Filtros : "TEORIA ERGÓDICA" "Tahzibi, Ali" Removido: "Financiamento FAPESP" Limpar

Filtros



Refine with date range


  • Unidade: ICMC

    Subjects: DIFEOMORFISMOS, ENTROPIA, FOLHEAÇÕES, TEORIA ERGÓDICA, SISTEMAS DINÂMICOS, ESPAÇOS HIPERBÓLICOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BECERRA, Richard Javier Cubas. Sistemas de medidas Margulis e medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta. 2022. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18112022-191726/. Acesso em: 27 nov. 2025.
    • APA

      Becerra, R. J. C. (2022). Sistemas de medidas Margulis e medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18112022-191726/
    • NLM

      Becerra RJC. Sistemas de medidas Margulis e medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta [Internet]. 2022 ;[citado 2025 nov. 27 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18112022-191726/
    • Vancouver

      Becerra RJC. Sistemas de medidas Margulis e medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta [Internet]. 2022 ;[citado 2025 nov. 27 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18112022-191726/
  • Source: Portugaliae Mathematica. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TEORIA ERGÓDICA, DIFEOMORFISMOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRONZI, Marcus Augusto e TAHZIBI, Ali. Homoclinic tangency and variation of entropy. Portugaliae Mathematica, v. 77, n. 3-4, p. 383-398, 2020Tradução . . Disponível em: https://doi.org/10.4171/PM/2055. Acesso em: 27 nov. 2025.
    • APA

      Bronzi, M. A., & Tahzibi, A. (2020). Homoclinic tangency and variation of entropy. Portugaliae Mathematica, 77( 3-4), 383-398. doi:10.4171/PM/2055
    • NLM

      Bronzi MA, Tahzibi A. Homoclinic tangency and variation of entropy [Internet]. Portugaliae Mathematica. 2020 ; 77( 3-4): 383-398.[citado 2025 nov. 27 ] Available from: https://doi.org/10.4171/PM/2055
    • Vancouver

      Bronzi MA, Tahzibi A. Homoclinic tangency and variation of entropy [Internet]. Portugaliae Mathematica. 2020 ; 77( 3-4): 383-398.[citado 2025 nov. 27 ] Available from: https://doi.org/10.4171/PM/2055
  • Source: Transactions of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali e YANG, Jiagang. Invariance principle and rigidity of high entropy measures. Transactions of the American Mathematical Society, v. 371, n. 2, p. 1231-1251, 2019Tradução . . Disponível em: https://doi.org/10.1090/tran/7278. Acesso em: 27 nov. 2025.
    • APA

      Tahzibi, A., & Yang, J. (2019). Invariance principle and rigidity of high entropy measures. Transactions of the American Mathematical Society, 371( 2), 1231-1251. doi:10.1090/tran/7278
    • NLM

      Tahzibi A, Yang J. Invariance principle and rigidity of high entropy measures [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 2): 1231-1251.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1090/tran/7278
    • Vancouver

      Tahzibi A, Yang J. Invariance principle and rigidity of high entropy measures [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 2): 1231-1251.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1090/tran/7278
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, Fernando e TAHZIBI, Ali. A note on rigidity of Anosov diffeomorphisms of the three torus. Proceedings of the American Mathematical Society, v. 147, n. 6, p. 2453-2463, 2019Tradução . . Disponível em: https://doi.org/10.1090/proc/14422. Acesso em: 27 nov. 2025.
    • APA

      Micena, F., & Tahzibi, A. (2019). A note on rigidity of Anosov diffeomorphisms of the three torus. Proceedings of the American Mathematical Society, 147( 6), 2453-2463. doi:10.1090/proc/14422
    • NLM

      Micena F, Tahzibi A. A note on rigidity of Anosov diffeomorphisms of the three torus [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 6): 2453-2463.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1090/proc/14422
    • Vancouver

      Micena F, Tahzibi A. A note on rigidity of Anosov diffeomorphisms of the three torus [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 6): 2453-2463.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1090/proc/14422
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRISOSTOMO, Jorge e TAHZIBI, Ali. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, v. 32, n. 2, p. 584-602, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aaec98. Acesso em: 27 nov. 2025.
    • APA

      Crisostomo, J., & Tahzibi, A. (2019). Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, 32( 2), 584-602. doi:10.1088/1361-6544/aaec98
    • NLM

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
    • Vancouver

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
  • Source: Advances in Mathematics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DIFEOMORFISMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONCE, Gabriel e TAHZIBI, Ali e VARÃO, R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms. Advances in Mathematics, v. 329, p. 329-360, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2018.02.019. Acesso em: 27 nov. 2025.
    • APA

