof of Proposition 3.1]).

13. NICE PARTITIONS AND DYNAMICAL SLICING (STEP II)

Here we give more details on Step III. A crucial step in proving the quasi-compactness
of the transfer operator ® on the Besov space % | is to understand how ® acts on func-
tions whose support is not confined to a single partition element of {I,},. As discussed
previously, this action involves restricting a function y to the elements of a dynamical
partition {1/}, and composing the resulting pieces with inverse branches &, of the dy-
namics. For this process to define a bounded operator on %y, the domains I; must
have a sufficiently regular geometric structure.

This section introduces the concept of strongly regular domains, which provides a
quantitative framework to control the complexity of the partition elements. These do-
mains allow one to decompose any function ¥ supported in a grid element Q into a
sum of atoms supported inside individual I}*’s—this is the core of the dynamical slicing
argument described in Step II.

The geometry of the partition {I]'}, is an important information. If the "boundary”
of I}' is too complicate then it is unlikely that the transfer operator will preserve a nice
space of functions as %f,l. Indeed the first step to apply the transfer operator @ to a
function v is to consider the restriction of ¥ to each element of this partition, that is, to
consider the map

My, () =yl
for each r € A. Since the support of M; @) is inside I, it will be easier to deal with the
r
composition My , () o h;. So if we want @ to act as a continuous operator on %; ; we
want that
. N N
Ml,;z 1B — B,
to be well-defined and bounded, that is, the multiplication by 1;, is a pointwise multi-
plier if the space 9; ;.
We can express this “nice” geometry purely in terms of the structure of the good
grids.

Definition 13.19. A measurable set Q) c I is a (a, C7, C3)-strongly regular domain if for
every Q € 2/, with j = Cjs, there is a family gk(Q N Q) c 2 such that
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«

FIGURE 2. Dynamical slicing: Each atom ag has a support Q (repre-
sented by the large white square) that may not be entirely contained
within a single element of the partition {I;}, (each element of the
partition is represented by a shaded region). Therefore, we must de-
compose it into smaller atoms, each of which has its support entirely
contained within a single partition element (their supports are repre-
sented by the smaller squares).

i. We haVe QOQ = Uk UPE?"(QF‘IQ) P.
ii. FRWeuF (QnQ)and P# W then PNnW = @.
iii. We have
(13.20) Y IP*=GlQI%
PeFk(QnQ)

Remark 13.21. The simplest examples of strongly regular domains are intervals. If we
endows I = [0,1] with the dyadic grid and the Lebesgue measure them every interval
[a,b] c Iis a (0,2,0)-strongly regular domain.

Proposition 13.22 (Dynamical Slicing-see Arbieto and S. [2]). Given (a, C7,C3), with
a < 1-—s, thereis Cg such that the following holds: If {I,}, is a partition of I such that

- Everyset I, is a(a, C7, C3)-strongly regular domain,

- There is K such that for every Q € 2% we have
(13.23) #r: QNI #¢1 <K,
then for every representation of w

v=2 ) coaq
k=C3 Qe gk
where ag is an atom on Q, there are representations
'WII, = Z Z C(r)aQ’
k=C3 Qe 2k

such that

YY Y el GKY, Y Ichl

I k Qezpk k Qezpk
and moreover 06 # 0 implies Q c I,. In particular

Yl g, < CaKllyllas;,
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Figure 2 illustrates this proposition with a function ¥ consisting of a single atom ay.

If we restrict ourselves to the setting of an Ahlfors-regular metric space, there is a
straightforward way to construct strongly regular domains. A metric space X, equipped
with a Borel measure m, is called Ahlfors-regular if there exist constants ry >0, d = 0,
and C > 1 such that

1
Erd <m(B(x,r)) < cré

forall 0 < r < rp. That definition is slightly more general than the usual one that takes
m to be the d-dimensional Hausdorff measure m, . However, note that m and m, are
absolutely continuous with respect to each other, and their corresponding densities are
bounded.

The dimension of X is defined as d. For instance, R?, equipped with the Lebesgue
measure, is the simplest example, but there are many others, such as compact manifolds
with a volume form or hyperbolic Julia sets endowed with an appropriate Hausdorff
measure.

An open subset Q of an Ahlfors-regular metric space X is an example of a strongly
regular domain if its boundary 6Q is also an Ahlfors-regular metric space, equipped
with another measure m’, and has dimension d’ < d. The simplest example would be
an open set Q < R? where its boundary is a bi-Lipschitz image of the (d—1)-dimensional
sphere S4°1.

However, there are numerous examples where the dimension of the boundary ex-
ceeds d — 1. One way to construct such examples is by considering domains bounded
by self-similar fractals. For instance, a domain bounded by the Rauzy fractal (see Mes-
saoudi [49]) serves as an example.

