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In these notes we introduce and investigate two new games called R-nw-selective 
game and the M-nw-selective game. These games naturally arise from the 
corresponding selection principles involving networks introduced in [5].
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1. Introduction

Throughout the paper we mean by “space” a topological Hausdorff space.
A family N of sets is called a network for X if for every x ∈ X and for every open neighborhood U

of x there exists an element N of N such that x ∈ N ⊆ U ; nw(X) = min{|N | : N is a network for X}
is the network weight of X. A family P of open sets is called a π-base for X if every nonempty open set 
in X contains a nonempty element of P; πw(X) = min{|P| : P is a π-base for X} is the π-weight of 
X. It is known that nw(X) ≤ w(X), where w(X) denotes the weight of the space X, and in the class of 
compact Hausdorff spaces nw(X) = w(X) (see [9]); δ(X) = sup{d(Y ) : Y is a dense subset of X}, where 
d(X) denotes the density of the space X.
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Recall that for f, g ∈ ωω, f ≤∗ g means that f(n) ≤ g(n) for all but finitely many n (and f ≤ g means 
that f(n) ≤ g(n) for all n ∈ ω). A subset D ⊆ ωω is dominating if for each g ∈ ωω there is f ∈ D such 
that g ≤∗ f . The minimal cardinality of a dominating subset of ωω is denoted by d. The value of d does not 
change if one considers the relation ≤ instead of ≤∗ [7, Theorem 3.6]. The symbol M denotes the family 
of all meager subsets of R. cov(M) is the minimum of the cardinalities of subfamilies U ⊆ M such that 
⋃
U = R. However, another description of the cardinal cov(M) is the following. cov(M) is the minimum 

cardinality of a family F ⊂ ωω such that for every g ∈ ωω there is f ∈ F such that f(n) �= g(n) for all but 
finitely many n ∈ ω (see [2] and also [3, Theorem 2.4.1]). Thus if F ⊂ ωω and |F | < cov(M), then there is 
g ∈ ωω such that for every f ∈ F , f(n) = g(n) for infinitely many n ∈ ω; it is often said that g guesses F . 
Also, if P is a countable poset and D is a family of dense sets of cardinality strictly less than cov(M) then 
there exists a generic filter that meets all the dense sets of the family [3, Section 3].

In [11,13] a systematic approach was considered to describe selection principles. Given two collections A
and B of some particular topological objects on a space X, Scheepers introduced the following notation:

S1(A,B) : For every sequence (Un : n ∈ ω) of elements of A there exists Un ∈ Un, n ∈ ω, such that 
{Un : n ∈ ω} belongs to B.

Sfin(A,B) : For every sequence (Un : n ∈ ω) of elements of A there exists a finite subset Fn ⊆ Un, n ∈ ω, 
such that 

⋃
n∈ω Fn belongs to B.

If one denotes by O the family of all open covers of a space X and by D the family of all dense subsets 
of a space X, a space is said to be Rothberger if it satisfies S1(O, O), Menger if it satisfies Sfin(O, O), 
R-separable if it has the property S1(D, D) and M-separable if it has the property Sfin(D, D).

It is shown in [4] that δ(X) = ω for every M-separable space X; and if δ(X) = ω and πw(X) < d, then 
X is M-separable (a stronger version of this fact is established in [13, Theorem 40]); moreover, if δ(X) = ω

and πw(X) < cov(M), then X is R-separable (a stronger version of this fact is established in [13, Theorem 
29]).

Every space having a countable base is R-separable, therefore M-separable. However, not every space 
with countable network weight is M-separable. Hence in [5] the authors asked under which conditions a 
space of countable network weight must be M-separable and introduced and studied the following classes 
of spaces.

Definition 1.1. Let X be a space with nw(X) = ω.

• X is M-nw-selective if for every sequence (Nn : n ∈ ω) of countable networks for X one can select finite 
Fn ⊂ Nn, n ∈ ω, such that 

⋃
n∈ω Fn is a network for X.

• X is R-nw-selective if for every sequence (Nn : n ∈ ω) of countable networks for X one can pick Fn ∈ Nn, 
n ∈ ω, such that {Fn : n ∈ ω} is a network for X.

In [5] it was proved that any R-nw-selective (M-nw-selective) space is both Rothberger and R-separable 
(Menger and M-separable). See also [6] for more details about these two properties.