      Ponce, G., Tahzibi, A., & Varão, R. (2018). On the Bernoulli property for certain partially hyperbolic diffeomorphisms. Advances in Mathematics, 329, 329-360. doi:10.1016/j.aim.2018.02.019
    • NLM

      Ponce G, Tahzibi A, Varão R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms [Internet]. Advances in Mathematics. 2018 ; 329 329-360.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.aim.2018.02.019
    • Vancouver

      Ponce G, Tahzibi A, Varão R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms [Internet]. Advances in Mathematics. 2018 ; 329 329-360.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.aim.2018.02.019
  • Unidade: ICMC

    Subjects: ENTROPIA, FOLHEAÇÕES, DIFEOMORFISMOS, TEORIA ERGÓDICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA, Joás Elias dos Santos. Medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta em T3. 2018. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2018. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30072018-114107/. Acesso em: 27 nov. 2025.
    • APA

      Rocha, J. E. dos S. (2018). Medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta em T3 (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30072018-114107/
    • NLM

      Rocha JE dos S. Medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta em T3 [Internet]. 2018 ;[citado 2025 nov. 27 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30072018-114107/
    • Vancouver

      Rocha JE dos S. Medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta em T3 [Internet]. 2018 ;[citado 2025 nov. 27 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30072018-114107/
  • Source: Thematic Program. Conference titles: Dynamical Systems School of Mathematics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali. Random walk on the group of matrices and diffeomorphisms: a dynamical point of view. 2017, Anais.. Tehran: IPM, 2017. Disponível em: http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf. Acesso em: 27 nov. 2025.
    • APA

      Tahzibi, A. (2017). Random walk on the group of matrices and diffeomorphisms: a dynamical point of view. In Thematic Program. Tehran: IPM. Recuperado de http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf
    • NLM

      Tahzibi A. Random walk on the group of matrices and diffeomorphisms: a dynamical point of view [Internet]. Thematic Program. 2017 ;[citado 2025 nov. 27 ] Available from: http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf
    • Vancouver

      Tahzibi A. Random walk on the group of matrices and diffeomorphisms: a dynamical point of view [Internet]. Thematic Program. 2017 ;[citado 2025 nov. 27 ] Available from: http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEHDIPOUR, P e TAHZIBI, Ali. SRB measures and homoclinic relation for endomorphisms. Journal of Statistical Physics, v. 163, n. 1, p. 139-155, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10955-016-1458-3. Acesso em: 27 nov. 2025.
    • APA

      Mehdipour, P., & Tahzibi, A. (2016). SRB measures and homoclinic relation for endomorphisms. Journal of Statistical Physics, 163( 1), 139-155. doi:10.1007/s10955-016-1458-3
    • NLM

      Mehdipour P, Tahzibi A. SRB measures and homoclinic relation for endomorphisms [Internet]. Journal of Statistical Physics. 2016 ; 163( 1): 139-155.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10955-016-1458-3
    • Vancouver

      Mehdipour P, Tahzibi A. SRB measures and homoclinic relation for endomorphisms [Internet]. Journal of Statistical Physics. 2016 ; 163( 1): 139-155.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10955-016-1458-3
  • Source: Fundamenta Mathematicae. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, Fernando e TAHZIBI, Ali. On the unstable directions and Lyapunov exponents of Anosov endomorphisms. Fundamenta Mathematicae, v. 235, p. 37-48, 2016Tradução . . Disponível em: https://doi.org/10.4064/fm92-10-2015. Acesso em: 27 nov. 2025.
    • APA

      Micena, F., & Tahzibi, A. (2016). On the unstable directions and Lyapunov exponents of Anosov endomorphisms. Fundamenta Mathematicae, 235, 37-48. doi:10.4064/fm92-10-2015
    • NLM

      Micena F, Tahzibi A. On the unstable directions and Lyapunov exponents of Anosov endomorphisms [Internet]. Fundamenta Mathematicae. 2016 ; 235 37-48.[citado 2025 nov. 27 ] Available from: https://doi.org/10.4064/fm92-10-2015
    • Vancouver

      Micena F, Tahzibi A. On the unstable directions and Lyapunov exponents of Anosov endomorphisms [Internet]. Fundamenta Mathematicae. 2016 ; 235 37-48.[citado 2025 nov. 27 ] Available from: https://doi.org/10.4064/fm92-10-2015
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CATALAN, Thiago e TAHZIBI, Ali. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms. Ergodic Theory and Dynamical Systems, v. 34, n. 5, p. 1503-1524, 2014Tradução . . Disponível em: https://doi.org/10.1017/etds.2013.12. Acesso em: 27 nov. 2025.
    • APA

