Filtros : "Financiamento FAPESP" "Journal of Chemical Information and Modeling" Removido: "Financiamento CAPES" Limpar

Filtros



Refine with date range


  • Source: Journal of Chemical Information and Modeling. Unidade: IQ

    Subjects: MECÂNICA QUÂNTICA, OXIDAÇÃO, REDUÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARANTES, Guilherme Menegon. Redox activated proton transfer through a redundant network in the Qo site of Cytochrome bc1. Journal of Chemical Information and Modeling, v. 65, n. 5, p. 2660−2669, 2025Tradução . . Disponível em: https://dx.doi.org/10.1021/acs.jcim.4c02361. Acesso em: 08 out. 2025.
    • APA

      Arantes, G. M. (2025). Redox activated proton transfer through a redundant network in the Qo site of Cytochrome bc1. Journal of Chemical Information and Modeling, 65( 5), 2660−2669. doi:10.1021/acs.jcim.4c02361
    • NLM

      Arantes GM. Redox activated proton transfer through a redundant network in the Qo site of Cytochrome bc1 [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 5): 2660−2669.[citado 2025 out. 08 ] Available from: https://dx.doi.org/10.1021/acs.jcim.4c02361
    • Vancouver

      Arantes GM. Redox activated proton transfer through a redundant network in the Qo site of Cytochrome bc1 [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 5): 2660−2669.[citado 2025 out. 08 ] Available from: https://dx.doi.org/10.1021/acs.jcim.4c02361
  • Source: Journal of Chemical Information and Modeling. Unidade: IQSC

    Subjects: ENERGIA, QUÍMICA TEÓRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONZÁLEZ, José E. et al. Decoding Van der Waals Impact on Chirality Transfer in Perovskite Structures: Density Functional Theory Insights. Journal of Chemical Information and Modeling, v. 64, n. 4, p. 1306–1318, 2024Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.3c01895. Acesso em: 08 out. 2025.
    • APA

      González, J. E., Besse, R., Lima, M. P., & Silva, J. L. F. da. (2024). Decoding Van der Waals Impact on Chirality Transfer in Perovskite Structures: Density Functional Theory Insights. Journal of Chemical Information and Modeling, 64( 4), 1306–1318. doi:10.1021/acs.jcim.3c01895
    • NLM

      González JE, Besse R, Lima MP, Silva JLF da. Decoding Van der Waals Impact on Chirality Transfer in Perovskite Structures: Density Functional Theory Insights [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1306–1318.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c01895
    • Vancouver

      González JE, Besse R, Lima MP, Silva JLF da. Decoding Van der Waals Impact on Chirality Transfer in Perovskite Structures: Density Functional Theory Insights [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1306–1318.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c01895
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: APRENDIZADO COMPUTACIONAL, SIMULAÇÃO, MODELAGEM MOLECULAR, NANOPARTÍCULAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KARMAKAR, Tarak e SOARES, Thereza Amélia e MERZ JR, Kenneth M. Enhancing coarse-grained models through machine learning. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.4c00537. Acesso em: 08 out. 2025. , 2024
    • APA

      Karmakar, T., Soares, T. A., & Merz Jr, K. M. (2024). Enhancing coarse-grained models through machine learning. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.4c00537
    • NLM

      Karmakar T, Soares TA, Merz Jr KM. Enhancing coarse-grained models through machine learning. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64( 8): 2931-2932.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.4c00537
    • Vancouver

      Karmakar T, Soares TA, Merz Jr KM. Enhancing coarse-grained models through machine learning. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64( 8): 2931-2932.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.4c00537
  • Source: Journal of Chemical Information and Modeling. Unidades: IQSC, FFCLRP

    Subjects: BIOENGENHARIA, BIOTECNOLOGIA, BIOLOGIA, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRATI, Ronaldo C. et al. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling. Journal of Chemical Information and Modeling, v. 64, n. 4, p. 1107–1111, 2024Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.3c02014. Acesso em: 08 out. 2025.
    • APA