Recall that topological games, introduced with a systematical structure in [11,13], are infinite games 
played by two different players, Alice and Bob, on a topological space X (see also [1]). We assume that 
the length (number of innings) of the games is ω and the two players pick in each inning some topological 
objects of a fixed space. The strategies of the two players are a priori defined; they are some functions that 
take care of the game history. At the end there is only one winner, so a draw is not allowed. Playing a game 
G on a space X gives rise to two properties: “Alice has a winning strategy in the game G on X”; “Bob

has a winning strategy in the game G on X”. Of course, since there is no draw, it is impossible for a space 
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to have both these properties, but it can happen that the negation of both of them holds. In this case we 
say that the game G is indeterminate on the space X.

Given two families of topological objects A and B, the followings are two games associated to selection 
principles.

G1(A,B) : is played according to the following rules.
– for every n ∈ ω Alice chooses An ∈ A;
– Bob answers picking bn ∈ An for each n ∈ ω;
– the winner is Bob if {bn : n ∈ ω} ∈ B, otherwise Alice wins.

Gfin(A,B) : is played according to the following rules.
– for every n ∈ ω Alice chooses An ∈ A;
– Bob answers picking a finite subset Bn ⊆ An for each n ∈ ω;
– the winner is Bob if 

⋃
{Bn : n ∈ ω} ∈ B, otherwise Alice wins.

The game G1(O, O), called Rothberger game, is strictly related to the Rothberger property. In what 
follows we denote this game by Rothberger(X). The game Gfin(O, O), called Menger game, is strictly 
related to the Menger property. So everywhere in this paper we denote this game by Menger(X). The game 
G1(D, D) is strictly related to the R-separability, from now on we denote this game by R-separable(X). 
Similarly, the game Gfin(D, D) is strictly related to the M-separability and in what follows we denote this 
game M-separable(X).

These games were largely studied and some important characterizations of “Alice does not have a win-
ning strategy” and “Bob has a winning strategy” have been given [1,13,15,16]. Despite this some questions 
are still open. We denote by Bob ↑ G on X, the fact that “Bob has a winning strategy in the game G on 
X” and by Alice �↑ G on X, the fact that “Alice does not have a winning strategy in the game G on X”.

Remark 1.2. In general the following implications hold.

1. Bob ↑ G1(A, B) =⇒ Bob ↑ Gfin(A, B);
2. Alice �↑ G1(A, B) =⇒ Alice �↑ Gfin(A, B);
3. Bob ↑ G1(A, B) =⇒ Alice �↑ G1(A, B) =⇒ S1(A, B);
4. Bob ↑ Gfin(A, B) =⇒ Alice �↑ Gfin(A, B) =⇒ Sfin(A, B).

For some properties the last two implications of points 3 and 4 are, in fact, characterizations, that is 
Alice �↑ G(A, B) ⇐⇒ S(A, B).

In [10] it is proved that a space X is Rothberger if, and only if, Alice �↑ Rothberger(X). In [15,8] it is 
proved that if X is a space in which each point is a Gδ, Bob ↑ Rothberger(X) if, and only if, X is countable. 
Similar arguments are valid for the Menger case: in [12,14] it is proved that a space X is Menger if, and 
only if, Alice �↑ Menger(X) and in [16] that if X is a metrizable space, Bob ↑ Menger(X) if, and only if, X
is σ-compact. In [13] it is proved that Bob ↑ R-separable(X) if, and only if, πw(X) = ω and, under CH, it 
is given an example of a R-separable space X such that Alice ↑ R-separable(X).

Two topological games G and G′ are called dual if both “Alice ↑ G ⇐⇒ Bob ↑ G′” and “Alice ↑
G′ ⇐⇒ Bob ↑ G” hold. Sometimes this dual vision could be useful to apply different techniques in proofs. 
For instance, the Point-open game is the dual of the Rothberger game (see [8]), the Point-picking game is 
the dual of G1(D, D) (see [13]), the Compact-open game is a possible dual of the Menger game (see [16]), 
but the question about the hypothesis to add to let them be dual is still open.

In Section 2 we study the R-nw-selective game. We present a characterization of the “Bob having a 
winning strategy” property and a sufficient condition for “Alice not having a winning” strategy property. 
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We also give a consistent characterization, in terms of games, of the R-nw-selective property in the class of 
spaces with countable netweight and weight strictly less than cov(M). Moreover, we introduce the (Point, 
Open)-Set game and we prove that it is a promising candidate to be the dual of the R-nw-selective game.

