Filtros : "Financiamento FAPESP" "Indexado no zbMATH Open" Removido: "2025" Limpar

Filtros



Refine with date range


  • Source: Discrete Mathematics. Unidade: ICMC

    Subjects: TEORIA DOS GRAFOS, TOPOLOGIA CONJUNTÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini e MAGALHÃES JÚNIOR, Paulo Sérgio Farias e SEIXAS, Luisa Gomes. Limits of cycles and cover conjectures. Discrete Mathematics, v. 349, n. 2, p. 1-16, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.disc.2025.114724. Acesso em: 08 out. 2025.
    • APA

      Aurichi, L. F., Magalhães Júnior, P. S. F., & Seixas, L. G. (2026). Limits of cycles and cover conjectures. Discrete Mathematics, 349( 2), 1-16. doi:10.1016/j.disc.2025.114724
    • NLM

      Aurichi LF, Magalhães Júnior PSF, Seixas LG. Limits of cycles and cover conjectures [Internet]. Discrete Mathematics. 2026 ; 349( 2): 1-16.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.disc.2025.114724
    • Vancouver

      Aurichi LF, Magalhães Júnior PSF, Seixas LG. Limits of cycles and cover conjectures [Internet]. Discrete Mathematics. 2026 ; 349( 2): 1-16.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.disc.2025.114724
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRUZ, Leonardo Pereira Costa da e OLIVEIRA, Regilene Delazari dos Santos e TORREGROSA, Joan. Limit cycles in piecewise quadratic Kolmogorov systems. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-16, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109285. Acesso em: 08 out. 2025.
    • APA

      Cruz, L. P. C. da, Oliveira, R. D. dos S., & Torregrosa, J. (2026). Limit cycles in piecewise quadratic Kolmogorov systems. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-16. doi:10.1016/j.cnsns.2025.109285
    • NLM

      Cruz LPC da, Oliveira RD dos S, Torregrosa J. Limit cycles in piecewise quadratic Kolmogorov systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-16.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109285
    • Vancouver

      Cruz LPC da, Oliveira RD dos S, Torregrosa J. Limit cycles in piecewise quadratic Kolmogorov systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-16.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109285
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares e LÓPEZ-LÁZARO, Heraclio e TAKAESSU JUNIOR, Carlos Roberto. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-12, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109198. Acesso em: 08 out. 2025.
    • APA

      Azevedo, V. T., López-Lázaro, H., & Takaessu Junior, C. R. (2026). Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-12. doi:10.1016/j.cnsns.2025.109198
    • NLM

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
    • Vancouver

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: ÁLGEBRAS DE LIE, FÍSICA MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LUIZ, Murilo do Nascimento e MENCATTINI, Igor e PEDRONI, Marco. Quasi-Lie bialgebroids, Dirac structures, and deformations of Poisson quasi-Nijenhuis manifolds. Bulletin of the Brazilian Mathematical Society : New Series, v. 55, p. 1-19, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00574-024-00400-z. Acesso em: 08 out. 2025.
    • APA

      Luiz, M. do N., Mencattini, I., & Pedroni, M. (2024). Quasi-Lie bialgebroids, Dirac structures, and deformations of Poisson quasi-Nijenhuis manifolds. Bulletin of the Brazilian Mathematical Society : New Series, 55, 1-19. doi:10.1007/s00574-024-00400-z
    • NLM

      Luiz M do N, Mencattini I, Pedroni M. Quasi-Lie bialgebroids, Dirac structures, and deformations of Poisson quasi-Nijenhuis manifolds [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2024 ; 55 1-19.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00574-024-00400-z
    • Vancouver

      Luiz M do N, Mencattini I, Pedroni M. Quasi-Lie bialgebroids, Dirac structures, and deformations of Poisson quasi-Nijenhuis manifolds [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2024 ; 55 1-19.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00574-024-00400-z
  • Source: São Paulo Journal of Mathematical Sciences. Unidades: ICMC, IME

    Subjects: GEOMETRIA DE GEODÉSICAS, GEOMETRIA RIEMANNIANA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOTÓS, Hugo Cattarucci e GROSSI, Carlos Henrique. Complete totally geodesic subsets of the complex hyperbolic plane: an elementary classification. São Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 598-608, 2024Tradução . . Disponível em: https://doi.org/10.1007/s40863-024-00467-y. Acesso em: 08 out. 2025.
    • APA

      Botós, H. C., & Grossi, C. H. (2024). Complete totally geodesic subsets of the complex hyperbolic plane: an elementary classification. São Paulo Journal of Mathematical Sciences, 18( 2), 598-608. doi:10.1007/s40863-024-00467-y
    • NLM

      Botós HC, Grossi CH. Complete totally geodesic subsets of the complex hyperbolic plane: an elementary classification [Internet]. São Paulo Journal of Mathematical Sciences. 2024 ; 18( 2): 598-608.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s40863-024-00467-y
    • Vancouver

      Botós HC, Grossi CH. Complete totally geodesic subsets of the complex hyperbolic plane: an elementary classification [Internet]. São Paulo Journal of Mathematical Sciences. 2024 ; 18( 2): 598-608.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s40863-024-00467-y
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SISTEMAS DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, v. 34, n. 11, p. 2430023-1-2430023-43, 2024Tradução . . Disponível em: https://doi.org/10.1142/S0218127424300234. Acesso em: 08 out. 2025.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2024). Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, 34( 11), 2430023-1-2430023-43. doi:10.1142/S0218127424300234
    • NLM

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127424300234
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127424300234
  • Source: SIAM Journal on Mathematical Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, CÁLCULO DE VARIAÇÕES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Pêdra Daricléa Santos et al. Spectral partition problems with volume and inclusion constraints. SIAM Journal on Mathematical Analysis, v. 56, n. 6, p. 7136-7169, 2024Tradução . . Disponível em: https://doi.org/10.1137/23M161553X. Acesso em: 08 out. 2025.
    • APA

      Andrade, P. D. S., Moreira dos Santos, E., Santos, M., & Tavares, H. (2024). Spectral partition problems with volume and inclusion constraints. SIAM Journal on Mathematical Analysis, 56( 6), 7136-7169. doi:10.1137/23M161553X
    • NLM

      Andrade PDS, Moreira dos Santos E, Santos M, Tavares H. Spectral partition problems with volume and inclusion constraints [Internet]. SIAM Journal on Mathematical Analysis. 2024 ; 56( 6): 7136-7169.[citado 2025 out. 08 ] Available from: https://doi.org/10.1137/23M161553X
    • Vancouver

      Andrade PDS, Moreira dos Santos E, Santos M, Tavares H. Spectral partition problems with volume and inclusion constraints [Internet]. SIAM Journal on Mathematical Analysis. 2024 ; 56( 6): 7136-7169.[citado 2025 out. 08 ] Available from: https://doi.org/10.1137/23M161553X
  • Source: Studies in Applied Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCÍA, Isaac A e GINÉ, Jaume e RODERO, Ana Livia. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities. Studies in Applied Mathematics, v. 153, n. 2, p. 1-27, 2024Tradução . . Disponível em: https://doi.org/10.1111/sapm.12724. Acesso em: 08 out. 2025.
    • APA

      García, I. A., Giné, J., & Rodero, A. L. (2024). Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities. Studies in Applied Mathematics, 153( 2), 1-27. doi:10.1111/sapm.12724
    • NLM

      García IA, Giné J, Rodero AL. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities [Internet]. Studies in Applied Mathematics. 2024 ; 153( 2): 1-27.[citado 2025 out. 08 ] Available from: https://doi.org/10.1111/sapm.12724
    • Vancouver

      García IA, Giné J, Rodero AL. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities [Internet]. Studies in Applied Mathematics. 2024 ; 153( 2): 1-27.[citado 2025 out. 08 ] Available from: https://doi.org/10.1111/sapm.12724
  • Source: Designs, Codes and Cryptography. Unidade: ICMC

    Subjects: TEORIA DE CAMPOS, SOMAS GAUSSIANAS

    Disponível em 2025-11-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BROCHERO MARTÍNEZ, Fabio Enrique e OLIVEIRA, Daniela Alves de. On the number of rational points of Artin-Schreier's curves and hypersurfaces. Designs, Codes and Cryptography, v. 92, n. 10, p. 3133-3154, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10623-024-01431-9. Acesso em: 08 out. 2025.
    • APA

      Brochero Martínez, F. E., & Oliveira, D. A. de. (2024). On the number of rational points of Artin-Schreier's curves and hypersurfaces. Designs, Codes and Cryptography, 92( 10), 3133-3154. doi:10.1007/s10623-024-01431-9
    • NLM

      Brochero Martínez FE, Oliveira DA de. On the number of rational points of Artin-Schreier's curves and hypersurfaces [Internet]. Designs, Codes and Cryptography. 2024 ; 92( 10): 3133-3154.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10623-024-01431-9
    • Vancouver

      Brochero Martínez FE, Oliveira DA de. On the number of rational points of Artin-Schreier's curves and hypersurfaces [Internet]. Designs, Codes and Cryptography. 2024 ; 92( 10): 3133-3154.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10623-024-01431-9
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, GEOMETRIA ALGÉBRICA REAL

    Disponível em 2026-12-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DALBELO, Thaís Maria e OLIVEIRA, Regilene Delazari dos Santos e PEREZ, Otavio Henrique. Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope. Journal of Differential Equations, v. No 2024, p. 230-253, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.06.028. Acesso em: 08 out. 2025.
    • APA

      Dalbelo, T. M., Oliveira, R. D. dos S., & Perez, O. H. (2024). Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope. Journal of Differential Equations, No 2024, 230-253. doi:10.1016/j.jde.2024.06.028
    • NLM

      Dalbelo TM, Oliveira RD dos S, Perez OH. Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope [Internet]. Journal of Differential Equations. 2024 ; No 2024 230-253.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.06.028
    • Vancouver

      Dalbelo TM, Oliveira RD dos S, Perez OH. Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope [Internet]. Journal of Differential Equations. 2024 ; No 2024 230-253.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.06.028
  • Source: Revista Matematica Iberoamericana. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, SUBVARIEDADES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JIMENEZ, Miguel Ibieta e TOJEIRO, Ruy. On the Moebius deformable hypersurfaces. Revista Matematica Iberoamericana, v. 40, n. 2, p. 463-480, 2024Tradução . . Disponível em: https://doi.org/10.4171/RMI/1437. Acesso em: 08 out. 2025.
    • APA

      Jimenez, M. I., & Tojeiro, R. (2024). On the Moebius deformable hypersurfaces. Revista Matematica Iberoamericana, 40( 2), 463-480. doi:10.4171/RMI/1437
    • NLM

      Jimenez MI, Tojeiro R. On the Moebius deformable hypersurfaces [Internet]. Revista Matematica Iberoamericana. 2024 ; 40( 2): 463-480.[citado 2025 out. 08 ] Available from: https://doi.org/10.4171/RMI/1437
    • Vancouver

      Jimenez MI, Tojeiro R. On the Moebius deformable hypersurfaces [Internet]. Revista Matematica Iberoamericana. 2024 ; 40( 2): 463-480.[citado 2025 out. 08 ] Available from: https://doi.org/10.4171/RMI/1437
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, PROBLEMAS DE CONTORNO, SISTEMAS DINÂMICOS

    Disponível em 2026-07-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio et al. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, v. 393, p. 58-101, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.02.005. Acesso em: 08 out. 2025.
    • APA

      López-Lázaro, H., Nascimento, M. J. D., Takaessu Junior, C. R., & Azevedo, V. T. (2024). Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, 393, 58-101. doi:10.1016/j.jde.2024.02.005
    • NLM

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
    • Vancouver

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
  • Source: Differential Geometry and its Applications. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANTAS, Mateus da Silva Rodrigues. Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space. Differential Geometry and its Applications, v. 97, p. 1-14, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2024.102201. Acesso em: 08 out. 2025.
    • APA