      Prati, R. C., Rodrigues, B. S. M., Aragão, I., Silva, T. A. S. da, Quiles, M. G., & Silva, J. L. F. da. (2024). The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling. Journal of Chemical Information and Modeling, 64( 4), 1107–1111. doi:10.1021/acs.jcim.3c02014
    • NLM

      Prati RC, Rodrigues BSM, Aragão I, Silva TAS da, Quiles MG, Silva JLF da. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1107–1111.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c02014
    • Vancouver

      Prati RC, Rodrigues BSM, Aragão I, Silva TAS da, Quiles MG, Silva JLF da. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1107–1111.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c02014
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: QUÍMICA, REPLICAÇÃO DO DNA, GENÔMICA, ÁCIDOS NUCLEICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PALERMO, Giulia e SOARES, Thereza A. Editing DNA and RNA through Computations [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.3c01824. Acesso em: 08 out. 2025. , 2023
    • APA

      Palermo, G., & Soares, T. A. (2023). Editing DNA and RNA through Computations [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.3c01824
    • NLM

      Palermo G, Soares TA. Editing DNA and RNA through Computations [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 24): 7603-7604.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c01824
    • Vancouver

      Palermo G, Soares TA. Editing DNA and RNA through Computations [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 24): 7603-7604.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c01824
  • Source: Journal of Chemical Information and Modeling. Unidade: IQ

    Subjects: PROTEÍNAS, PEPTÍDEOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CURTOLO, Felipe e ARANTES, Guilherme Menegon. Dissecting reaction mechanisms and catalytic contributions in Flavoprotein fumarate Reductases. Journal of Chemical Information and Modeling, v. 63, p. 3510−3520, 2023Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.3c00292. Acesso em: 08 out. 2025.
    • APA

      Curtolo, F., & Arantes, G. M. (2023). Dissecting reaction mechanisms and catalytic contributions in Flavoprotein fumarate Reductases. Journal of Chemical Information and Modeling, 63, 3510−3520. doi:10.1021/acs.jcim.3c00292
    • NLM

      Curtolo F, Arantes GM. Dissecting reaction mechanisms and catalytic contributions in Flavoprotein fumarate Reductases [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63 3510−3520.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c00292
    • Vancouver

      Curtolo F, Arantes GM. Dissecting reaction mechanisms and catalytic contributions in Flavoprotein fumarate Reductases [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63 3510−3520.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c00292
  • Source: Journal of Chemical Information and Modeling. Unidade: IQ

    Subjects: ESTRUTURA QUÍMICA, PROTEÍNAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIVIANI, Lucas Gasparello et al. Molecular dynamics simulations of the human ecto-5′-nucleotidase (h-ecto-5′-NT, CD73): insights into protein flexibility and binding site dynamics. Journal of Chemical Information and Modeling, v. 63, n. 15, p. 4691-4707, 2023Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.3c01068. Acesso em: 08 out. 2025.
    • APA

      Viviani, L. G., Kokh, D. B., Wade, R. C., & Amaral, A. T. do. (2023). Molecular dynamics simulations of the human ecto-5′-nucleotidase (h-ecto-5′-NT, CD73): insights into protein flexibility and binding site dynamics. Journal of Chemical Information and Modeling, 63( 15), 4691-4707. doi:10.1021/acs.jcim.3c01068
    • NLM

      Viviani LG, Kokh DB, Wade RC, Amaral AT do. Molecular dynamics simulations of the human ecto-5′-nucleotidase (h-ecto-5′-NT, CD73): insights into protein flexibility and binding site dynamics [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 15): 4691-4707.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c01068
    • Vancouver

      Viviani LG, Kokh DB, Wade RC, Amaral AT do. Molecular dynamics simulations of the human ecto-5′-nucleotidase (h-ecto-5′-NT, CD73): insights into protein flexibility and binding site dynamics [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 15): 4691-4707.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c01068
  • Source: Journal of Chemical Information and Modeling. Unidades: IFSC, ICMC

