Bias amplification in gender, gender identity, and geographical affiliation (2022)
- Authors:
- Autor USP: SILVA, THEREZA AMÉLIA SOARES DA - FFCLRP
- Unidade: FFCLRP
- DOI: 10.1021/acs.jcim.2c00533
- Subjects: PRECONCEITO; PESQUISA CIENTÍFICA
- Keywords: Chemoinformatics; Computational chemistry; Students; Testing and assessment; Theoretical and computational chemistry
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Washington
- Date published: 2022
- Source:
- Título: Journal of Chemical Information and Modeling
- ISSN: 1549-9596
- Volume/Número/Paginação/Ano: v. 62, n. 24, p. 6297-6301, 2022
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: hybrid
- Licença: cc-by
-
ABNT
CASCELLA, Michele e SILVA, Thereza Amélia Soares da. Bias amplification in gender, gender identity, and geographical affiliation. Journal of Chemical Information and Modeling, v. 62, n. 24, p. 6297-6301, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00533. Acesso em: 01 dez. 2025. -
APA
Cascella, M., & Silva, T. A. S. da. (2022). Bias amplification in gender, gender identity, and geographical affiliation. Journal of Chemical Information and Modeling, 62( 24), 6297-6301. doi:10.1021/acs.jcim.2c00533 -
NLM
Cascella M, Silva TAS da. Bias amplification in gender, gender identity, and geographical affiliation [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6297-6301.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1021/acs.jcim.2c00533 -
Vancouver
Cascella M, Silva TAS da. Bias amplification in gender, gender identity, and geographical affiliation [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6297-6301.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1021/acs.jcim.2c00533 - Exploring the molecular dynamics of a lipid-A vesicle at the atom level: morphology and permeation mechanism
- Machine Learning in Materials Science. [Editorial]
- Editing DNA and RNA through Computations [Editorial]
- Enhancing coarse-grained models through machine learning. [Editorial]
- Celebrating diversity, equity, inclusion, and respect in computational and theoretical chemistry [Editorial]
- The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial]
- Interfacial structurization between triolein and water from pH and buffer ions
- Guidelines for reporting molecular dynamics simulations in JCIM publications. [Editorial]
- Accelerating lipid flip-flop at low concentrations: a general mechanism for membrane binding peptides
- Computational chemistry in Asia [Editorial]
Informações sobre o DOI: 10.1021/acs.jcim.2c00533 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 003089712.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas