MULTI-VALUED DYNAMICAL SYSTEMS ON TIME-DEPENDENT METRIC SPACES WITH
APPLICATIONS TO NAVIER-STOKES EQUATIONS

HONGYONG CUI

Huazhong University of Science and Technology
School of Mathematics and Statistics, and Hubei Key Laboratory of Engineering Modeling and Scientific
Computing
Wuhan 430074, P. R. China

RODIAK NICOLAI FIGUEROA LOPEZ

Universidade Federal de Sdo Carlos
Departamento de Matemditica
13565-905 Sdo Carlos - SP, Brazil

HERACLIO LEDGAR LOPEZ-LAZARO

Universidade de Sdo Paulo
Instituto de Ciéncias Matemdticas e de Computagdo - ICMC
13566-590 - Sdo Carlos - SP, Brazil

JACSON SIMSEN

Universidade Federal de Itajubd
Instituto de Matemdtica e Computagdo - IMC
37500-903 - Itajubd - MG, Brazil

ABSTRACT. In this paper, we develop an extension of the theoretical framework of multi-valued dynamical systems
for families of time-dependent phase spaces, where special attention was paid to the relationship between the pullback
attractors of homeomorphically equivalent dynamical systems. We apply this theory to show that the 3D Navier-
Stokes equations defined on a non-cylindrical domain, satisfying certain hypotheses about the energy inequality,
generate an upper-semicontinuous multi-valued dynamical system, and then, by means of the energy method, we
show that this system is asymptotically compact and has a pullback attractor on a tempered universe. Using current
techniques we also prove that pullback attractors associated with the single-valued dynamical systems that satisfy
the smoothing property have finite fractal dimension. This latter result is applied to show that the 2D Navier-Stokes
equation on a non-cylindrical domain has a pullback attractor with finite fractal dimension.

E-mail addresses: h.cui@outlook.com, rodiak@ufscar.br, heracliolopezl@icmc.usp.br,
heracliolopezl@gmail.com, jacson@unifei.edu.br.

2010 Mathematics Subject Classification. Primary 35B41, 35B40, 37B55, 37130, 35R37; Secondary 35K55, 35Q30, 35Q35, 35B65.

Key words and phrases. Multi-valued processes, pullback attractors, non-cylindrical domain, Navier-Stokes equations, fractal
dimension.



CONTENTS

1. Introduction 2
2. The 2D and 3D Navier-Stokes equations on a non-cylindrical domain 3
2.1. Functional spaces and coordinate transformations 4
2.2. Existence of weak solutions 9
2.3. A conditional existence result for 3D-Navier-Stokes equations 12
3. Dynamics of 3D-Navier-Stokes equations on a non-cylindrical domain 14
3.1. Multi-valued processes on time-varying phase spaces: theoretical results 15
3.2.  Pullback attractor of the 3D-Navier-Stokes equation: Construction 22
4. Dynamics of 2D-Navier-Stokes equations on a non-cylindrical domain 28
4.1. Fractal dimension of sets in time-varying spaces: theoretical results 28
4.2. Pullback attractor of the 2D-Navier-Stokes equation: Fractal dimension 30
Acknowledgments 36
Conflict of interest 36
Data availability 37
References 37

1. INTRODUCTION

In this paper we study the pullback attractors of the 2D- and 3D- Navier-Stokes equations defined on a
non-cylindrical region ), and with homogeneous Cauchy-Dirichlet boundary conditions:

%—Au+(u~V)u+VW:f(t) in Q-
divu =0 in Qr, (NS)
u=0 on X,
u(T) = ur in O,
where u(z,t) = (ui(z,t), -+ ,un(x,t)) is the velocity field, u, is the initial velocity field, the real function
7(x, t) represents the pressure on the fluid, and f(z,t) = (f1(z,t), -, fu(x,t)) is the external force. The non-

cylindrical region is defined as follows: let {O;}er be a family of open bounded subset of R™ with n € {2, 3},
and for 7, T € R with 7 < T let

QT,T = U Ot X {t}a QT = U Ot X {t}a

te(r,T) te(r,+00)
Seri= | 00 x{t}  and %= (] 00, x {t}.
te(r,T) te(r,+w0)

Clearly, the first equation (NS) is non-autonomous, and the non-autonomous feature is governed by the time-
dependent forcing f(t) as well as the time-varying domain. In the 2D case where the uniqueness of solutions
holds (see [32, Theorem 2.8] or [38, Theorem 4.8]), it generates a single-valued dynamical system on a family
of time-dependent phase spaces. The theoretical framework of this type of single-valued dynamical system for
time-dependent phase spaces was initially studied in [19, 21] (see also [9, 12, 13]).

The concept of pullback attractors associated with single-valued dynamical systems (when the phase space
is fixed e.g. [7, 16, 20, 29] and when it acts on time-dependent phase spaces e.g. [19, 21]), or multi-valued
dynamical systems on fixed phase spaces, e.g. [4, 5, 25, 31, 36, 37], has been widely studied in last decades.
In order to study the pullback dynamical behavior of (NS), inspired by the works mentioned above, we will
study the pullback attractor theory for multi-valued dynamical systems on time-dependent phase spaces, and
as expected, by adapting the concepts of dissipativity and asymptotic compactness we construct a pullback
attractor associated with this type of dynamical systems, which is a main novelty of this manuscript.

We also introduce the concept of equivalent dynamical systems. This concept is motivated by the change of
variables used to transform a system of partial differential equations defined over a non-cylindrical domain to
a new system of partial differential equations defined over a cylindrical domain. Hence, the following question



naturally arises: if both evolutionary systems have a pullback attractor, what is the relationship between such
attractors? This question is answered in Theorem 3.20 and Corollary 3.21. On the other hand, it is currently
known that pullback attractors associated with time-dependent evolution processes that satisfy the smoothing
property have finite fractal dimension, cf. [12, Lemma 6.1], [13, Theorem 4.4] and [27, Theorem 4.11]. In
this work, we present such a result, with a slight modification, and we analyze the consequences for equivalent
time-dependent dynamical systems.