    Subjects: ALGORITMOS, APRENDIZADO COMPUTACIONAL, GENÔMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA JUNIOR, Osvaldo Novais de et al. Artificial intelligence agents for materials sciences. Journal of Chemical Information and Modeling, v. 63, n. 24, p. 7605-7609, 2023Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.3c01778. Acesso em: 08 out. 2025.
    • APA

      Oliveira Junior, O. N. de, Christino, L. M. F., Oliveira, M. C. F. de, & Paulovich, F. V. (2023). Artificial intelligence agents for materials sciences. Journal of Chemical Information and Modeling, 63( 24), 7605-7609. doi:10.1021/acs.jcim.3c01778
    • NLM

      Oliveira Junior ON de, Christino LMF, Oliveira MCF de, Paulovich FV. Artificial intelligence agents for materials sciences [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 24): 7605-7609.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c01778
    • Vancouver

      Oliveira Junior ON de, Christino LMF, Oliveira MCF de, Paulovich FV. Artificial intelligence agents for materials sciences [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 24): 7605-7609.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c01778
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: PRECONCEITO, PESQUISA CIENTÍFICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASCELLA, Michele e SILVA, Thereza Amélia Soares da. Bias amplification in gender, gender identity, and geographical affiliation. Journal of Chemical Information and Modeling, v. 62, n. 24, p. 6297-6301, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00533. Acesso em: 08 out. 2025.
    • APA

      Cascella, M., & Silva, T. A. S. da. (2022). Bias amplification in gender, gender identity, and geographical affiliation. Journal of Chemical Information and Modeling, 62( 24), 6297-6301. doi:10.1021/acs.jcim.2c00533
    • NLM

      Cascella M, Silva TAS da. Bias amplification in gender, gender identity, and geographical affiliation [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6297-6301.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00533
    • Vancouver

      Cascella M, Silva TAS da. Bias amplification in gender, gender identity, and geographical affiliation [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6297-6301.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00533
  • Source: Journal of Chemical Information and Modeling. Unidades: IF, FFCLRP

    Subjects: FÍSICO-QUÍMICA, FÍSICA MOLECULAR, SOFTWARE ESTATÍSTICO PARA MICROCOMPUTADORES, LIPÍDEOS DA MEMBRANA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Denys e COUTINHO, Kaline Rabelo e SILVA, Thereza Amélia Soares da. Surface Assessment via Grid Evaluation (SuAVE) for Every Surface Curvature and Cavity Shape. Journal of Chemical Information and Modeling, v. 62, n. 19, p. 4690-4701, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00673. Acesso em: 08 out. 2025.
    • APA

      Santos, D., Coutinho, K. R., & Silva, T. A. S. da. (2022). Surface Assessment via Grid Evaluation (SuAVE) for Every Surface Curvature and Cavity Shape. Journal of Chemical Information and Modeling, 62( 19), 4690-4701. doi:10.1021/acs.jcim.2c00673
    • NLM

      Santos D, Coutinho KR, Silva TAS da. Surface Assessment via Grid Evaluation (SuAVE) for Every Surface Curvature and Cavity Shape [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4690-4701.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00673
    • Vancouver

      Santos D, Coutinho KR, Silva TAS da. Surface Assessment via Grid Evaluation (SuAVE) for Every Surface Curvature and Cavity Shape [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4690-4701.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00673
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: APRENDIZADO COMPUTACIONAL, MODELOS MATEMÁTICOS, ESTRUTURA MOLECULAR (QUÍMICA TEÓRICA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOARES, Thereza A. et al. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.2c01422. Acesso em: 08 out. 2025. , 2022
    • APA

      Soares, T. A., Alves, A. F. N., Mazzolari, A., Ruggiu, F., Wei, G. -W., & Merz, K. (2022). The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.2c01422
    • NLM

      Soares TA, Alves AFN, Mazzolari A, Ruggiu F, Wei G-W, Merz K. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 22): 5317-5320.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c01422
    • Vancouver