      Antas, M. da S. R. (2024). Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space. Differential Geometry and its Applications, 97, 1-14. doi:10.1016/j.difgeo.2024.102201
    • NLM

      Antas M da SR. Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space [Internet]. Differential Geometry and its Applications. 2024 ; 97 1-14.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.difgeo.2024.102201
    • Vancouver

      Antas M da SR. Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space [Internet]. Differential Geometry and its Applications. 2024 ; 97 1-14.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.difgeo.2024.102201
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: ESPAÇOS TOPOLÓGICOS, CONVERGÊNCIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini e BONANZINGA, Maddalena e GIACOPELLO, Davide. On some topological games involving networks. Topology and its Applications, v. 351, n. Ju 2024, p. 1-10, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2024.108936. Acesso em: 08 out. 2025.
    • APA

      Aurichi, L. F., Bonanzinga, M., & Giacopello, D. (2024). On some topological games involving networks. Topology and its Applications, 351( Ju 2024), 1-10. doi:10.1016/j.topol.2024.108936
    • NLM

      Aurichi LF, Bonanzinga M, Giacopello D. On some topological games involving networks [Internet]. Topology and its Applications. 2024 ; 351( Ju 2024): 1-10.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.topol.2024.108936
    • Vancouver

      Aurichi LF, Bonanzinga M, Giacopello D. On some topological games involving networks [Internet]. Topology and its Applications. 2024 ; 351( Ju 2024): 1-10.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.topol.2024.108936
  • Source: Finite Elements in Analysis and Design. Unidade: ICMC

    Subjects: MECÂNICA DOS FLUÍDOS COMPUTACIONAL, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Pablo Giovanni Silva e DEVLOO, Philippe Remy Bernard e GOMES, Sônia Maria. A two-level semi-hybrid-mixed model for Stokes-Brinkman flows with divergence-compatible velocity-pressure elements. Finite Elements in Analysis and Design, v. 242, p. 1-20, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.finel.2024.104249. Acesso em: 08 out. 2025.
    • APA

      Carvalho, P. G. S., Devloo, P. R. B., & Gomes, S. M. (2024). A two-level semi-hybrid-mixed model for Stokes-Brinkman flows with divergence-compatible velocity-pressure elements. Finite Elements in Analysis and Design, 242, 1-20. doi:10.1016/j.finel.2024.104249
    • NLM

      Carvalho PGS, Devloo PRB, Gomes SM. A two-level semi-hybrid-mixed model for Stokes-Brinkman flows with divergence-compatible velocity-pressure elements [Internet]. Finite Elements in Analysis and Design. 2024 ; 242 1-20.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.finel.2024.104249
    • Vancouver

      Carvalho PGS, Devloo PRB, Gomes SM. A two-level semi-hybrid-mixed model for Stokes-Brinkman flows with divergence-compatible velocity-pressure elements [Internet]. Finite Elements in Analysis and Design. 2024 ; 242 1-20.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.finel.2024.104249
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: ATRATORES, MECÂNICA DOS FLUÍDOS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio e MARÍN-RUBIO, Pedro e PLANAS, Gabriela. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, v. No 2024, p. 1-20, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108204. Acesso em: 08 out. 2025.
    • APA

      López-Lázaro, H., Marín-Rubio, P., & Planas, G. (2024). Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, No 2024, 1-20. doi:10.1016/j.cnsns.2024.108204
    • NLM

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
    • Vancouver

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
  • Source: Mathematische Annalen. Unidade: ICMC

    Subjects: ATRATORES, DINÂMICA TOPOLÓGICA, PROBLEMAS DE CONTORNO, EQUAÇÕES DE NAVIER-STOKES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, TEORIA QUALITATIVA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUI, Hongyong et al. Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier-Stokes equations. Mathematische Annalen, v. 390, n. 4, p. 5415-5470, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00208-024-02908-7. Acesso em: 08 out. 2025.
    • APA

      Cui, H., Figueroa López, R. N., López-Lázaro, H., & Simsen, J. (2024). Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier-Stokes equations. Mathematische Annalen, 390( 4), 5415-5470. doi:10.1007/s00208-024-02908-7
    • NLM