Applying the above theory to the Navier-Stokes equation (NS) we shall show that the time-dependent multi-
valued dynamical system associated with the weak solutions of the 3D-Navier-Stokes equations that satisfy the
energy inequality has a pullback attractor in some tempered universe, and particularly for the 2D case we prove
that the pullback attractor has finite fractal dimension, which extends the analysis presented in [38].

The structure of the paper is as follows. Section 2 is devoted to establishing known results regarding the
Navier-Stokes equations on some non-cylindrical domain. Furthermore, for the case of the 3D-Navier Stokes
equations, on a hypothesis of the existence of weak solutions that satisfy an energy inequality when the associ-
ated initial data are regular, we can show that any weak solution also satisfies the energy inequality. Then, this
will allow us to analyze the asymptotic behavior, in the pullback sense, of the weak solutions associated with
the 3D-Navier Stokes equations. This idea was taken from [18] for the case where the domain is fixed. Section
3 is devoted to studying and developing the theoretical part on the existence of pullback attractors associated
with time-dependent multi-valued dynamical systems that are upper-semicontinuous with closed values, also
to introduce the concept of equivalent dynamical systems and study the consequences that this has concerning
the existence of attractors. Then, we apply this theory to show the existence of a pullback attractor on a tem-
pered universe associated with 3D-Navier-Stokes equations on some non-cylindrical domain. Section 4, in the
same way as [27, Theorem 4.11], we state a method to estimate the fractal dimension of pullback attractors
associated with time-dependent single-valued processes that satisfy the smoothing property, and we analyze the
consequences of this method for equivalent single-valued dynamical systems. Finally, we apply this theory to
prove the finiteness of the fractal dimension of the pullback attractor associated with 2D-Navier-Stokes equa-
tions on some non-cylindrical domain, given in [38, Theorem 6.4]. The latter was achieved by adjusting the
techniques used in [23] for the case of fixed phase space and the external force satisfies the piecewise bounded
integrability condition.

2. THE 2D AND 3D NAVIER-STOKES EQUATIONS ON A NON-CYLINDRICAL DOMAIN

In this section, we present the Navier-Stokes equations on time-varying domains. It should be noted that
the Navier-Stokes equations represent a physical model, which describes the flow of incompressible Newtonian
fluids, cf. [17, 24, 33, 35, 38, 39, 40], for the case of incompressible non-Newtonian fluids cf. [15, 22, 28]. We
are going to recall the existence of weak solutions of the n-dimensional Navier-Stokes equations, with n = 2, 3.
We will also see some results of regularity for n = 3.

In this section, let us begin defining the non-cylindrical region where the incompressible Newtonian fluid
will be concentrated. Let {O;}cr be a family of open bounded subsets of R™. Given 7,7 € R with 7 < T,
denote by

Qrri= |J Orx{ty, Q.= ] O x{t},

te(r,T) te(T,+00)
Y= U 00, x {t} and X,:= U 00, x {t}.
te(r,T) te(r,+00)

Now, the Navier-Stokes equations on a non-cylindrical domain with homogeneous Cauchy-Dirichlet bound-
ary conditions, which we will indicate by (NS), is the following system:

%—Au+(u-V)u+Vﬂ:f(t) in Q;,
divu =0 in QT, (NS)
u=0 on X,

u(T) = ur in O,
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where u(x,t) = (ui(x,t), -+ ,un(z,t)) is the velocity field, u, is the given initial velocity vector field, the
function 7 (z, t) represents the pressure on the fluid, and f(x,t) = (fi(x,t), -, fu(z, 1)) is the external force.
Depending on the Euclidean dimension in which we are working (n = 2 or n = 3), we will indicate the system
(NS) by 2D-(NS) and 3D-(NS), in dimension n = 2 and in dimension n = 3, respectively.

Now, we are going to assume some hypotheses of regularity on the family of open sets {O; }:cg Within the
framework of a suitable formulation of our problem. Let us denote by O a nonempty bounded open subset of R",
n € {2,3}, with C® boundary 0O, and consider the map r(-,-) = r(y,t) a vector function r € C*(O x R;R")
such that

r(-,t) : O — Oy isa C® — diffeomorphism V¢ € R,
and we denote the inverse by 7(-,t) := r~1(-,t).

(H1) There exists a level-preserving C-diffeomorphism 7(-,-) : O x {t} — Oy, which satisfies
T 1 .

Jac 7(z,t) = Jac <a;j(:c,t)> = 70 >0 i,j=1,---,nm,

forall (z,t) € Qr 1.
(H2) The inverse 7(-, t) := r~ (-, t) satisfies

7eCP(Qrr;R") Vr<T,

ie., T, %, %, 65121;‘, and azngﬁm belong to C(Q),;R™) forall 1 <4,j,k <mnandforany 7 < T.

(H3) The set ' '
Q= O,

s<t

is bounded in R™ for all ¢t € R.
Moreover, for each subset 2, — R™ we will identify the first eigenvalue of —A on H, 3 ()™ as

HV,wH%?(Qt)"

A1y i= 2.1)

min .
weH3 (@0)™\(0} [w]Z2(g,yn

Note that Ay (y : R — (0, +00) with R 3 ¢ — Ay ; is a non-increasing function, e.g. [21, Section 7]. In fact,
by definition of the family of bounded sets {{2; }+cr, given in the hypothesis (H3), we have

Hi(Q)™ < Hy(Q)™ forany s < t,
since 25 < ), for all s < t. Therefore, from (2.1), we obtain A ; < A; s forall s < t.

2.1. Functional spaces and coordinate transformations. In this part we introduce the functional spaces that
are necessary to study the non-cylindrical domain problem (NS). The readers are referred to [21, 38].

2.1.1. Functional spaces evolving families of Banach spaces. Let us denote the inner product in L?(R™)" by
((+-)) with norm [ - [[| = ((-,))"/2, and the norm in H'(R")" by [ - |.