      Soares TA, Alves AFN, Mazzolari A, Ruggiu F, Wei G-W, Merz K. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 22): 5317-5320.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c01422
  • Source: Journal of Chemical Information and Modeling. Unidade: IQSC

    Subjects: MODELAGEM MOLECULAR, MOLÉCULA, QUÍMICA TEÓRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHEIRO, Gabriel A. e SILVA, Juarez Lopes Ferreira da e QUILES, Marcos Gonçalves. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling, v. 62, n. 17, p. 3948–3960, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00521. Acesso em: 08 out. 2025.
    • APA

      Pinheiro, G. A., Silva, J. L. F. da, & Quiles, M. G. (2022). SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling, 62( 17), 3948–3960. doi:10.1021/acs.jcim.2c00521
    • NLM

      Pinheiro GA, Silva JLF da, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 17): 3948–3960.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00521
    • Vancouver

      Pinheiro GA, Silva JLF da, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 17): 3948–3960.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00521
  • Source: Journal of Chemical Information and Modeling. Unidade: IQSC

    Subjects: COMBUSTÍVEIS, COBRE, NANOCOMPOSITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENDONÇA, João Paulo A. de et al. Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles. Journal of Chemical Information and Modeling, v. 27, p. 5503-5512, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00957. Acesso em: 08 out. 2025.
    • APA

      Mendonça, J. P. A. de, Calderan, F. V., Lourenço, T. da C., Quiles, M. G., & Silva, J. L. F. da. (2022). Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles. Journal of Chemical Information and Modeling, 27, 5503-5512. doi:10.1021/acs.jcim.2c00957
    • NLM

      Mendonça JPA de, Calderan FV, Lourenço T da C, Quiles MG, Silva JLF da. Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles [Internet]. Journal of Chemical Information and Modeling. 2022 ; 27 5503-5512.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00957
    • Vancouver

      Mendonça JPA de, Calderan FV, Lourenço T da C, Quiles MG, Silva JLF da. Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles [Internet]. Journal of Chemical Information and Modeling. 2022 ; 27 5503-5512.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00957
  • Source: Journal of Chemical Information and Modeling. Unidades: IQ, IFSC

    Subjects: CRISTALOGRAFIA, PEPTÍDEOS, PROTEÍNAS, LIGANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VELDMAN, Wayde et al. Differences in gluco and galacto substrate-binding interactions in a dual 6Pβ-Glucosidase/6Pβ-Galactosidase glycoside hydrolase 1 enzyme from Bacillus licheniformis. Journal of Chemical Information and Modeling, v. 61, n. 9, p. 4554-4570, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00413. Acesso em: 08 out. 2025.
    • APA

      Veldman, W., Liberato, M. V., Souza, V. P., Almeida, V. M., Marana, S. R., Bishop, O. T., & Polikarpov, I. (2021). Differences in gluco and galacto substrate-binding interactions in a dual 6Pβ-Glucosidase/6Pβ-Galactosidase glycoside hydrolase 1 enzyme from Bacillus licheniformis. Journal of Chemical Information and Modeling, 61( 9), 4554-4570. doi:10.1021/acs.jcim.1c00413
    • NLM

      Veldman W, Liberato MV, Souza VP, Almeida VM, Marana SR, Bishop OT, Polikarpov I. Differences in gluco and galacto substrate-binding interactions in a dual 6Pβ-Glucosidase/6Pβ-Galactosidase glycoside hydrolase 1 enzyme from Bacillus licheniformis [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 9): 4554-4570.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00413
    • Vancouver

      Veldman W, Liberato MV, Souza VP, Almeida VM, Marana SR, Bishop OT, Polikarpov I. Differences in gluco and galacto substrate-binding interactions in a dual 6Pβ-Glucosidase/6Pβ-Galactosidase glycoside hydrolase 1 enzyme from Bacillus licheniformis [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 9): 4554-4570.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00413
  • Source: Journal of Chemical Information and Modeling. Unidade: IFSC