      Catalan, T., & Tahzibi, A. (2014). A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms. Ergodic Theory and Dynamical Systems, 34( 5), 1503-1524. doi:10.1017/etds.2013.12
    • NLM

      Catalan T, Tahzibi A. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 5): 1503-1524.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/etds.2013.12
    • Vancouver

      Catalan T, Tahzibi A. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 5): 1503-1524.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/etds.2013.12
  • Source: Journal of Modern Dynamics - JMD. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOGOLEV, Andrey e TAHZIBI, Ali. Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics - JMD, v. 8, n. 3/4, p. 549-576, 2014Tradução . . Disponível em: https://doi.org/10.3934/jmd.2014.8.549. Acesso em: 27 nov. 2025.
    • APA

      Gogolev, A., & Tahzibi, A. (2014). Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics - JMD, 8( 3/4), 549-576. doi:10.3934/jmd.2014.8.549
    • NLM

      Gogolev A, Tahzibi A. Center Lyapunov exponents in partially hyperbolic dynamics [Internet]. Journal of Modern Dynamics - JMD. 2014 ; 8( 3/4): 549-576.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3934/jmd.2014.8.549
    • Vancouver

      Gogolev A, Tahzibi A. Center Lyapunov exponents in partially hyperbolic dynamics [Internet]. Journal of Modern Dynamics - JMD. 2014 ; 8( 3/4): 549-576.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3934/jmd.2014.8.549
  • Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, ESTABILIDADE DE LIAPUNOV, SISTEMAS DINÂMICOS, FOLHEAÇÕES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALAGAFSHEH, Pouya Mehdipour. On the number of SRB measures for Surface Endomorphisms. 2014. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2014. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30092014-101422/. Acesso em: 27 nov. 2025.
    • APA

      Balagafsheh, P. M. (2014). On the number of SRB measures for Surface Endomorphisms (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30092014-101422/
    • NLM

      Balagafsheh PM. On the number of SRB measures for Surface Endomorphisms [Internet]. 2014 ;[citado 2025 nov. 27 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30092014-101422/
    • Vancouver

      Balagafsheh PM. On the number of SRB measures for Surface Endomorphisms [Internet]. 2014 ;[citado 2025 nov. 27 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30092014-101422/
  • Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, FOLHEAÇÕES, SISTEMAS DINÂMICOS, DIFEOMORFISMOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONCE, Gabriel. Propriedades ergódicas finas de sistemas dinâmicos parcialmente hiperbólicos. 2014. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2014. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032015-113539/. Acesso em: 27 nov. 2025.
    • APA

      Ponce, G. (2014). Propriedades ergódicas finas de sistemas dinâmicos parcialmente hiperbólicos (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032015-113539/
    • NLM

      Ponce G. Propriedades ergódicas finas de sistemas dinâmicos parcialmente hiperbólicos [Internet]. 2014 ;[citado 2025 nov. 27 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032015-113539/
    • Vancouver

      Ponce G. Propriedades ergódicas finas de sistemas dinâmicos parcialmente hiperbólicos [Internet]. 2014 ;[citado 2025 nov. 27 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032015-113539/
  • Source: Resumos. Conference titles: Congresso Brasileiro de Jovens Pesquisadores em Matemática Pura e Aplicada. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONCE, Gabriel e TAHZIBI, Ali e VARÃO, Régis. Bernoulli property for partially hyperbolic diffeomorphisms. 2014, Anais.. São Paulo: IME-USP, 2014. Disponível em: http://jovens.ime.usp.br/jovens/sites/all/themes/simplecorp/abstracts/LivrodeResumos.pdf. Acesso em: 27 nov. 2025.
    • APA

      Ponce, G., Tahzibi, A., & Varão, R. (2014). Bernoulli property for partially hyperbolic diffeomorphisms. In Resumos. São Paulo: IME-USP. Recuperado de http://jovens.ime.usp.br/jovens/sites/all/themes/simplecorp/abstracts/LivrodeResumos.pdf
    • NLM

      Ponce G, Tahzibi A, Varão R. Bernoulli property for partially hyperbolic diffeomorphisms [Internet]. Resumos. 2014 ;[citado 2025 nov. 27 ] Available from: http://jovens.ime.usp.br/jovens/sites/all/themes/simplecorp/abstracts/LivrodeResumos.pdf
    • Vancouver

      Ponce G, Tahzibi A, Varão R. Bernoulli property for partially hyperbolic diffeomorphisms [Internet]. Resumos. 2014 ;[citado 2025 nov. 27 ] Available from: http://jovens.ime.usp.br/jovens/sites/all/themes/simplecorp/abstracts/LivrodeResumos.pdf
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONCE, G e TAHZIBI, Ali. Central Lyapunov exponent of partially hyperbolic diffeomorphisms of 'T POT.3'. Proceedings of the American Mathematical Society, v. 142, n. 9, p. 3193-3205, 2014Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-2014-12063-6. Acesso em: 27 nov. 2025.
    • APA