Let {(Xy, | - th)}teR be a family of Banach spaces such that X; < L} (O;)" for each t € R. Given
7,7 € Rwith 7 < T and p € [1, +o0], let us denote by L? (7, T; X;) the set of functions u € L}, .(Q,.7)" such
that u(t) € X, fora.e. t € [7,T] and the function [u(-)||x, defined by ¢ — [u(t)| x, belongs to LP(7,T'). The
space LP(7,T; X;) is a Banach space with respect to the norm

T

ol iy = | IOt itpe (L +<0),

-
|wl Lo (7,7, x,) = esssup [u(t)]|x,, if p = +o0.
e[,
Given u € L}, (Q, )", the trivial extension of u is a function @ : R™ x (7,T) — R", such that
. u(z,t), if (z,t) € Qr 1,
u(z,t) = . ' .
0, if (2,t) € Use(r) Os x {s}-

Definition 2.1. Letu e L}, .(Q- )™ and @ be its trivial extension. Then

(2.2)
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(i) we say that w € C([1,T]; L*(O)") (resp. w € Cy([7,T]; L*(O)")) if @ € C([r,T]; L*(R™)™)
(resp. @ € Cy([7,T]; L*(R™)™)), and we say that a sequence {u™} converges to u in the space
C([r. T L*(Op)™ ) (resp. in Cyy ([, T]; L*(Oy)™)) as m — o, if the trivial extensions {4} converge
towin C([r,T); L*(R™)") (resp. in Cy, ([7,T]; L*(R™)™)) as m — 0.

(i) we say that uw € C([7,T]; H}(Oy)") if u € C([r,T]; H*(R™)"), and we say that a sequence {u™}
converges to u in C([1,T]; Hj(O)™) as m — oo, if the trivial extensions {4™} converge to U in
C([r,T]; H*(R™)™) as m — .

ou . o . . .
Foru e L}, (Q,r)", we denote by — € D'(Q,,7)" the partial derivative of u with respect to time ¢ in the

ot
sense of distributions, that is,
,1/J> ZJ J ulﬂct xt)dxdt
—1J7 JO
forall = (Y1, ,4¥,) € CP(Q- )" Throughout the text we will also use the notation v’ for the derivative
in time, i.e., v’ = %—'j

Definition 2.2. We denote by LP(7,T; H=*(Oy)"), p € [1, +0), the set of all distributions w = (wy, -+ ,wy)
in D' (Qr )" of the form

wz:fio_Z 5%1_, with fi, € LP(7,T;L*(Oy)) forall i=1,---,nandj=0,---,n
j=1

that is,

(x t) dadt,

w9y = Zf fule (e ydzar + 3 [ g

3,j=1 QT T .7
forall € C2(Qrir)™.
The space LP(7,T; H~1(O;)™) is a Banach space equipped with the norm

T 1/p
lwlLe (i1 (00)m) = (J |w(t)|p1)tdt> ,

where by [14, Section 5.9] we have that

n n 1/2
ol |1t—<22nﬁ m) |

where | - |1, is the norm in H~1(O;)" for any ¢ € R.

2.1.2. Coordinate transformations. In order to handle the time-varying domain we now make some techni-
cal coordinate transformations by which the equation (NS) is transformed to a dynamically equivalent system
defined on a fixed domain. The main idea is inspired by the spirit of [21, 38].

Given 7 € R, let us consider the interval [, +20) < R and define the function v(-,-) = (v1(-,*), -+, vn(-, "))
as
n 67
Uk<y7t) = 2 a;k (r(yvt)at)uz(r(yvt)at)> LUEO> te [T,+CX)), k=1--,n, (2.3)
rt i
where u(z,t) = (u1(z,t), -+ ,un(x,t)), with x € O; and t € [, +00). Then we can express the coordinates

of u in terms of the coordinates of v by direct calculation as

up(z,t) = Z g;k( (z,t),t) v (T(x,t),t), €O te[r,40), k=1,--- ,n. (2.4)
— Jy;

Lemma 2.3. Letn e Nand1 < p < +00. Then



i) u(t) € LP(Oy)™ if and only if v(t) € LP(O)", with t € [r,T]. Moreover, there are two positive
constants {1 and Ly (which depend only onn, p, T, T, and r(-, -)) such that
U [u(®) Lo < |v@)[rr0)n < L2lu(t)]Lr0)n-
Sorall u(t) € LP(Oy)™.
ii) u(t) € HY(Oy)™ if and only if v(t) € HY(O)", with t € [1,T]. Moreover, there are two positive
constants {1 and £y (which depend only onn, p, 7, T, and r(-, -)) such that
Glu@) o) < v a0y < Lolu®)] (o,
forall u(t) e HY(Oy)™.
Proof. Analogous as [38, Lemma 3.1 and Lemma 3.2]. O

Lemma 2.4. Given p,q € [1, +w] and n € N. Under the assumptions given in (HI), let u(x,t) and v(y,t) be
the functions satisfying the conditions given in (2.3) and (2.4), respectively. Then

we L7, T; LP(O)") — ve LY(r,T; LP(O)"),

we L*(1,T; Hy (Oy)™) — ve L*(r,T; Hy (O)™).
Proof. In the same way as [38, Lemmas 3.3 and 3.4] or [21] U
Definition 2.5. Given we LP(7,T; H='(O,)") as in Definition 2.2. We say that w € C([r,T]; H=*(O,)"),
if the trivial extension f;, belongs to C([r,T]; L*(R™)) fori = 1,--- ,nand j = 0,--- ,n. We say that a

sequence {w™} converges to w in C([7,T]; H*(O)™) as m — o, if the sequence { ]?ZTJ"} converges to ﬁ7 in
C’([T,T];LQ(R")) asm — o, fori=1,--- ,nandj=0,--- ,n.

Proposition 2.6. (cf. [3, Proposition I1.5.11.]) Let X and Y be two Banach spaces such that X is continuously
and densely embedded into' Y. Let p,r € [1,4+0]. For T > T, we define

By, = {u e LP(r,T; X) | o € L"(r,T; Y)}.

Then, any element u of E,, . possesses a continuous representation on [1,T| with values in'Y, and the embed-
ding of E,, - into C([1,T];Y) is continuous. Moreover, for all s,t € [1,T], we have

utt) - ) = [ &

where it is understood that we have identified u and its continuous representation.