    Subjects: PLANEJAMENTO DE FÁRMACOS, COMPUTAÇÃO APLICADA, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATRA, Kushal et al. Quantum machine learning algorithms for drug discovery applications. Journal of Chemical Information and Modeling, v. 61, n. 6, p. 2641-2647, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00166. Acesso em: 08 out. 2025.
    • APA

      Batra, K., Zorn, K. M., Foil, D. H., Minerali, E., Gawriljuk, V. O., Lane, T. R., & Ekins, S. (2021). Quantum machine learning algorithms for drug discovery applications. Journal of Chemical Information and Modeling, 61( 6), 2641-2647. doi:10.1021/acs.jcim.1c00166
    • NLM

      Batra K, Zorn KM, Foil DH, Minerali E, Gawriljuk VO, Lane TR, Ekins S. Quantum machine learning algorithms for drug discovery applications [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 6): 2641-2647.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00166
    • Vancouver

      Batra K, Zorn KM, Foil DH, Minerali E, Gawriljuk VO, Lane TR, Ekins S. Quantum machine learning algorithms for drug discovery applications [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 6): 2641-2647.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00166
  • Source: Journal of Chemical Information and Modeling. Unidades: IQSC, IFSC

    Assunto: METAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAIS, Felipe Orlando e ANDRIANI, Karla Furtado e SILVA, Juarez Lopes Ferreira da. Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm. Journal of Chemical Information and Modeling, v. 61, n. 7, p. 3411-3420, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00253. Acesso em: 08 out. 2025.
    • APA

      Morais, F. O., Andriani, K. F., & Silva, J. L. F. da. (2021). Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm. Journal of Chemical Information and Modeling, 61( 7), 3411-3420. doi:10.1021/acs.jcim.1c00253
    • NLM

      Morais FO, Andriani KF, Silva JLF da. Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 7): 3411-3420.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00253
    • Vancouver

      Morais FO, Andriani KF, Silva JLF da. Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 7): 3411-3420.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00253
  • Source: Journal of Chemical Information and Modeling. Unidade: IFSC

    Subjects: FEBRE AMARELA, APRENDIZADO COMPUTACIONAL, PLANEJAMENTO DE FÁRMACOS, ANTIVIRAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Victor Gawriljuk Ferraro et al. Development of machine learning models and the discovery of a new antiviral compound against yellow fever virus. Journal of Chemical Information and Modeling, v. 61, n. 8, p. 3804-3813, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00460. Acesso em: 08 out. 2025.
    • APA

      Oliveira, V. G. F., Foil, D. H., Puhl, A. C., Zorn, K. M., Lane, T. R., Riabova, O., et al. (2021). Development of machine learning models and the discovery of a new antiviral compound against yellow fever virus. Journal of Chemical Information and Modeling, 61( 8), 3804-3813. doi:10.1021/acs.jcim.1c00460
    • NLM

      Oliveira VGF, Foil DH, Puhl AC, Zorn KM, Lane TR, Riabova O, Makarov V, Godoy AS de, Oliva G, Ekins S. Development of machine learning models and the discovery of a new antiviral compound against yellow fever virus [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 8): 3804-3813.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00460
    • Vancouver

      Oliveira VGF, Foil DH, Puhl AC, Zorn KM, Lane TR, Riabova O, Makarov V, Godoy AS de, Oliva G, Ekins S. Development of machine learning models and the discovery of a new antiviral compound against yellow fever virus [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 8): 3804-3813.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00460
  • Source: Journal of Chemical Information and Modeling. Unidade: IFSC

    Subjects: CORONAVIRUS, COVID-19, APRENDIZADO COMPUTACIONAL, PLANEJAMENTO DE FÁRMACOS, ANTIVIRAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Victor Gawriljuk Ferraro et al. Machine learning models identify inhibitors of SARS-CoV2. Journal of Chemical Information and Modeling, v. 61, n. 9, p. 4224-4235, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00683. Acesso em: 08 out. 2025.
    • APA