      Ponce, G., & Tahzibi, A. (2014). Central Lyapunov exponent of partially hyperbolic diffeomorphisms of 'T POT.3'. Proceedings of the American Mathematical Society, 142( 9), 3193-3205. doi:10.1090/S0002-9939-2014-12063-6
    • NLM

      Ponce G, Tahzibi A. Central Lyapunov exponent of partially hyperbolic diffeomorphisms of 'T POT.3' [Internet]. Proceedings of the American Mathematical Society. 2014 ; 142( 9): 3193-3205.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1090/S0002-9939-2014-12063-6
    • Vancouver

      Ponce G, Tahzibi A. Central Lyapunov exponent of partially hyperbolic diffeomorphisms of 'T POT.3' [Internet]. Proceedings of the American Mathematical Society. 2014 ; 142( 9): 3193-3205.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1090/S0002-9939-2014-12063-6
  • Source: Journal of Modern Dynamics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONCE, Gabriel e TAHZIBI, Ali e VARÃO, Régis. Minimal yet measurable foliations. Journal of Modern Dynamics, v. 8, n. 1, p. 93-107, 2014Tradução . . Disponível em: https://doi.org/10.3934/jmd.2014.8.93. Acesso em: 27 nov. 2025.
    • APA

      Ponce, G., Tahzibi, A., & Varão, R. (2014). Minimal yet measurable foliations. Journal of Modern Dynamics, 8( 1), 93-107. doi:10.3934/jmd.2014.8.93
    • NLM

      Ponce G, Tahzibi A, Varão R. Minimal yet measurable foliations [Internet]. Journal of Modern Dynamics. 2014 ; 8( 1): 93-107.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3934/jmd.2014.8.93
    • Vancouver

      Ponce G, Tahzibi A, Varão R. Minimal yet measurable foliations [Internet]. Journal of Modern Dynamics. 2014 ; 8( 1): 93-107.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3934/jmd.2014.8.93
  • Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, COHOMOLOGIA, DIFEOMORFISMOS, FOLHEAÇÕES, SISTEMAS DINÂMICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAREJAS, Jorge Luis Crisostomo. Medidas transversas, correntes e sistemas dinâmicos. 2013. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2013. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032013-160120/. Acesso em: 27 nov. 2025.
    • APA

      Parejas, J. L. C. (2013). Medidas transversas, correntes e sistemas dinâmicos (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032013-160120/
    • NLM

      Parejas JLC. Medidas transversas, correntes e sistemas dinâmicos [Internet]. 2013 ;[citado 2025 nov. 27 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032013-160120/
    • Vancouver

      Parejas JLC. Medidas transversas, correntes e sistemas dinâmicos [Internet]. 2013 ;[citado 2025 nov. 27 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032013-160120/
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, F e TAHZIBI, Ali. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus. Nonlinearity, v. 26, n. 4, p. 1071-1082, 2013Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/26/4/1071. Acesso em: 27 nov. 2025.
    • APA

      Micena, F., & Tahzibi, A. (2013). Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus. Nonlinearity, 26( 4), 1071-1082. doi:10.1088/0951-7715/26/4/1071
    • NLM

      Micena F, Tahzibi A. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus [Internet]. Nonlinearity. 2013 ; 26( 4): 1071-1082.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/0951-7715/26/4/1071
    • Vancouver

      Micena F, Tahzibi A. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus [Internet]. Nonlinearity. 2013 ; 26( 4): 1071-1082.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/0951-7715/26/4/1071
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTZ, F. Rodriguez et al. Maximizing measures for partially hyperbolic systems with compact center leaves. Ergodic Theory and Dynamical Systems, v. 32, n. 2, p. 825-839, 2012Tradução . . Disponível em: https://doi.org/10.1017/S0143385711000757. Acesso em: 27 nov. 2025.
    • APA

      Hertz, F. R., Hertz, M. A. R., Tahzibi, A., & Ures, R. (2012). Maximizing measures for partially hyperbolic systems with compact center leaves. Ergodic Theory and Dynamical Systems, 32( 2), 825-839. doi:10.1017/S0143385711000757
    • NLM

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Maximizing measures for partially hyperbolic systems with compact center leaves [Internet]. Ergodic Theory and Dynamical Systems. 2012 ; 32( 2): 825-839.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/S0143385711000757
    • Vancouver

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Maximizing measures for partially hyperbolic systems with compact center leaves [Internet]. Ergodic Theory and Dynamical Systems. 2012 ; 32( 2): 825-839.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/S0143385711000757

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025