In Section 3 we study the M-nw-selective game. We present, under some consistent hypothesis, a sufficient 
condition for “Alice not having a winning strategy” property and some necessary conditions for the “Bob

having a winning strategy” property. We also give a consistent characterization, in terms of games, of the 
M-nw-selective property in the class of spaces with countable netweight and weight strictly less than d.

2. The R-nw-selective game

Definition 2.1. Let X be a space with nw(X) = ω. The R-nw-selective game, denoted by R-nw-selective(X), 
is played according to the following rules. Alice chooses a countable network N0 and Bob answers picking 
an element N0 ∈ N0. Then Alice chooses another countable network N1 and Bob answers in the same 
way and so on for countably many innings. At the end Bob wins if the set {Nn : n ∈ ω} of his selections is 
a network.

Simultaneously we consider the possible dual version of the R-nw-selective game.

Definition 2.2. The (Point, Open)-Set game on a space X, denoted by PO-set(X), is played according to the 
following rules. Alice chooses a point x0 and an open set U0 containing x0. Then Bob picks N0 a subset 
of X such that x0 ∈ N0 ⊆ U0. The game goes ahead in this way for every n ∈ ω and Alice wins if the set 
{Nn : n ∈ ω} of Bob’s choices is a network.

Theorem 2.3. Let X be a space. Bob ↑ R-nw-selective(X) if, and only if, the space X is countable and 
second countable.

Proof. Clearly, if X is a countable second countable space then it is easy to construct a winning strategy 
for Bob in the R-nw-selective game on X.

Let M be the collection of all countable networks of X. Let σ be a winning strategy for Bob.
First we prove that the space is countable.

Claim 1. | 
⋂

N∈M σ(N )| ≤ 1.

Indeed, suppose that two distinct points, say x and y, belong to all the closure of the possible answers to N , 
for any N ∈ M. Fix any countable network N and observe that N ′ = {N ∈ N : {x, y} ∩N = ∅} ∪{{x}, {y}}
is also a network in X such that no element of N ′ contains the set {x, y} in its closure. This gives a 
contradiction.

Claim 2. There exists a countable M′ ⊂ M such that 
⋂

N∈M′ σ(N ) =
⋂

N∈M σ(N ).

Indeed, if 
⋂

N∈M σ(N ) = {x} (it is the same if 
⋂

N∈M σ(N ) = ∅), the complements of all the closures form 
an open cover of X \ {x} (or X) and then, since having countable network implies hereditary Lindelöfness, 
we can obtain a countable subcover of X \ {x} (or of the all space X).

Claim 1. and Claim 2. hold for any inning n ∈ ω, that is

Claim 1(n). | 
⋂

N∈M σ(N0, ...,Nn−2,N )| ≤ 1.

Claim 2(n). There exists a countable M′⊂M such that 
⋂

N∈M′σ(N0, ...,Nn−2,N )=
⋂

N∈Mσ(N0, ...,Nn−2,N ).

The proof of Claim 1(n). and Claim 2(n). is analogous to the one of Claim 1. and Claim 2., respectively.
Consider the following tree of possible evolution of the R-nw-selective game on X. By claim 2. there 

exists (Nn
∅ )n∈ω, that is countably many possible choices of Alice in the first inning N 0

∅ , N 1
∅ , N 2

∅ , ..., such 
that 

⋂
σ(N ) =

⋂
σ(Nn).
N∈M n∈ω ∅
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Fix, for example, the branch with N 0
∅ then there exists a sequence (Nn

<0>)n∈ω such that 
⋂

N∈M σ(N 0
∅ ,N )

=
⋂

n∈ω σ(N 0
∅ ,Nn

<0>).
Again consider, for example, N 1

<0>, then there exists a sequence (Nn
<0,1>)n∈ω such that

⋂
n∈ω σ(N 0

∅ ,N 1
<0>,Nn

<0,1>) =
⋂

N∈M σ(N 0
∅ ,N 1

<0>,N ). By Claim 1, each intersection is empty or contains 
only one element. If the intersection 