      Oliveira, V. G. F., Zin, P. P. K., Puhl, A. C., Zorn, K. M., Foil, D. H., Lane, T. R., et al. (2021). Machine learning models identify inhibitors of SARS-CoV2. Journal of Chemical Information and Modeling, 61( 9), 4224-4235. doi:10.1021/acs.jcim.1c00683
    • NLM

      Oliveira VGF, Zin PPK, Puhl AC, Zorn KM, Foil DH, Lane TR, Hurst B, Tavella TA, Costa FTM, Lakshmanane P, Bernatchez J, Godoy AS de, Oliva G, Siqueira-Neto JL, Madrid PB, Ekins S. Machine learning models identify inhibitors of SARS-CoV2 [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 9): 4224-4235.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00683
    • Vancouver

      Oliveira VGF, Zin PPK, Puhl AC, Zorn KM, Foil DH, Lane TR, Hurst B, Tavella TA, Costa FTM, Lakshmanane P, Bernatchez J, Godoy AS de, Oliva G, Siqueira-Neto JL, Madrid PB, Ekins S. Machine learning models identify inhibitors of SARS-CoV2 [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 9): 4224-4235.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00683
  • Source: Journal of Chemical Information and Modeling. Unidade: FCFRP

    Subjects: CITOPLASMA, RNA, ESCHERICHIA COLI

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOT, Leandro Oliveira e BASHARDANESH, Zahedeh e VAN DER SPOEL, David. Making soup: preparing and validating models of the bacterial cytoplasm for molecular simulation. Journal of Chemical Information and Modeling, v. 60, n. 1, p. 322-331, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.9b00971. Acesso em: 08 out. 2025.
    • APA

      Bortot, L. O., Bashardanesh, Z., & van der Spoel, D. (2020). Making soup: preparing and validating models of the bacterial cytoplasm for molecular simulation. Journal of Chemical Information and Modeling, 60( 1), 322-331. doi:10.1021/acs.jcim.9b00971
    • NLM

      Bortot LO, Bashardanesh Z, van der Spoel D. Making soup: preparing and validating models of the bacterial cytoplasm for molecular simulation [Internet]. Journal of Chemical Information and Modeling. 2020 ;60( 1): 322-331.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.9b00971
    • Vancouver

      Bortot LO, Bashardanesh Z, van der Spoel D. Making soup: preparing and validating models of the bacterial cytoplasm for molecular simulation [Internet]. Journal of Chemical Information and Modeling. 2020 ;60( 1): 322-331.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.9b00971
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: BATERIAS ELÉTRICAS, ENERGIA ELÉTRICA, SÓDIO, POTÁSSIO, ELETROQUÍMICA, SOLUÇÕES ELETROLÍTICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Rafael Maglia de et al. Molecular dynamics simulations of polymer–ionic liquid (1-ethyl-3-methylimidazolium tetracyanoborate) ternary electrolyte for sodium and potassium ion batteries. Journal of Chemical Information and Modeling, v. 60, n. 2, p. 485-499, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.9b00750. Acesso em: 08 out. 2025.
    • APA

      Souza, R. M. de, Siqueira, L. J. A. de, Karttunen, M., & Dias, L. G. (2020). Molecular dynamics simulations of polymer–ionic liquid (1-ethyl-3-methylimidazolium tetracyanoborate) ternary electrolyte for sodium and potassium ion batteries. Journal of Chemical Information and Modeling, 60( 2), 485-499. doi:10.1021/acs.jcim.9b00750
    • NLM

      Souza RM de, Siqueira LJA de, Karttunen M, Dias LG. Molecular dynamics simulations of polymer–ionic liquid (1-ethyl-3-methylimidazolium tetracyanoborate) ternary electrolyte for sodium and potassium ion batteries [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60( 2): 485-499.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.9b00750
    • Vancouver

      Souza RM de, Siqueira LJA de, Karttunen M, Dias LG. Molecular dynamics simulations of polymer–ionic liquid (1-ethyl-3-methylimidazolium tetracyanoborate) ternary electrolyte for sodium and potassium ion batteries [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60( 2): 485-499.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.9b00750

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025