(6)do,

Lemma 2.7. Under the assumptions given in (H1), let u(x,t) and v(y,t) be the functions satisfying the condi-
tions given in (2.3) and (2.4), respectively. Then
(@) ue C([r,T]; L?(Oy)™) — ve C([r,T]; L*(O)
() ue C([r,T]; Hi(O)™) — ve O([r,T]; H (O)"),
(©) ue O([r,T]; H-*(Oy)™) — ve C([r,T]; H*(O)"),
(d) given p,r € [1,+00), we have

we LP(r,T; HY (O)™), )V e LP(r,T; H (O)),
u' e L' (7, T; H-1(O)") o' e L'(r,T; HH(O)™).
Proof. Tt follows from [38, Lemmas 3.8 and 3.9] or [21, Lemma 3.8, 3.9 and 3.11]. O

Remark 2.8. Let u € L*(7,T; HY(Oy)") and v' € LP(r,T; H-1(O,)") for some p € [1,+00). Then,
u e C([r,T]; H-Y(O,)"™). Indeed, by item (d) in Lemma 2.7 we have that v € L*(r,T; H(O)") and
v' € LP(1,T; H-Y(O)"). Then, by applying Proposition 2.6, we have that v € C([1,T]; H=1(O)"). Then,
again by Lemma 2.7, item (c), we conclude that u € C([7,T]; H=1(Oy)").

Before continuing, let us take into account the following results.



Lemma 2.9. (¢f. [3, Lemma I1.5.9]) Let X be a separable and reflexive Banach space, and let Y be a Banach
space, such that X — Y (continuous embedding). Then

L*(0,T;X) n Cou([0,T],Y) = Cu([0, TT; X).
Remark 2.10. A consequence of Lemma 2.7, Remark 2.8 and Lemma 2.9 is that, if
we LP(1,T; L*(O)"™) n L*(1,T; Hy (O))"™) and ' € LP(1,T; H*(Oy)™),

for some p € [1,+0), then u € Cy,([7,T]; L?>(O4)"). In the particular case that p = 2, by [38, Lemmas 2.6]
or [21] we have that u belongs to C([7,T]; L?(O;)™) and satisfies the energy equality
t

[0,y — () 20,y =2 f (W (), u(r))-1pdr forallr <s<t<T.

S

Lemma 2.11. Under the assumptions given in (HI1), we have

y 6’7‘1 o 0 (o
; Oys ((h] ’t)’t)) =0 and ; e (%(T(x,t)7t)) =0,

forallj=1,--- n wherex =r(y,t) withye Oandt e [1,T].

Proof. We will only consider the three-dimensional case, since the two-dimensional case was done in [38,
Lemma 3.5]. Let us denote by

— p— — (7/, a .
Al) o(ry (1), T2(2, 1), T3(x,t)) _ ﬁ(%t) o2 (.t ﬁ(%t)

O(x1, e, gz1 Jza z3
(1,02 23) Gt Gi(rt) Gi)

Let M;;(z,t) be the determinant of the submatrix formed by deleting the -th row and j-th column of the matrix

L 3
Az, t). Let us denote by Cij = (—1)"*+9 M;; (x,t) with 7, j = 1,2,3. Let C(x,t) = (C’ij(x,t))l ~ be the
3

P

co-factor matrix of the matrix A(x,t).
Therefore, from the property of determinants, it follows that

Cra(r(y:1),t)  Can(r(y,1),t)  Csi(r(y,t),1)
a(rl(y,g),rz(y,t),rg(y,t)): J(t) Ci;(( t),1) Cz;(r(z,t),t) c§l<r<§,t>,t> . @5)
(y1, Y2, 3) Cus(r(y.t),t) Cos(r(y,t),t) Css(r(y,t),t)

Then, using the equality (2.5), we obtain

3 3 _ _ _
67“1 0%F; or 0%, or 0%, or

>3 “(owon) -2 ( Ly, t) + 2 (1) + )

i=1 i=1

&TJ 0x10x; Oy; 0x20x; 0y; 0x30%; 0Y;

3 _ _ _

o7 0T, 0°F;
DY, (S Ol 08) + 5525, + 5 2=Colr0).0)

o (1

-0z (57) ¢
The case Z o (S;i (r(x,t),t)) — 0 is similar. O

i \0y;

Lemma 2.12. Under the assumptions given in (HI), suppose that the functions u(x,t) and v(y,t) satisfy the
conditions given in (2.3) and (2.4), respectively. Then we have

divu =0 ifandonlyif divwv=0.
Proof. Ttis a consequence of Lemma 2.11. g

Now let us build the spaces with free-divergence.
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Definition 2.13. Let us define
V= {pe CPO)":divy = 0};
H := closure of V inthe L*(O)" — norm;
V := closure of V inthe H}(O)" — norm;
V* .= the dual space of 'V,
and, for each t € R, let us define by
Vii={p e CP(O)" : divy = 0};
Hy := closure of V; inthe L*(Oy)"™ — norm;
V; := closure of V; inthe Hg(O;)"™ — norm;
V¥ 1= the dual space of V.

Now, for each ¢ € R, let us denote the inner product in H; by
uut:—ZJ xz)dx for any w,u € Hy,

withnorm | - |; = (-, ); /2 The inner product in V4 is defined by

n ~

~ ou; , | Ouy ~

(Vu, Vi), := iél Jot (71;; () (7;; (r)dx forany u, 7 € V;.

Let us denote the dual space of V; by V;* and (-, -)_; ; the duality between V;* and V;.
Take into account that

ou; n Pr; orp or; _ o7y oy,
AR o (o 0.0 5 () + S (). S 06 S o).
o - n 07, org 0T, Org ou;
IR |2 0. 0.0 S0 0 00) + T2 0000 T2 00 5 000 .
Thus, for each t € R let us denote an inner product in H by
(v, V)¢ = 2 f gk (y, t)vk (y)vi(y) Jac(r,y,t)dy forany v,v € H. (2.6)

k=1

for any v, v € V, where gi;(y, t) = Z?:l g;k g; . Also, for each t € R let us denote an inner product of V' by

- or; o (O0r; ~
@ i= 3 [ o o (S )) e (i) ) Jar i, @)

i,k,l,p,q=1 ayl

for any v,v € V, where ¢gP4(y,t) = Z?:1 %(r(y,t),t) fF‘? (r(y,t),t) (k,l,p,q = 1,...,n) and the identity
J J

ax

7(r(y,t),t) = y implies that 7,,(r(y,t),t) = yp, and Jac(r,y,t) denotes the absolute value of the determinat

of the Jacobi matrix (g“ (y, t)) . Similarly, we denote the dual space of V by V*, and (-, -)_1 ; the duality
nxn
between V and V'*.