⋂
n∈ω σ(Nn

∅ ) is non-empty we call this element x∅, otherwise we go on; 
if 
⋂

n∈ω σ(N 0
∅ ,Nn

<0>) is not empty we call this element x<0>; if the intersection 
⋂

n∈ω σ(N 0
∅ ,N 1

<0>,Nn
<0,1>)

is not empty we call this element x<0,1>, and so on. We obtain a subset X0 = {xs : s ∈ ω<ω} and now 
we want to prove that X0 = X. By contradiction, assume there exists y ∈ X \X0. Then y /∈

⋂
n∈ω σ(Nn

∅ ); 
hence there exists an element of the sequence {σ(Nn

∅ ) : n ∈ ω}, say σ(N k0
∅ ), such that y does not belong 

to it. By hypothesis, y /∈
⋂

n∈ω σ(N k0
∅ ,Nn

<k0>
); hence there exists an element of {σ(Nn

<k0>
) : n ∈ ω}, say 

σ(N k1
<k0>

), such that y does not belong to it. Again, y �∈
⋂

n∈ω σ(N k0
∅ ,N k1

<k0>
,Nn

<k0,k1>
), there exists an 

element of {σ(Nn
<k0,k1>

) : n ∈ ω}, say σ(N k2
<k0,k1>

), such that y does not belong to it. Proceeding in this 
way we obtain a branch consisting of elements that do not contain y; a contradiction, because such a branch 
is a network due to the fact that σ is a winning strategy for Bob. Then X is countable.

Now we prove that X is second countable.

Claim 3. If 
⋂

N∈M σ(N ) = {x}, there exists an open set V such that x ∈ V ⊂
⋃

N∈M σ(N ).

Indeed, assume by contradiction that for every open set V such that x ∈ V there exists yV ∈ V \σ(N ), for 
every N ∈ M. Let N be a countable network and consider the family N ′ = (N \Nx) ∪ {{x, yV } : V ∈ τx}, 
where τx denotes the family of all open sets containing x and Nx = {N ∈ N : x ∈ N}. Since X is countable, 
N ′ is countable. Now we prove that N ′ is a network. Clearly, for construction N ′ is a network at x. Let 
y ∈ X, y �= x, and let A be an open set such that y ∈ A. Since X is T2, there exists an open set B such 
that y ∈ B and x /∈ B. Then there exists N ∈ N such that y ∈ N ⊂ A ∩B. Therefore N ∈ N \ Nx.

Claim 4. If 
⋂

N∈M σ(N ) = {x}, there exists a countable M′ ⊂ M such that 
⋂

N∈M′ σ(N ) = {x} and also 
such that 

⋃
N∈M′ σ(N ) =

⋃
N∈M σ(N ).

Recall that, by Claim 2 there exists a countable subset M∗ ⊂ M such that 
⋂

N∈M σ(N ) =
⋂

N∈M∗ σ(N ); 
further, since X is countable, 

⋃
N∈M σ(N ) is countable and then there exists a countable subset M∗∗ ⊂ M

such that 
⋃

N∈M∗∗ σ(N ) =
⋃

N∈M σ(N ). Then M′ = M∗ ∪M∗∗.
Even Claim 3. and Claim 4. can be given for any inning n ∈ ω, that is

Claim 3(n). If 
⋂

N∈M σ(N0, ...,Nn−2,N )) = {x}, there exists an open set V such that x ∈ V ⊂
⋃

N∈M σ(N0, ...,Nn−2,N )).

Claim 4(n). If 
⋂

N∈M σ(N0, ...,Nn−2,N )) = {x}, there exists a countable M′ ⊂ M such that
⋂

N∈M′σ(N0, ...,Nn−2,N ))={x} and also such that 
⋃

N∈M′σ(N0, ...,Nn−2,N ))=
⋃

N∈Mσ(N0, ...,Nn−2,N )).

The proof of Claim 3(n). and Claim 4(n). is analogous to the one of Claim 3. and Claim 4., respectively.
Consider the construction of the tree in the previous part of the proof. We know that | 

⋂
n∈ω σ(Nn

∅ )| ≤ 1. 
If 
⋂

n∈ω σ(Nn
∅ ) �= ∅, fix V∅ as in Claim 3. If 

⋂
k∈ω σ(Nn

∅ ,N k
<n>) �= ∅, fix V<n> as in Claim 3 and so on. Now 

we prove that {Vs : s ∈ ω<ω} is a base. If it is not true, then there exist x ∈ X and an open set A with 
x ∈ A such that for every s ∈ ω<ω such that x ∈ Vs, Vs is not contained in A. In the first inning, we have 
a family M′ of countably many networks obtained as in Claim 4. Consider the intersection 

⋂
N∈M′ σ(N ). 