Partitions consisting of strongly regular domains are essential for ensuring that trans-
fer operators preserve well-behaved spaces of functions.

14. APPLYING THE BRANCHES TO 1//11;1 (STEP III)

14.1. Bounded distortion of geometry (Step III). Here we give details on Step III. To
control the essential spectral radius of the transfer operator, it is not enough to under-
stand how functions decompose along the dynamical partition (Step II); we must also
control how the dynamics itself transforms geometric structures. In particular, we need
to ensure that the inverse branches of T” do not excessively distort the shapes of small
sets in the reference grid. This requirement is crucial to guarantee that the composition
operators involved in ®" act in a bounded way on the Besov space ‘%f,l'

This step draws inspiration from the classical Whitney decomposition of open sets
in Euclidean spaces (see Stein [78] and Figure 3), which allows one to cover a regular
domain by a disjoint family of cubes from a dyadic grid, with precise control on sizes
and overlaps. We adapt this idea to our setting by introducing the notion of regular
domains, which can be written as a disjoint union of grid elements with a quantified
control.

We then define the notion of geometric bounded distortion: an inverse branch 7"
satisfies this property if it maps each grid element P c I to a regular domain. This
allows us to estimate the effect of composing an atom ap with h,—the inverse branch
of T"—in terms of the ratio between the volume of T" P and P. This control is critical
in Step III, where we estimate how ®” acts on atoms with small support.
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FIGURE 3. Example of a decomposition of a regular domain in ele-
ments of the grid

The control of distortion of the shape of sets in the grid is a given for one-dimensional
maps, since intervals are mapped to intervals, however even for piecewise expanding
maps on R” this is not that easy to understand.

If Q c X is a union of elements of the grid, we define

ko () := min{n: there exists P € 22" such that P < Q}.

Definition 14.24. A subset Q c X is called a (a, Cy, A1)-regular domain if one can find
families Z*(Q) c 22X, k = ko(Q) satisfying

A. We have Q = Ugxg, @) UQegk@) Q.

B. For PQ € Ugsky@Z (Q) and P # Q we have PN Q = @.

C. We have

QeFk(Q)

Proposition 14.26. If Q isa(a,Cq,A1)-domain and @ <1—s then l1q € .%f 1’

N

lim Z Z lo=1q

N=00 4@ Qe 7k ()

on9%; ,, and

(14.27) QI allgs, <I1QF7 Y Y llolla;,
' k Qezk@) '

1Y Y 1QIM = Ce, Co, My, 9).
k QeFkQ)
Remark 14.28. Remember that the building blocks of functions in 98{1 are the Souza’s
atoms ap, where P € &2. These atoms satisfies ||ap|| B~ 1. Functions as in the left-
hand side of (14.27) have a similar form, replacing P by a a regular domain, and Propo-
sition 14.26 shows they have a similar property.

Definition 14.29. We say thatabranch T": I} — J has (&, Cy(n), A1) -geometric bounded
distortion iffor every P € &2 satisfying P c I' we have that T" P is a (&, Cy(n), A1)-regular
domain.

A simple consequence is
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Proposition 14.30. Leta < 1-sand supposethat T": I' — J7 has (a, Cy(n), A1) -geometric

bounded distortion. Then there is Co(n) such that for every P € %, with P c I"" we have

|T" P|
|P|

14.2. Branches expand the measure m with bounded distortion.  Up fo this point, no
assumptions regarding the expansion of the measure have been made or used. To com-
plete the proof of quasi-compactness, however, we now require additional assumptions
on the behavior of the inverse branches of the dynamics. While the previous sections
focused on geometric slicing and the distortion of the shape of grid elements, we now
introduce analytic control over how the branches of T" affect the reference measure m.
Specifically, we assume that the branches expand the measure at a controlled exponen-
tial rate and with bounded distortion.

The first assumption is that each branch T" expands the measure m exponentially.
More precisely, we require the existence of constants C;; > 0 and ; € (0, 1) such that for
every grid element P c I]', with r € A",

|P|
(14.31) W = Cllﬁ?-
This inequality is expressed as a contraction in the ratio of volumes and plays a key role
in showing that the transfer operator ®” acts as a contraction when applied to atoms
with small support.

The second assumption guarantees that this expansion is uniformly distributed across
each partition element. That is, there exists a constant C;, > 1 such that for every J € 2
with J < J7, with r € A", we have

1|17 h It
Ciz 1771 |1 177

This bounded distortion condition ensures that the inverse branches do not introduce
wild variations in the measure density across different regions, allowing us to estimate
compositions and multiplications in the operator in a uniform way.

Together, these assumptions form the final analytic ingredient in establishing the
Lasota-Yorke inequality for ®" and completing the proof of quasi-compactness.