Lemma 2.14. Under the assumptions given in (HI), let u(x,t) and v(y,t) be the functions satisfying the
conditions given in (2.3) and (2.4), respectively. Then

we C([r,T]; He) — veC([r,T]; H),
and, given p,r € [1, +0), we have
we L™ (7,T; V), ve L™(r,T;V),
—
u € LP(1,T; V;¥) v e LP(1,T; V*).

Proof. Tt is a consequence of applying the Lemma 2.7 and Lemma 2.12. O
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2 2 Existence of weak solutions. Inspired by [32, Section 1] and [38, Subsection 3.4], we consider v €
L, ((9 x (1, )) givenin (2.3). If u € L} (Q, )" is a solution of (NS) in the sense that u satisfies each one

loc
of the equations given in (NS) (strong solution), then the function v satisfies the following equation

n ari !/ aFk} agri
= (‘)yk (y7 t){’l)k (y7 t) + E(T(y, t>7 t) [atayk (y7 t)U]c (y7 t)
0 (Ors o7y
+ ;1 Typ (Tyk(y’ tur(y, t)) ﬁ(r(y, t),t)
N 62 67"7;
_ p | |
1,21 YpOyL <§yk (Y, t)ve(y ))9 (y,1)
S a (?Ti
— - 7t ,t Azf ,t ,t
z;l ayp(ayk (v, yow(y )> Tp(r(y,1),1) (2.8)
o o7,
+N§:1 oy W g, w8 v, ) (a (0, Do, t))]}
z 67"1» |
) Z 0 (y7t)[(fg)k(y’t) N (Vﬂﬂﬂg)k(yﬁ)]a i=1-,nye0, t>r,
=1 CYk
divo(y,t) =0, o
’U(y7t)207 yeao’ t>7—’
U(y77—) = ’U.,.(y), ye O,

where "7 (y,t) = 37y ZL(r(y, ), ) T2 (r(y, 1), 1), and Auy(r(y,0),) = Ty S0 (9,0),), Jilip =

2, 3. Note that, if v satisfies the (2.8), then u satisfies the system (NS). For ease of notatlon, the system (2.8),
which we will indicate by (CC-NS) "Change Coordinates of Navier-Stokes equations”, is rewritten in a more
compact way as

& Moy, 1)~ Loy, 1) + Noly 1) = fy(p.1) = Vam, €O, 1>,

div v(y,t) =0 yeO, t=r, (CC-NS)
v(y,t) =0 y€e oo, t>r,

v(y, 7) = vr(y) yeo,

where Mv := ((Mv)1, -+ ,(Mv),), Lv := ((Lv)1,--,(Lv)y), Nv = ((Nv)1,--, (Nv)y), fg =
((f)1, s (fg)n) and Vomy := ((Vamg)1,- -+, (VaTg)y) are defined as:

(00 = X ol >ﬂ£aw»ww Zj(?@hmmmagwwny
(L’U)k(y;t) = Z 6562( (y7 s [ Z aypayl (jr (y7 )Uk(yat))glp(yyt)+

0/ or; _

> @(ay (yvt)vk(y,t))Amrp(T(y,t),t)];

- 0T or; oy

(No)i( >::;;éhj<<y¢>t>[ﬁgjlayl<7wazj@1y¢»tﬁnuhoayp(a (%tﬁ%ﬁhﬂ>]7
Unest) = X 5000 04 10,0)
(Vo) 0:0) = 3 S0, 1), (V) (9, 0),1)



The Navier-Stokes equations are associated with the trilinear function b;(u, v, w) (convective term of (NS))
defined as

be(u, v, w) = Z Jo uj(x) ovi (x)w; (x)dx.

ij=1 0

v
For simplicity, we indicate b;(u, v, w) as by (u, v, w) = J Uj a—vwidx. Then, cf. [35, Chapter 9, pp. 243] or
0, 9%

[39, Chapter III], we have the following inequalities on b (-, -, -).

Lemma 2.15. In (2D) and (3D) cases, we have

(1) be(u,v,w) = =b(u,w,v) forall u € Hy,v,w e Vy;
(2) bi(u,v,v) =0forallue Hy,v,w e Vi,

(3)
lull oo [Voldwl* w5, #ne {23} uv,we W,
|b¢ (u, v, w)| < ¢ |u|1/2|Vu|1/2|W\ w2 Vwl?, ifn =2, uv,weV,, 2.9)
Jul Va4 Vol wl el i =3, Yu,v,w e Vi

4) forallue Vi,ve Di(A),we Hy,
1/2 1/2 1/2 .
b (u, v, w)| < e Jul; ! Vul, / Vo[ Av|, / lwlt, ifn =2,
o [Vul| Vol | Av [V o], ifn—3;

where A = —PA is the Stokes operator with domain Dy(A) = H?*(O)"™ n V; (note that P is the
Leray’s operator e.g. [28, Appendix A.4]);
(5) by [40, Inequality (3.79)], for n = 3 we have

(2.10)

VAVl ul pao,)s- 2.11)

bt(wa ’lU,U) < Ct|w‘

Definition 2.16. Let n € {2,3}, u, € H,, f € L? (R;V*). We say that a function u(-) = u(-;7,u;) €
L, .(Q:)"™ is a weak global solution of (NS) if for any T > 7 the function u(-) belong to the class

we LP(r,T; Hy) n L*(1,T;V;)  with % e LP(1,T; V) (2.12)
where p = 2 ifn =2 and p = 4/3 if n = 3, and satisfies the following weak formulation
T T T
~ [ @O O+ [ a0t + [ wute),uo. s)a
T T T T (2.13)

— (ur (7)), +f (1), o(8)) 1 v,

o

forall p € Urp = {gp e C([1,TI;Va) : pi(z,t) = h(t) X, 3; (F(z,t),t) - v;(F(z,8), k = 1,--- ,n,
veV,heCY[r,T];R), h(T) = 0}, and also satisfies the initial condition u(T) = u,.