If 
⋂

N∈M′ σ(N ) = ∅, we can pick an N ∈ M′, such that x /∈ σ(N ). If 
⋂

N∈M′ σ(N ) = {y} we have two 
cases: if y �= x, we can pick an N ∈ M′, such that x /∈ σ(N ); if y = x, then we can pick, if there exists 
an N ∈ M′, such that x �∈ σ(N ), otherwise by hypothesis and Claim 3 we can pick an N ∈ M′, such that 
σ(N ) is not contained in A. Then, proceeding in this way for each inning, we find a branch of the tree, 
i.e., our construction provides a winning strategy for Alice in the R-nw-selective game on X which is a 
contradiction. �
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The following proposition shows that the (Point, Open)-set game is a good candidate to be the dual of 
the R-nw-selective game.

Proposition 2.4. Let X be a space. The following implications hold.

1. Alice ↑ PO-set(X) =⇒ Bob ↑ R-nw-selective(X).
2. Alice ↑ R-nw-selective(X) =⇒ Bob ↑ PO-set(X).
3. Bob ↑ R-nw-selective(X) =⇒ Alice ↑ PO-set(X).

Proof. The proof of Items 1. and 2. is trivial and Item 3. is an easy consequence of Theorem 2.3. �
Question 2.5. Does Bob ↑ PO-set(X) imply Alice ↑ R-nw-selective(X)?

Now we study the determinacy of the R-nw-selective game.

Proposition 2.6. Let X be a space with nw(X) = ω. If |X| < cov(M) and w(X) < cov(M), then Alice �↑
R-nw-selective(X).

Proof. Suppose, by contradiction, that σ is a winning strategy for Alice in the R-nw-selective(X) and fix a 
base B of cardinality w(X). Construct a countable tree using the strategy σ in such a way that σ(〈〉) = N0; 
for each N0 ∈ N0 apply the strategy and so on. Look at this tree as the poset of all finite branches ordered 
with the inverse natural extension. The nodes in this tree are the countable networks that are images under 
the function σ. Fix x ∈ X and B ∈ B containing x. The set D(x,B) of all the finite sequences of the tree 
such that there exists an element of the sequence that is a σ(〈..., N〉) with x ∈ N ⊂ B, is dense in the poset. 
Since the cardinality of the family {D(x,B) : x ∈ X and B ∈ B} is less than cov(M) there exists a generic 
filter whose union is a branch of the tree that intersects all the dense sets of the family. This gives us a 
contradiction because this branch witnesses that there is a play in the R-nw-selective game on X in which
Alice applies her strategy but Bob wins. �
Example 2.7. (ω1 < cov(M)) Consider a subspace X ⊂ R of cardinality ω1. By Theorem 2.3 and Proposi-
tion 2.6 the R-nw-selective game on X is indeterminate.

Question 2.8. Is there any ZFC example of a space in which the R-nw-selective game turns out to be 
indeterminate?

The following diagram shows all the relations found above.

Alice �↑ R-nw-selective(X)

X is countable + second countable

�

�

Bob ↑ R-nw-selective(X) � �

nw(X) ≤ ω + |X| < cov(M) +
w(X) < cov(M)

R-nw-selective

�

�
�

�
�

���

Question 2.9. Does R-nw-selectivity of a space X imply Alice �↑ R-nw-selective(X)?
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Recall the following result.

Proposition 2.10. [6] Let X be a space with nw(X) = ω and w(X) < cov(M). Then the following are 
equivalent.

1. |X| < cov(M);
2. X is R-nw-selective.

Then it is possible to give a partial answer to Question 2.9.

Proposition 2.11. Let X be a space with nw(X) = ω and w(X) < cov(M). Then the following are equivalent.

1. |X| < cov(M);
2. Alice �↑ R-nw-selective(X);
3. X is R-nw-selective.

Now we will show that if Bob is forced to select a fixed number of elements from each network, then the 
respective game is equivalent to the R-nw-selective game for Bob. Let Nw denote the class of all countable 
networks of a fixed space X. Let k ∈ ω and Gk(Nw, Nw) on X be the game played in the following way:
Alice chooses a countable network N0 and Bob answers picking a subset F0 ⊂ N0 such that |F0| = k. 
Then Alice chooses another countable network N1 and Bob answers picking a subset F1 ⊂ N1 such that 
|F1| = k and so on for countably many innings. At the end Bob wins if the set 

⋃
{Fn : n ∈ ω} of his 

selections is a network.
It is straightforward to prove the following result.

