Filtros : "Calculus of Variations and Partial Differential Equations" Removido: "EQUAÇÕES DIFERENCIAIS PARCIAIS" Limpar

Filtros



Refine with date range


  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, MÉTODOS VARIACIONAIS, MECÂNICA QUÂNTICA, BIOMATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BÖER, Eduardo e MOREIRA DOS SANTOS, Ederson. Standing waves for nonlinear Hartree type equations: existence and qualitative properties. Calculus of Variations and Partial Differential Equations, v. 64, n. Ju 2025, p. 1-36, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00526-025-03025-2. Acesso em: 08 dez. 2025.
    • APA

      Böer, E., & Moreira dos Santos, E. (2025). Standing waves for nonlinear Hartree type equations: existence and qualitative properties. Calculus of Variations and Partial Differential Equations, 64( Ju 2025), 1-36. doi:10.1007/s00526-025-03025-2
    • NLM

      Böer E, Moreira dos Santos E. Standing waves for nonlinear Hartree type equations: existence and qualitative properties [Internet]. Calculus of Variations and Partial Differential Equations. 2025 ; 64( Ju 2025): 1-36.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-025-03025-2
    • Vancouver

      Böer E, Moreira dos Santos E. Standing waves for nonlinear Hartree type equations: existence and qualitative properties [Internet]. Calculus of Variations and Partial Differential Equations. 2025 ; 64( Ju 2025): 1-36.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-025-03025-2
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, PROBLEMAS DE CONTORNO, OPERADORES, ANÁLISE FUNCIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jefferson Abrantes dos e PONTES, Pedro Fellype da Silva e SOARES, Sérgio Henrique Monari. A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities. Calculus of Variations and Partial Differential Equations, v. 62, n. 3, p. 1-33, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00526-023-02437-2. Acesso em: 08 dez. 2025.
    • APA

      Santos, J. A. dos, Pontes, P. F. da S., & Soares, S. H. M. (2023). A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities. Calculus of Variations and Partial Differential Equations, 62( 3), 1-33. doi:10.1007/s00526-023-02437-2
    • NLM

      Santos JA dos, Pontes PF da S, Soares SHM. A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 3): 1-33.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-023-02437-2
    • Vancouver

      Santos JA dos, Pontes PF da S, Soares SHM. A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 3): 1-33.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-023-02437-2
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, SUPERFÍCIES MÍNIMAS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GÁLVEZ, José A e MIRA, Pablo e TASSI, Marcos Paulo. A quasiconformal Hopf soap bubble theorem. Calculus of Variations and Partial Differential Equations, v. 61, n. 4, p. 1-20, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00526-022-02222-7. Acesso em: 08 dez. 2025.
    • APA

      Gálvez, J. A., Mira, P., & Tassi, M. P. (2022). A quasiconformal Hopf soap bubble theorem. Calculus of Variations and Partial Differential Equations, 61( 4), 1-20. doi:10.1007/s00526-022-02222-7
    • NLM

      Gálvez JA, Mira P, Tassi MP. A quasiconformal Hopf soap bubble theorem [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 4): 1-20.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-022-02222-7
    • Vancouver

      Gálvez JA, Mira P, Tassi MP. A quasiconformal Hopf soap bubble theorem [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 4): 1-20.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-022-02222-7
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS DE 2ª ORDEM, TEORIA QUALITATIVA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, João Vitor da e NORNBERG, Gabrielle. Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients. Calculus of Variations and Partial Differential Equations, v. 60, n. 6, p. 1-40, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00526-021-02082-7. Acesso em: 08 dez. 2025.
    • APA

      Silva, J. V. da, & Nornberg, G. (2021). Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients. Calculus of Variations and Partial Differential Equations, 60( 6), 1-40. doi:10.1007/s00526-021-02082-7
    • NLM

      Silva JV da, Nornberg G. Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients [Internet]. Calculus of Variations and Partial Differential Equations. 2021 ; 60( 6): 1-40.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-021-02082-7
    • Vancouver

      Silva JV da, Nornberg G. Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients [Internet]. Calculus of Variations and Partial Differential Equations. 2021 ; 60( 6): 1-40.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-021-02082-7
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, PROBLEMAS VARIACIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENCI, Vieri e NARDULLI, Stefano e PICCIONE, Paolo. Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint. Calculus of Variations and Partial Differential Equations, v. 59, n. 2, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00526-020-1724-8. Acesso em: 08 dez. 2025.
    • APA

      Benci, V., Nardulli, S., & Piccione, P. (2020). Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint. Calculus of Variations and Partial Differential Equations, 59( 2). doi:10.1007/s00526-020-1724-8
    • NLM

      Benci V, Nardulli S, Piccione P. Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint [Internet]. Calculus of Variations and Partial Differential Equations. 2020 ; 59( 2):[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-020-1724-8
    • Vancouver