Remark 2.17. As is known, the way to show the existence of at least one weak global solution to the system
(NS) is to first show that the system (CC-NS) has at least one weak global solution, i.e., for any T' > T the
Sunction v(-) belong to the class

ve L®(r,T;H) n L*(1,T; V)  with % e LP(1,T;V*) (2.14)
where p =2 ifn =2 and p = 4/3 if n = 3, and satisfies the following weak formulation
T
f Co(t), @' (1)t + f (Mu(t) = Lo(t) + No(t), @(t))edt
= e + [ <060t

forall o(t) = h(t)v, withv € V, h € C1([r,T];R) such that h(T) = 0, and also satisfies the initial condition
v(T) = v,. Therefore, if v belonging to class (2.14) is a weak solution of (CC-NS), then by Lemmas 2.12 and

(2.15)
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2.14 the function u (defined in (2.4)) belongs to class (2.12) and is a weak solution of (NS). Then all this is
summarized in the following result.

Theorem 2.18. (Existence of weak solutions) Under the hypotheses (H1)-(H2) and n € {2, 3}. Let us consider
7, T with 7 < T. Then, for any u, € H,, and f € L*(1,T;V;*), there exists at least one weak solution of the
problem (NS). In the case that the dimension n = 2 the weak solutions to (NS) are unique in the class of the
weak solutions.

Proof. The proof of the existence of at least one weak solution to (NS) is given in [32, Theorem 2.2] or [38,
Theorem 4.5], where is proved that there exists a function v : O x (7,7) — R” belonging to the class
ve L®(r,T; H) n L*(r,T; V) such that satisfies the weak formulation (2.15). Thus, thanks to the previous
results the function u : Q, 7 — R™ given in (2.4) belong to the class L® (7, T; H;) n L*(7,T; V;) and satisfies
the weak formulation (2.13).

It follows from [38, Lemma 4.3] that v’ € L?(7, T; V;*) in the case n = 2. Now, we will focus on showing
that u’ € L¥/3(7,T; V;*) in the case n = 3. For each ¢ € R, let {wy,(t) = wy.(y, )}, be the eigenfunctions of
—A on V, with respect the inner products given in (2.6) and (2.7), satisfying homogeneous Dirichlet boundary
conditions, i.e.,

(Vawi(t), Vguir = M (t){wg(t),v); forallveV, teR.

Thus, we can assume that {wy(t)}}, is an orthogonal basis of V' and orthonormal basis of H. Now, for
each k € N, let us consider Wy, = (W}, Ws, Ws)

3 .
wh(x,t) = Z 2; (F(z,t), t)wl (F(z, 1)) fori=1,23.

Then, for each ¢t € R it is easy see that {wy,(¢)};~_; is an orthogonal basis of V; and H,.
On the other hand, let us remember the approximate Galerkin solutions of (CC-NS) which are written as

follows
Um ya Z h k

where the coefficients ", .- , h; withm € N are solutlons of the following ordinary differential system

{@'m (£), Wi (£))e = (Lo (£) — Mo (£) — Nog (£), wi(8)>e + (fo(8), wi(£))—1,1,
R (7) = Cor, wi (7)),

where k = 1, -+, m. In the same way as [38, Lemma 4.2] or [32, Theorem 2.2], the sequence {v,, } is bounded
in L®(7,T; H) n L?(7,T; V). Now, thanks to (2.4) we can consider the sequence {u,,} given by

Z (t)ywg(z,t), withzx e Oy t =T

Then, we have that the sequence {u,,} is bounded in L®(7,T; H;) n L?(,T;V;), and for each m € N, u,,
satisfies

Py (un, (1) = P (At (2) = Prn ((wm () - V)um (t)) + P (F(2)),

where P,, : H; — Span{wi,--- ,W,,} is defined as

m
Z ngk tW.

Indeed, by using (2.9), for any v € V;, we have that

(- V)Umﬂ)),l,t < bt (i, v, )| < ctltim, i/2|Vum|f/2|Vv\t
for all v € V;. Then we obtain
[ VYm| = sup (s D)t 0) | < ol [V [,

veVy, |Vuly=1
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Note that,

T T
4/3 ~ :
f | (U~ V)t / LAt < Ct”“m”i/iu,nm)f |Vt |2dt < +o0.

-1,
.

Therefore, P, ((tm - V)u,) is bounded in L*3(7,T;V;*). Then, we conclude that the sequence {u/,} is

bounded in L3 (7, T; V;*). O

Remark 2.19. (Energy, e.g. [3, Theorem V.1.4]) Under conditions of Theorem 2.18 and f € L} ([, +0), V,¥),
we have that

e For n = 2, the weak solution constructed from the Galerkin method is unique and also u € C([1, +0); Hy).
Moreover, any weak solution satisfies the following energy equality

¢ ¢

u(t)[F + QJ [Vu(r)[2dr = Ju(s)|? + 2J (f(r),u(r)-1,dr V7 <s<t, (2.16)
i S

e For n = 3, the weak solution constructed from the Galerkin method is weakly continuous, that is, u €

Cy ([T, +00); Hy), see Remark 2.10. Moreover, it satisfies the following energy inequality

t t
lu(t)|? + 2J |Vau(r)2dr < |u(s)|? + 2[ (f(r),u(r))—1.dr V7T <s<t 2.17)
It should be noted that, in the case of dimension n = 3, we cannot guarantee that any weak solution satisfies
the energy inequality given in (2.17), cf. [3, Chapter V].

2.3. A conditional existence result for 3D-Navier-Stokes equations. Since our objective, in the remainder
of the manuscript, is to demonstrate the existence of a pullback attractor associated with the dynamical system
defined from the weak solutions of the system (NS), in the same way as [18] we need an additional hypothesis
about the existence of our weak solutions, that is

(HF) Letn = 3and f € L? (1, +0; V;*). For any u, € V, assume the existence of a globally defined weak

loc
solution such that for any 7" > 7

lu(t)| 30, < F(|Vusl|,,7,T) forallte [r,T], (2.18)

where I’ is continuous and non-decreasing with respect to the first variable, and non-increasing with
respect to the second variable.