Proposition 2.12. Alice ↑ Gk(Nw, Nw) on X implies that Alice ↑ R-nw-selective(X).

Question 2.13. Is it true that if Alice ↑ R-nw-selective(X) then Alice ↑ Gk(Nw, Nw) on X?

Proposition 2.14. Bob ↑ R-nw-selective(X) if, and only if, Bob ↑ Gk(Nw, Nw) on X.

Proof. It suffices to prove that Bob ↑ Gk(Nw, Nw) on X implies that the space X is countable and second 
countable. In fact the proof is similar to the one of Theorem 2.3. Let σ be a winning strategy for Bob in 
the Gk(Nw, Nw) on X and let M be the collection of all countable networks of the space X. We just need 
to prove the following claims.

Claim 1. | 
⋂

N∈M
⋃
σ(N )| ≤ k.

Assume that x0, ..., xk are k+ 1 distinct points of X. Take any countable network N in the space X and 
observe that the family N ′ = {N ∈ N : xi �∈ N for everyi = 0, ..., k} ∪ {{x0}, ..., {xk}} is still a network in 
X and no element of N ′ contains more than one point of the set {x1, ..., xk} in its closure. Now our claim 
easily follows.

Claim 2. There exists M′ ⊂ M countable such that 
⋂

N∈M′
⋃
σ(N ) =

⋂
N∈M

⋃
σ(N ).

Claim 3. If 
⋂

N∈M
⋃

σ(N ) = {x}, there exists an open set V such that x ∈ V ⊂
⋃

N∈M
⋃
σ(N ).

Claim 4. If 
⋂

N∈M
⋃
σ(N ) = {x}, there exists M′ ⊂ M countable such that 

⋂
N∈M′

⋃
σ(N ) = {x} and also 

such that 
⋃

N∈M′
⋃
σ(N ) =

⋃
N∈M

⋃
σ(N ).

The proof of Claims 2., 3. and 4. are similar to the ones in Theorem 2.3. �
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3. M-nw-selective game

Definition 3.1. Let X be a space with nw(X) = ω. The M-nw-selective game, denoted by M-nw-selective(X), 
is played according to then following rules. Alice chooses a countable network N0 and Bob answers picking 
a finite subset F0 ⊂ N0. Then Alice chooses another countable network N1 and Bob answers in the same 
way and so on for countably many innings. At the end Bob wins if the set 

⋃
{Fn : n ∈ ω} of his selections 

is a network.

Proposition 3.2. (MA[d]) Let X be a space with nw(X) = ω. If |X| < d and w(X) < d, then Alice �↑
M-nw-selective(X).

Proof. Similar to the proof of Proposition 2.6. �
Recall the following result.

Proposition 3.3. [6] Let X be a space with nw(X) = ω, w(X) < d. Then the following conditions are 
equivalent:

1. |X| < d;
2. X is M-nw-selective.

Then it is possible to give the following equivalences.

Proposition 3.4. (MA[d]) Let X be a space with nw(X) = ω and w(X) < d. The following are equivalent:

1. |X| < d;
2. Alice �↑ M-nw-selective(X);
3. X is M-nw-selective.

However, it is worthwhile to pose the following question.

Question 3.5. Does the M-nw-selectivity of a space X imply that Alice �↑ M-nw-selective(X)?

Theorem 3.6. Let X be a regular space such that Bob ↑ M-nw-selective(X). Then X is σ-compact.

Proof. Let M be the collection of all countable networks of X and σ a winning strategy for Bob in M-nw-
selective(X).

Claim 1: 
⋂

N∈M
⋃
σ(N ) is compact.

Indeed, put K =
⋂

N∈M
⋃
σ(N ), let U be a cover made by open sets of X and N ∈ M. Consider the 

network N ′ = {N ∈ N : N ⊂ U for some U ∈ U} ∪ {N ∈ N : N ∩ K = ∅}. Then K ⊂ σ(〈N ′〉) and 
considering the corresponding open sets we extract from U a finite subcover of K.

Claim 2: There exists a countable subset M′ ⊂ M such that 
⋂

N∈M′
⋃

σ(N ) =
⋂

N∈M
⋃

σ(N ).