      Benci V, Nardulli S, Piccione P. Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint [Internet]. Calculus of Variations and Partial Differential Equations. 2020 ; 59( 2):[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-020-1724-8
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, PROBLEMAS DE CONTORNO, ESPAÇOS DE ORLICZ, ESPAÇOS DE SOBOLEV

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jefferson Abrantes e SOARES, Sérgio Henrique Monari. Optimal design problems for a degenerate operator in Orlicz-Sobolev spaces. Calculus of Variations and Partial Differential Equations, v. 59, n. 6, p. 1-23, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00526-020-01857-8. Acesso em: 08 dez. 2025.
    • APA

      Santos, J. A., & Soares, S. H. M. (2020). Optimal design problems for a degenerate operator in Orlicz-Sobolev spaces. Calculus of Variations and Partial Differential Equations, 59( 6), 1-23. doi:10.1007/s00526-020-01857-8
    • NLM

      Santos JA, Soares SHM. Optimal design problems for a degenerate operator in Orlicz-Sobolev spaces [Internet]. Calculus of Variations and Partial Differential Equations. 2020 ; 59( 6): 1-23.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-020-01857-8
    • Vancouver

      Santos JA, Soares SHM. Optimal design problems for a degenerate operator in Orlicz-Sobolev spaces [Internet]. Calculus of Variations and Partial Differential Equations. 2020 ; 59( 6): 1-23.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-020-01857-8
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: SUPERFÍCIES MÍNIMAS, GEOMETRIA DIFERENCIAL, ESPAÇOS SIMÉTRICOS, SUBVARIEDADES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GORODSKI, Claudio e MENDES, Ricardo A. E. e RADESCHI, Marco. Robust index bounds for minimal hypersurfaces of isoparametric submanifolds and symmetric spaces. Calculus of Variations and Partial Differential Equations, v. 58, n. 4, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00526-019-1552-x. Acesso em: 08 dez. 2025.
    • APA

      Gorodski, C., Mendes, R. A. E., & Radeschi, M. (2019). Robust index bounds for minimal hypersurfaces of isoparametric submanifolds and symmetric spaces. Calculus of Variations and Partial Differential Equations, 58( 4). doi:10.1007/s00526-019-1552-x
    • NLM

      Gorodski C, Mendes RAE, Radeschi M. Robust index bounds for minimal hypersurfaces of isoparametric submanifolds and symmetric spaces [Internet]. Calculus of Variations and Partial Differential Equations. 2019 ; 58( 4):[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-019-1552-x
    • Vancouver

      Gorodski C, Mendes RAE, Radeschi M. Robust index bounds for minimal hypersurfaces of isoparametric submanifolds and symmetric spaces [Internet]. Calculus of Variations and Partial Differential Equations. 2019 ; 58( 4):[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-019-1552-x
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: GEODÉSIA, GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fábio e PICCIONE, Paolo. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles. Calculus of Variations and Partial Differential Equations, v. 57, n. 5, p. 1-26, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00526-018-1394-y. Acesso em: 08 dez. 2025.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2018). Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles. Calculus of Variations and Partial Differential Equations, 57( 5), 1-26. doi:10.1007/s00526-018-1394-y
    • NLM

      Giambó R, Giannoni F, Piccione P. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles [Internet]. Calculus of Variations and Partial Differential Equations. 2018 ; 57( 5): 1-26.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-018-1394-y
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles [Internet]. Calculus of Variations and Partial Differential Equations. 2018 ; 57( 5): 1-26.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-018-1394-y
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: GEOMETRIA SIMPLÉTICA, SISTEMAS DINÂMICOS, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HRYNIEWICZ, Umberto L e SALOMÃO, Pedro Antônio Santoro. Elliptic bindings for dynamically convex Reeb flows on the real projective three-space. Calculus of Variations and Partial Differential Equations, v. 55, n. article º 43, p. 57 , 2016Tradução . . Disponível em: https://doi.org/10.1007/s00526-016-0975-x. Acesso em: 08 dez. 2025.
    • APA

      Hryniewicz, U. L., & Salomão, P. A. S. (2016). Elliptic bindings for dynamically convex Reeb flows on the real projective three-space. Calculus of Variations and Partial Differential Equations, 55( article º 43), 57 . doi:10.1007/s00526-016-0975-x
    • NLM

      Hryniewicz UL, Salomão PAS. Elliptic bindings for dynamically convex Reeb flows on the real projective three-space [Internet]. Calculus of Variations and Partial Differential Equations. 2016 ; 55( article º 43): 57 .[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-016-0975-x
    • Vancouver

      Hryniewicz UL, Salomão PAS. Elliptic bindings for dynamically convex Reeb flows on the real projective three-space [Internet]. Calculus of Variations and Partial Differential Equations. 2016 ; 55( article º 43): 57 .[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-016-0975-x
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, SISTEMAS HAMILTONIANOS, VARIEDADES RIEMANNIANAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Multiple brake orbits in m-dimensional disks. Calculus of Variations and Partial Differential Equations, v. No 2015, n. 3, p. 2553-2580, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00526-015-0875-5. Acesso em: 08 dez. 2025.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2015). Multiple brake orbits in m-dimensional disks. Calculus of Variations and Partial Differential Equations, No 2015( 3), 2553-2580. doi:10.1007/s00526-015-0875-5
    • NLM