This new hypothesis will allow us to show that our weak solutions have a representative in the space of
continuous functions, i.e., if (HF) is valid, any weak solution u of 3D-(NS) belongs to C([7, T']; H) and satisfies
the energy inequality (2.17). Then, this additional regularity will allow us to prove asymptotic compactness by
employing the energy method, which is an important ingredient in the construction of the pullback attractor.

Now, in the same way as [18], we will demonstrate a series of results, which under hypothesis (HF) will
allow us to obtain weak solutions, with continuous representatives, that satisfy the energy inequality given in
(2.17).

Lemma 2.20. Under conditions of the Theorem 2.18 and the hypothesis (HF). Then for any u, € V, the weak
solution given in (HF) satisfies

we C([r,+x); Hy), u'eL? (r,+0;V*) (2.19)

and
t

t
lu(t)|? + QJ \Vu(r)2dr < |u(s)|? + QJ (f(r),u(r))-qdr, V7T <s<t. (2.20)

8

8 (1, +00; LY(O4)3). Moreover, u is unique in

Also, u is unique in the class of weak solutions such that u € L
the class of weak solutions satisfying (2.20).

Proof. Since, by hypothesis (HF), u € L (7, +00; L*(O;)3) < LY (7, +00; L*(O;)?), in the same way as [3,

Theorem I1.5.16] and [40, Theorem 3.4] we have that u € C([7, +0); Hy), u' € L? (7, +0o0; V;*). Also, the

loc
energy inequality is proved in a standard way since it is possible to use u(t) as a test function. Regarding the

uniqueness, let us take into account the following: let u(t), v(¢) be two weak solutions of 3D-(NS) associated
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with the initial conditions ug and v, respectively. Now, denote by w := u — v and take w as a test function in
the weak formulation, thus we have
1d, , 9
——|wl|; + |Vwl|; = —2bi(w, w,u).
S Slwf? + [Vl = ~2b,(w, w,u)
From (2.11) we have that

4 T/4
bi(w, w,u) < elwlt | Vwl{ ™ ul pao,)s-

By applying Young’s inequality we get
d ~
1wl < &lluliao,slwl?

Then the uniqueness is immediate. g

Under hypothesis (HF) the following result will prove the existence of weak continuous global solutions for
initial data in H, with any 7 € R.

Theorem 2.21. Under conditions of the Theorem 2.18 and the hypothesis (HF), we have that for any v, € H;
there exists at least one weak solution such that

u e C([r, +0); Hy), and ue L*(s,T; L*(0y)®) forallT <s <T, (2.21)

and

|‘UHL°0(T+§,T;L4((’Jt)3) < G(|UT|-,—, 7,T,0), (2.22)
forallT > 7,0 < § < T — 7, where 0 — G(0,7,T,0) is non-decreasing and continuous. Also, T —
G(x,7,T,0) is non-decreasing. Moreover, u satisfies the energy inequality (2.20).

Proof. Let T > T be fixed, and let us consider a sequence {u”"} < V, such that u”* — u, in H,. Thus,
it follows from Lemma 2.20 that there exists a sequence of weak solutions {u,,} of 3D-(NS) satisfying, the
inequality (2.18) and, by (2.20), the following energy inequality

¢ T
un @ + | (Fun () < a2+ [ 170), .23

T

Thus, taking into account by (i, tim, ) [y < ctltim]’” i

quence, that

i’/ 2 and Lemma 2.14, we obtain, up to a subse-

U =~ u  weakly-star in L® (7, T; Hy),

U — u  weakly in L (1, T; V3),
Oty 0 (2.24)
% — 6—1; weakly in L3 (7, T; V;¥),
Um — u  strongly in L2(7, T; Hy).
Note that, with the convergences given in (2.24), it is possible to show that u is a weak solution of 3D-(NS)
corresponding to the initial condition u, € H,, and such that u € Cy, ([, T]; H;), see Remark 2.10.
On the other hand, let us fix ¢ > 7. By using (2.23) we have that
t+T

t4T 47 T
2 2 2
|G I (R O

T

Then, for each m there is t};, € (7, Z3*) such that

9 T
Fun)ly < o (W [ 1R s). .25)
Thus, it follows from Lemma (2.20) that u,, () is the unique weak solution to 3D-(NS) on [t};,, T] with u,x =

U, (t*) and satisfying the energy inequality (2.17). Therefore, by applying the hypothesis (HF) on [t*,, T'| we
get

Mo\ 2
Hum(S)HL‘l(OS)S < F<<t> (1 + |u_r|3_)1/2,7-, T) =: G(‘UT‘T,T, Tt— 7)7
— T
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for all s € [t* , T, where M := 2 max {1, {r |f(s)|2,1$sds}.
Now, let § € (0,7 — 7), and let us take t = 7 + . Then we obtain that
Hum(S)HL4(OS)3 < G(‘uTl’rvT» T, 5), (2.26)

forall 7 4+ 6 < s < T (note that 7 + § > t}, for all m, since ¢¥, € (7, Tt for all m).

By using Holder’s inequality it is easy to see that
b (u, v, w)| < ee|u]pao,)s | Vwli|vlLao,)s  forall u,v,we Vi, teR.
Thus, using (2.26) we obtain that u/,, is bounded in L2(7 + §, T; V;*). Then, up to a subsequence, we have that

U —u  weakly-star in L® (7 + 8, T; L*(0;)*), 2.27)
' —a'  weakly in L*(1 + 0, T; V;*). '

U,

Thus, since u € L?(7,T; V;), v’ € L?(1 + §,T; V;*), we have that u € C([7 + 6, T]; H;), see Remark 2.10. In
a standard way, it is proven that u satisfies the energy inequality

u(t)[? + 2f Vu(r)2dr — 2 j (F(r), () —srdr < Ju(r) 2. (2.28)

T

Note that, it follows from (2.28) that

limsup |u(t)|? < |u(T)]3.
t—7+t

Since u € Cy([7,T]; H), thus we will deduce that |u(t)|; — |u(7)|, as t — 77, so that, by Definition 2.1, we
have that
limsup [[[@(t) — @(r)[|[* = limsup|[[a(®)|||* — 2lim inf((@(t), @(r))) + limsup [[[a(r)[]
t—T1

t—T t—Tt t—Tt

< [lla(n)lll = 2((@(r), a(r))) + llla()l|?