      Cui H, Figueroa López RN, López-Lázaro H, Simsen J. Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier-Stokes equations [Internet]. Mathematische Annalen. 2024 ; 390( 4): 5415-5470.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00208-024-02908-7
    • Vancouver

      Cui H, Figueroa López RN, López-Lázaro H, Simsen J. Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier-Stokes equations [Internet]. Mathematische Annalen. 2024 ; 390( 4): 5415-5470.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00208-024-02908-7
  • Source: Mathematische Nachrichten. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES POSITIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel e BEZERRA, Flank David Morais e NASCIMENTO, Marcelo José Dias. On coupled semilinear evolution systems: techniques on fractional powers of 4 x 4 matrices and applications. Mathematische Nachrichten, v. 297, n. 9, p. 3288-3312, 2024Tradução . . Disponível em: https://doi.org/10.1002/mana.202300318. Acesso em: 08 out. 2025.
    • APA

      Belluzi, M., Bezerra, F. D. M., & Nascimento, M. J. D. (2024). On coupled semilinear evolution systems: techniques on fractional powers of 4 x 4 matrices and applications. Mathematische Nachrichten, 297( 9), 3288-3312. doi:10.1002/mana.202300318
    • NLM

      Belluzi M, Bezerra FDM, Nascimento MJD. On coupled semilinear evolution systems: techniques on fractional powers of 4 x 4 matrices and applications [Internet]. Mathematische Nachrichten. 2024 ; 297( 9): 3288-3312.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mana.202300318
    • Vancouver

      Belluzi M, Bezerra FDM, Nascimento MJD. On coupled semilinear evolution systems: techniques on fractional powers of 4 x 4 matrices and applications [Internet]. Mathematische Nachrichten. 2024 ; 297( 9): 3288-3312.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mana.202300318
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: ICMC

    Assunto: TEORIA QUALITATIVA

    Disponível em 2026-01-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREZ, Otavio Henrique e SILVA, Paulo Ricardo da. Polynomial slow-fast systems on the Poincaré-Lyapunov sphere. São Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 1527-1552, 2024Tradução . . Disponível em: https://doi.org/10.1007/s40863-024-00441-8. Acesso em: 08 out. 2025.
    • APA

      Perez, O. H., & Silva, P. R. da. (2024). Polynomial slow-fast systems on the Poincaré-Lyapunov sphere. São Paulo Journal of Mathematical Sciences, 18( 2), 1527-1552. doi:10.1007/s40863-024-00441-8
    • NLM

      Perez OH, Silva PR da. Polynomial slow-fast systems on the Poincaré-Lyapunov sphere [Internet]. São Paulo Journal of Mathematical Sciences. 2024 ; 18( 2): 1527-1552.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s40863-024-00441-8
    • Vancouver

      Perez OH, Silva PR da. Polynomial slow-fast systems on the Poincaré-Lyapunov sphere [Internet]. São Paulo Journal of Mathematical Sciences. 2024 ; 18( 2): 1527-1552.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s40863-024-00441-8
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, OPERADORES LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. A higher-order non-autonomous semilinear parabolic equation. Bulletin of the Brazilian Mathematical Society : New Series, v. 55, n. Ja 2024, p. 1-17, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00574-023-00381-5. Acesso em: 08 out. 2025.
    • APA

      Belluzi, M., Bezerra, F. D. M., Nascimento, M. J. D., & Santos, L. A. (2024). A higher-order non-autonomous semilinear parabolic equation. Bulletin of the Brazilian Mathematical Society : New Series, 55( Ja 2024), 1-17. doi:10.1007/s00574-023-00381-5
    • NLM

      Belluzi M, Bezerra FDM, Nascimento MJD, Santos LA. A higher-order non-autonomous semilinear parabolic equation [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2024 ; 55( Ja 2024): 1-17.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00574-023-00381-5
    • Vancouver

      Belluzi M, Bezerra FDM, Nascimento MJD, Santos LA. A higher-order non-autonomous semilinear parabolic equation [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2024 ; 55( Ja 2024): 1-17.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00574-023-00381-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025