The proof is similar to the one of Claim 2. in Theorem 2.3 and, as in there, these claims are true also for 
all the other innings.

There exists (Nn
∅ )n∈ω, that is countably many possible first innings N 0

∅ , N 1
∅ , N 2

∅ , ..., such that 
⋂

N∈M
⋃
σ(N ) =

⋂
n∈ω

⋃
σ(Nn

∅ ).
If Alice chooses N 0, we can find (Nn

<0>)n∈ω such that 
⋂ ⋃

σ(N 0,N ) =
⋂ ⋃

σ(N 0,Nn
<0>).
∅ N∈M ∅ n∈ω ∅
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If then Alice chooses N 1
<0>, we can find (Nn

<0,1>)n∈ω such that 
⋂

n∈ω

⋃
σ(N 0

∅ ,N 1
<0>,Nn

<0,1>) =
⋂

N∈M
⋃
σ(N 0

∅ ,N 1
<0>,N ). By Claims 1 and 2, each intersection, if it is not empty, is a compact sub-

set. If the intersection is empty, we do not do anything and if 
⋂

n∈ω

⋃
σ(Nn

∅ ) is a compact, we call this 
subset K∅. If 

⋂
n∈ω

⋃
σ(N 0

∅ ,Nn
<0>) is a compact subset, we call it K<0>. If 

⋂
n∈ω

⋃
σ(N 0

∅ ,N 1
<0>,Nn

<0,1>)
is a compact subset, we call this element K<0,1>, and so on. Consider the set X0 =

⋃
{Ks : s ∈ ω<ω}. 

Now we prove that X0 = X. By contradiction, assume there exists y ∈ X \X0. Then y /∈
⋂

n∈ω

⋃
σ(Nn

∅ ); 
hence there exists n0 ∈ ω such that y �∈

⋃
σ(Nn0

∅ ). Again, y /∈
⋂

n∈ω

⋃
σ(Nn0

∅ ,Nn
〈n0〉); hence there exists 

n1 ∈ ω such that y �∈
⋃
σ(Nn0

∅ ,Nn1
〈n0〉). Proceeding in this way we obtain a branch (or an evolution of the 

M-nw-selective(X)) in which Bob does not win, a contradiction, because σ is a winning strategy. Then X
is σ-compact. �

Recall that a space is called σ-(metrizable compact) if it is union of countably many metrizable compact 
spaces. Then it is possible to obtain the following corollary.

Corollary 3.7. Let X be a regular space in which Bob ↑ M-nw-selective(X). Then X is σ-(metrizable com-
pact).

Proof. By the previous theorem, X is σ-compact. Put X =
⋃

n∈ω Xn, where each Xn is compact. Since the 
space X has countable netweight, then each nw(Xn) = ω for every n ∈ ω. By compactness of every Xn, 
each Xn is second countable. Therefore each Xn is metrizable. �

The following is a consistent example showing that the M-nw-selective game can be indeterminate.

Example 3.8. (MA[d] + ω1 < d) Consider a subset X of the irrational numbers having cardinality ω1. By 
Proposition 3.2, Alice �↑ M-nw-selective(X). Since X is not σ-compact, by Theorem 3.6 we have that Bob

�↑ M-nw-selective(X).

We prove the following result.

Proposition 3.9. If X is a countable space in which Bob ↑ M-nw-selective(X). Then X is second countable.

Proof. Similar to the proof of Theorem 2.3 replacing Claims 3. and 4. with the following.

Claim 3′. If 
⋂

N∈M
⋃

σ(N ) = {x}, there exists an open set V such that x ∈ V ⊂
⋃

N∈M
⋃
σ(N ).

Claim 4′. If 
⋂

N∈M
⋃

σ(N ) = {x}, there exists M′ ⊂ M countable such that 
⋂

N∈M′
⋃

σ(N ) = {x} and 
also such that 

⋃
N∈M′

⋃
σ(N ) =

⋃
N∈M

⋃
σ(N ). �

The next result uses the previous proposition to state that in the class of countable spaces the M-nw-
selective and the R-nw-selective games are equivalent for Bob.

Corollary 3.10. Let X be a countable space. The following are equivalent.

1. Bob ↑ R-nw-selective(X);
2. Bob ↑ M-nw-selective(X);
3. X is second countable.
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