=S
llape hyllgs, < Crom (=== llaplla;,

14.3. Simpler Case: Piecewise Constant Potential. To illustrate the core ideas of Step
III in a more tractable setting, we now consider the special case where the Jacobian
g of the inverse branches h, with respect to the reference measure m is constant. This
simplification is not only instructive but also relevant in the study of invariant measures
of maximal entropy, where such potentials naturally arise.
More precisely, we assume that for every x € J! and every P c I}}, we have
gr(x)= ﬂ .
|T"P|

Under this assumption, Proposition 14.30 implies the following estimate:

1Pl \*
n _ . s —_ s
lD™(ap)llgs | = llgr-ap o hrllggs | < Cio(n) (IT”PI) llapllz; -

This estimate reveals a crucial mechanism: if Cjo(n) < 1 and the branches of T"
expand the measure m, then the transfer operator ®” strictly contracts each atom ap
whose support P lies entirely within a single partition element I'. This contraction
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mechanism is one of the fundamental reasons why the transfer operator acts as a quasi-
compact operator on % .

Unfortunately, in general, the constant Cjo(n) may grow with n, potentially under-
mining this contraction. However, we can still control the operator in many relevant
cases. Since the branches of T expand the measure m, we know that

Pl \* k
(lTkP| Scfl 15’

which decays exponentially fast with k. On the other hand, in many classical settings—such
as piecewise C'*# expanding maps on intervals, conformal expanding maps on subsets

of C, or Markovian maps on more general domains—we can verify that the geometric
distortion constants satisfy

sup Cyp(n) < oo.
n

In such cases, we recover the desired conclusion: for sufficiently large n, the operator
®" contracts every atom ap whose support P lies within some 1. This completes the
key estimate required for Step III in the piecewise constant potential case.

14.4. Potential with Bounded Distortion. We now extend the contraction estimates
of Step III to the case of non-constant potentials. To handle this setting, we need to
control how much the Jacobian g/’ varies across each branch of the dynamics.

Let P € & with P c J}'. Observe that

fpg,"dm: |k (P)],

so the average value of g/’ over P is

|y (P)]
m(gy,P) = ———.
' |P|
In the case of constant potentials, g/ would coincide with this average on each P. It
turns out that in various important settings—such as when g/’ is Holder continuous or
of bounded variation (in the one-dimensional case)—this equality holds approximately

(See S. [75]), and there exists a constant C;3 such that
|[h*(P)] ‘ |h}(P)]
n r r
P -1p =C )
gr |P| %f’l 13 |P|S
and in particular,
[h}(P)]

||g;11P”3€13,1 =(Ciz+1) |P|s



32 D. SMANIA

Consequently, if P c I, then by Proposition 14.30 we obtain:

1
10" (ap)lla;, = lgr-apoh, “33{_1 = ‘ng'lwp o
1,1
1
T Y gy
1P ks k(7 P) jegrk(rnp) !
1290)]

1
=(Cis+ 1)—P = X > s
1P jo kot p) jegirnpy M1

oy 1 -

S(C13+1)( U/l
|TnII}‘1| |P|1_S kzk%"np)]eggl“np)

11|

r

< (C13+1)Cro(n) ( )('T"P')H
= s O T\ Ty

|1}']
|T"I7|
Here, the constant Cyo(n) captures the geometric distortion introduced by the branch
T" on the domain I}. For conformal maps—including one-dimensional piecewise ex-
panding maps—and for Markovian maps (by selecting 2* as the k-step Markov parti-
tion), we have

s
S(C13+1)Cf2_s-C10(n)( ) ||aP||33f1

sup Cio(n) < oo,
n

and we recover exponential contraction of atoms supported inside I}*.

However, if T is not conformal, C1¢(n) can grow exponentially with n, and more care
is needed. Let us consider the case in which T" is a piecewise C'*# diffeomorphism on
RP. After refining the partition {I'},, one can show that there exists a constant C such
that for every x € I, letting 0 < @; < az < --- < ap denote the singular values of DT"(x),

we have
a

N
Cl()(n') =C- l_[ _‘l;)
i#1 41
as the right-hand side reflects how far DT"(x) is from being a scalar multiple of an isom-
etry (See S. [75]). and

() <[
|Tnl;1| - ; i’

since []; a; = |det DT"(x)|. Therefore,

|I;l| : 2 -sD
=C-a;°".
| T 17|
Since T is assumed to be metrically expanding, there exist constants C >0and y > 1
such that

Cio(n)- (

a;=C-y",
and we again obtain exponential contraction of atoms whose support lies inside I.