      Giambó R, Giannoni F, Piccione P. Multiple brake orbits in m-dimensional disks [Internet]. Calculus of Variations and Partial Differential Equations. 2015 ; No 2015( 3): 2553-2580.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-015-0875-5
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Multiple brake orbits in m-dimensional disks [Internet]. Calculus of Variations and Partial Differential Equations. 2015 ; No 2015( 3): 2553-2580.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-015-0875-5
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Assunto: CÁLCULO DE VARIAÇÕES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato G e PICCIONE, Paolo. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calculus of Variations and Partial Differential Equations, v. 47, n. 3-4, p. 789-807, 2013Tradução . . Disponível em: https://doi.org/10.1007/s00526-012-0535-y. Acesso em: 08 dez. 2025.
    • APA

      Bettiol, R. G., & Piccione, P. (2013). Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calculus of Variations and Partial Differential Equations, 47( 3-4), 789-807. doi:10.1007/s00526-012-0535-y
    • NLM

      Bettiol RG, Piccione P. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres [Internet]. Calculus of Variations and Partial Differential Equations. 2013 ; 47( 3-4): 789-807.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-012-0535-y
    • Vancouver

      Bettiol RG, Piccione P. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres [Internet]. Calculus of Variations and Partial Differential Equations. 2013 ; 47( 3-4): 789-807.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-012-0535-y
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JAVALOYES, Miguel Angel e PICCIONE, Paolo. Spectral flow and iteration of closed semi-Riemannian geodesics. Calculus of Variations and Partial Differential Equations, v. 33, n. 4, p. 439-462, 2008Tradução . . Disponível em: https://doi.org/10.1007/s00526-008-0170-9. Acesso em: 08 dez. 2025.
    • APA

      Javaloyes, M. A., & Piccione, P. (2008). Spectral flow and iteration of closed semi-Riemannian geodesics. Calculus of Variations and Partial Differential Equations, 33( 4), 439-462. doi:10.1007/s00526-008-0170-9
    • NLM

      Javaloyes MA, Piccione P. Spectral flow and iteration of closed semi-Riemannian geodesics [Internet]. Calculus of Variations and Partial Differential Equations. 2008 ; 33( 4): 439-462.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-008-0170-9
    • Vancouver

      Javaloyes MA, Piccione P. Spectral flow and iteration of closed semi-Riemannian geodesics [Internet]. Calculus of Variations and Partial Differential Equations. 2008 ; 33( 4): 439-462.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s00526-008-0170-9
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Assunto: PROBLEMAS VARIACIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. An index theory for paths that are solutions of a class of strongly indefinite variational problems. Calculus of Variations and Partial Differential Equations, v. 15, n. 4, p. 529-551, 2002Tradução . . Disponível em: https://doi.org/10.1007/s005260100136. Acesso em: 08 dez. 2025.
    • APA

      Piccione, P., & Tausk, D. V. (2002). An index theory for paths that are solutions of a class of strongly indefinite variational problems. Calculus of Variations and Partial Differential Equations, 15( 4), 529-551. doi:10.1007/s005260100136
    • NLM

      Piccione P, Tausk DV. An index theory for paths that are solutions of a class of strongly indefinite variational problems [Internet]. Calculus of Variations and Partial Differential Equations. 2002 ; 15( 4): 529-551.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s005260100136
    • Vancouver

      Piccione P, Tausk DV. An index theory for paths that are solutions of a class of strongly indefinite variational problems [Internet]. Calculus of Variations and Partial Differential Equations. 2002 ; 15( 4): 529-551.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s005260100136
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fabio e MASIELLO, Antonio e PICCIONE, Paolo. A timelike extension of Fermat's principle in general relativity and applications. Calculus of Variations and Partial Differential Equations, v. 6, n. 3, p. 263-283, 1998Tradução . . Disponível em: https://doi.org/10.1007/s005260050091. Acesso em: 08 dez. 2025.
    • APA

      Giannoni, F., Masiello, A., & Piccione, P. (1998). A timelike extension of Fermat's principle in general relativity and applications. Calculus of Variations and Partial Differential Equations, 6( 3), 263-283. doi:10.1007/s005260050091
    • NLM

      Giannoni F, Masiello A, Piccione P. A timelike extension of Fermat's principle in general relativity and applications [Internet]. Calculus of Variations and Partial Differential Equations. 1998 ; 6( 3): 263-283.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s005260050091
    • Vancouver

      Giannoni F, Masiello A, Piccione P. A timelike extension of Fermat's principle in general relativity and applications [Internet]. Calculus of Variations and Partial Differential Equations. 1998 ; 6( 3): 263-283.[citado 2025 dez. 08 ] Available from: https://doi.org/10.1007/s005260050091

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025