Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres (2013)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.1007/s00526-012-0535-y
- Assunto: CÁLCULO DE VARIAÇÕES
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Calculus of Variations and Partial Differential Equations
- ISSN: 0944-2669
- Volume/Número/Paginação/Ano: v. 47, n. 3-4, p. 789-807, 2013
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BETTIOL, Renato G e PICCIONE, Paolo. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calculus of Variations and Partial Differential Equations, v. 47, n. 3-4, p. 789-807, 2013Tradução . . Disponível em: https://doi.org/10.1007/s00526-012-0535-y. Acesso em: 24 jan. 2026. -
APA
Bettiol, R. G., & Piccione, P. (2013). Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calculus of Variations and Partial Differential Equations, 47( 3-4), 789-807. doi:10.1007/s00526-012-0535-y -
NLM
Bettiol RG, Piccione P. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres [Internet]. Calculus of Variations and Partial Differential Equations. 2013 ; 47( 3-4): 789-807.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1007/s00526-012-0535-y -
Vancouver
Bettiol RG, Piccione P. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres [Internet]. Calculus of Variations and Partial Differential Equations. 2013 ; 47( 3-4): 789-807.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1007/s00526-012-0535-y - Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Bifurcation of Constant Mean Curvature Tori in Euclidean Spheres
- Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index
- A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results
- A variational theory for hight rays on Lorentz manifolds
- Shortening null geodesics in Lorentzian manifolds: applications to closed light rays
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- Multiplicity results for mass constrained Allen–Cahn equations on Riemannian manifolds with boundary
- Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods
Informações sobre o DOI: 10.1007/s00526-012-0535-y (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
