A timelike extension of Fermat's principle in general relativity and applications (1998)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.1007/s005260050091
- Assunto: GEOMETRIA DIFERENCIAL
- Language: Inglês
- Imprenta:
- Publisher place: Heidelberg
- Date published: 1998
- Source:
- Título: Calculus of Variations and Partial Differential Equations
- ISSN: 0944-2669
- Volume/Número/Paginação/Ano: v. 6, n. 3, p. 263-283, 1998
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
GIANNONI, Fabio e MASIELLO, Antonio e PICCIONE, Paolo. A timelike extension of Fermat's principle in general relativity and applications. Calculus of Variations and Partial Differential Equations, v. 6, n. 3, p. 263-283, 1998Tradução . . Disponível em: https://doi.org/10.1007/s005260050091. Acesso em: 09 jan. 2026. -
APA
Giannoni, F., Masiello, A., & Piccione, P. (1998). A timelike extension of Fermat's principle in general relativity and applications. Calculus of Variations and Partial Differential Equations, 6( 3), 263-283. doi:10.1007/s005260050091 -
NLM
Giannoni F, Masiello A, Piccione P. A timelike extension of Fermat's principle in general relativity and applications [Internet]. Calculus of Variations and Partial Differential Equations. 1998 ; 6( 3): 263-283.[citado 2026 jan. 09 ] Available from: https://doi.org/10.1007/s005260050091 -
Vancouver
Giannoni F, Masiello A, Piccione P. A timelike extension of Fermat's principle in general relativity and applications [Internet]. Calculus of Variations and Partial Differential Equations. 1998 ; 6( 3): 263-283.[citado 2026 jan. 09 ] Available from: https://doi.org/10.1007/s005260050091 - Multiple brake orbits in m-dimensional disks
- On the normal exponential map in singular conformal metrics
- Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Maslov index and Morse theory for the relativistic Lorentz force equation
- On the number of solutions for the two-point boundary value problem on Riemannian manifolds
- Maximally-warped metrics with harmonic curvature
- On the Lie group structure of pseudo-Finsler isometries
Informações sobre o DOI: 10.1007/s005260050091 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