15. OPEN QUESTIONS

15.1. Natural Spaces of Functions. Most Banach function spaces on R discussed in the
literature have norms defined as sums of pseudo-norms that behave nicely under scal-
ing and translation.
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We say that a pseudo-norm n(-) (i.e., a function that satisfies the norm axioms ex-
cept that it may assign zero to nonzero vectors) on a function space over an interval [
is purely natural if there exists a constant C > 0 such that:

Almost invariance under affine transformations: There exist ¢t € Rand C > 0 such that for
any affine and invertible transformation v: R — R and any function ¢: I — C satisfying

v_l(supp P)cl,
we have ¢pov e B and
%Iv'ltn((,b) <n(pov) < ClV'|'n(¢).

We call ¢ the degree of homogeneity of n.

A pseudo-norm n that is a finite sum of purely natural pseudo-norms is called natu-
ral. Specifically, there exist purely natural pseudo-norms n;, with i < j, and degrees of
homogeneity ¢; such that:

n@) =) ni(¢).
isj

We can ask if the Besov spaces 98, , are the largest "natural" spaces of functions with
good statistical properties. By natural we mean functions space whose norm behaves
nicely with respect to scalings, rotations and translations. To be more precise, lets state
the question for expanding maps on the internal.

Question 15.1. Let f be an C'*P expanding map acting on an interval I with B> 0. Let
(B,|-1B) be a Banach space of functions on I such that

e B isadense subspace of L' (m) and the unit ball of B is compact in L'.
o The pair (B, L") satisfies the Lasota-Yorke inequality

|plg < Alglp + Cllp

forsome A €(0,1) and C > 0.
o The Banach space B is natural.

One can asks if there is s > 0, p € [1,00) and q € [1,00] with s < 1/p such that B Bf,yq
(this is the classical Besov space on I).

15.2. Towers and Induced Maps. Towers and induced maps are classical and power-
ful tools in dynamical systems theory. They simplify the analysis of complicated sys-
tems—such as those with critical points, singularities, or discontinuities—by reducing
them to more tractable piecewise expanding maps, and in some cases, even to Mar-
kovian dynamics. Young towers [87] are tailored to Holder continuous observables,
while Baladi-Viana towers [6] are designed for observables of bounded variation. Both
approaches rely on constructing a (sometimes ad hoc) dynamical partition of the (ex-
tended) phase space.

Besov spaces with fractional smoothness s < 1/p naturally arise in this context due
to their robust handling of discontinuities.

Question 15.2. How can classical ergodic theory tools, such as towers and induced maps,
be employed to broaden the study of transfer operators acting on Besov spaces of observ-
ables?

A promising starting point is the result by Chazottes, Collet, and Schmitt [20], which
investigates the Besov regularity of invariant probability densities for unimodal maps
with critical points.
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15.3. Obstruction to a Small Essential Spectral Radius. Recently, Butterley, Canestrari,
and Jain [17] demonstrated that for non-Markovian piecewise expanding maps on the
interval, it is impossible to achieve an arbitrarily small essential spectral radius in func-
tion spaces B that are continuously embedded in L.

Question 15.3. Can results similar to those in [17] be extended to all natural function
spaces B c L' that satisfy the Lasota-Yorke inequality? Furthermore, could Besov spaces
yield the smallest essential spectral radius among non-Markovian piecewise expanding
dynamical systems?

15.4. Computational approach. Numerical studies on the statistical properties of dy-
namical systems have seen remarkable growth in recent years. Notable contributions
include the works of Li [45], and Liverani [47]. The linear response problem has also
been explored in various settings by Bahsoun, Galatolo, Nisoli, and Niu [3], Wormell
and Gottwald [86], Chandramoorthy and Jézéquel [19].

The intersection of measure spaces with grid structures and Besov spaces presents
a compelling framework for advancing the numerical/computing assisted multiscale
analysis of transfer operators. This approach not only enriches the theoretical land-
scape but also paves the way for innovative computational methods and practical ap-
plications.

Besov spaces allows us to capture function regularity through wavelet decomposi-
tions, and offer a highly flexible setting for multiresolution analysis. By employing un-
balanced Haar wavelets (see Girardi and Sweldens [31]), functions within Besov spaces
can be efficiently decomposed using fast wavelet transform algorithms (Mallat [48]).

The synergy between grid structures in measure spaces and the sophisticated ana-
lytical tools provided by Besov spaces enables the discretization of transfer operators,
even in highly irregular phases spaces and dynamics, significantly enhancing their ac-
cessibility for numerical approximation. This discretization is particularly instrumental
in the computational verification of Lasota-Yorke inequalities, which are crucial for un-
derstanding the statistical properties of dynamical systems.

Building on this foundation, future research can develop robust algorithms for sim-
ulating and analyzing transfer operators, potentially uncovering new insights into the
stability, mixing behavior, and statistical laws governing dynamical systems. The fu-
sion of theoretical rigor and computational innovation in this context holds tremendous
promise for advancing both mathematical theory and its practical applications.
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