Random walk on the group of matrices and diffeomorphisms: a dynamical point of view (2017)
- Autor:
- Autor USP: TAHZIBI, ALI - ICMC
- Unidade: ICMC
- Subjects: SISTEMAS DINÂMICOS; TEORIA ERGÓDICA
- Language: Inglês
- Imprenta:
- Source:
- Título: Thematic Program
- Conference titles: Dynamical Systems School of Mathematics
-
ABNT
TAHZIBI, Ali. Random walk on the group of matrices and diffeomorphisms: a dynamical point of view. 2017, Anais.. Tehran: IPM, 2017. Disponível em: http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf. Acesso em: 20 jan. 2026. -
APA
Tahzibi, A. (2017). Random walk on the group of matrices and diffeomorphisms: a dynamical point of view. In Thematic Program. Tehran: IPM. Recuperado de http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf -
NLM
Tahzibi A. Random walk on the group of matrices and diffeomorphisms: a dynamical point of view [Internet]. Thematic Program. 2017 ;[citado 2026 jan. 20 ] Available from: http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf -
Vancouver
Tahzibi A. Random walk on the group of matrices and diffeomorphisms: a dynamical point of view [Internet]. Thematic Program. 2017 ;[citado 2026 jan. 20 ] Available from: http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf - SRB measures and homoclinic relation for endomorphisms
- Stochastic stability at the boundary of expanding maps
- A criterion for ergocicity of non-uniformly hyperbolic diffeomorphisms
- New criteria for ergodicity and nonuniform hyperbolicity
- Physical measures at the boundary of hyperbolic maps
- Minimal yet measurable foliations
- Uniqueness of SRB measures for transitive diffeomorphisms on surfaces
- On the unstable directions and Lyapunov exponents of Anosov endomorphisms
- Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms
- Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