=0.
Therefore, we deduce that %(t) — (7) in L?(R3)3 also. Hence, u € C([7,T]; H).
On the other hand, it follows from (2.26) and (2.27), we have that

HuHLOO(T+5,T;L4(Ot)3) < G(|uT|T’ 7, T, 5)
Then, (2.22) hold and therefore (2.21) is proved. O

Corollary 2.22. Under conditions of Theorem 2.18 and the hypothesis (HF), u, € H, and f € L (T, +0; V;*),
for every globally defined weak solution satisfying (2.20) we have that

ue C([r,+0); Hy), ue Ly, (s, +0o0; L4(Ot)3) ,  forall s > T. (2.29)

Proof. We know thatu € L7, (7, +00; V;). Thus, for any ¢ > 7 there exists s € (7, t) such that u(s) € V;. Then,
it follows from Lemma (2.20) that  is the unique weak solution to 3D-(NS) on [s, +00) with initial data u(s) €
Vs and satisfying (2.20). Therefore, we have v € C([t, +00); H;) for any ¢ > 7, then w € C((7, +00); Hy).

Now we prove the continuity of u(-) att = 7. We know that u € C\, ([, +0), Hy), so that
lu(T)]r < limiI+1f [u(t)].
t—T1
On the other hand, by energy inequality (2.17), we obtain
lim sup |u(t)|¢ < |u(T)|-.
t—T1

Then, we have that lim;_,, |u(t)|; = |u(7)|, and w is continuous on [7, +00). Now condition (HF) implies that
ue L (s, +00; L*(O;)?) for all s > 7. Therefore, the result is proved. O

loc

3. DYNAMICS OF 3D-NAVIER-STOKES EQUATIONS ON A NON-CYLINDRICAL DOMAIN

In this section, we extend some well-known concepts and results concerning non-autonomous dynamical
systems to multi-valued processes that act on families of metric spaces parameterized in time, and we will
establish some results about the existence and relationships of minimal pullback attractors. This theory will be
applied to analyse the asymptotic behavior, in the pullback sense, of the weak solutions of the problem 3D-(NS),
on the families of Hilbert spaces { Hy}ter.
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3.1. Multi-valued processes on time-varying phase spaces: theoretical results. The results presented here
generalize, for instance, [31] (for the multi-valued autonomous case) and [5, Section 2] or [1, 4, 6, 30] among
many others (for single-valued non-autonomous case), and [11] (for multi-valued non-autonomous systems on
a fixed domain). When the uniqueness holds, our theory would reduce to the standard pullback attractor theory
for single-valued process, e.g. [16].

Given a family of complete metric spaces {(X¢,dx,)}+er, and denoting RZ = {(t,s) € R? : ¢t > s} and
P(X;) the family of nonempty subsets of X; for each ¢ € R, we recall the notion of multi-valued process.

Definition 3.1. A multi-valued map U : {(t,7) x X, : (t,7) € R2} — {P(X}) : t € R} is a multi-valued
process on the family { X }ier if
Q) U(t,T): X; — P(Xy) for each (t,7) € R%;
() U(r,7)x = {a} forany T € Rand all x € X ;
(i) U(t,7)x < U(t, s)(U(s,T)x) forany T < s < tand all x € X, where U(t,7)B := U,epU(t,T)z,
forany B c X.

The multi-valued process U : {(t,7) x X, : (t,7) € R3} — {P(X}) : t € R} is said to be strict if the inclusion
in (iii) is an equality.

For each ¢ € R, we denote by distx, (O1, O2) the Hausdorff semi-distance in X; between two sets O; and
05, defined as
distx, (01,03) = sup inf dy,(x,y) for 01,02 < X;.

e yeOs
As a convenient shorthand, we will refer to the process U(+,-) rather than the process U : {(¢,7) x X, :
(t,7) € R2} — {P(X;) : t € R} in all that follows. Though for nonlinear processes the notation U(t, 7, z) is
also often employed in the literature, we keep here the notation ¢ (¢, 7)z for any (¢,7) € R? and z € X.

Definition 3.2. A multi-valued process U(-,-) on the family {X,}ier is upper-semicontinuous if for any pair
(t,7) € R2, the mapping U(t, ) : X; — P(Xy) satisfies that, given a sequence {x, }nen in X, and v € X,
with ©,, — T as n — o0, then

lim distx, U(t, 7))z, U(t, 7)) = 0.

n—o0

Remark 3.3. A multi-valued process U(-,-) on the family {X,}icr is upper-semicontinuous if for any pair
(t,7) € R%, the mapping U(t,7) : X, — P(X;) satisfies for each x € X, and neighborhood V;(U(t,T)z) <
X of U(t, T)x that there exists a neighborhood V,(x) < X, of x such that U(t, )y < Vi(U(t,T)x) for any
y e V(z).

In the context of non-autonomous dynamical systems it is more natural to consider not only fixed sets but
also families of sets indexed in time. This is due to the fact that at what time the data was put often affects the
dynamical behavior of a non-autonomous dynamical system, as we saw in Section 2 (this is originally motivated
by the random dynamical system theory; it also provides extra information about attractors even in the fixed
bounded sets setting).

Let Dx be a universe of some families of nonempty sets, that is, each element Dof D x is a family D=
{D(t) c X; : D(t) # &, t € R} satisfying certain conditions. For ease of analysis we assume that the universe
Dy is inclusion-closed, i.e.,if D € Dx and D' = {D'(t) © X, : D'(t) # (&, t € R} satisfies D'(t) < D(t)
forall t € R, then D’ € Dx.

The key ingredients for the establishment of an attraction object are absorption and asymptotic compactness.

Definition 3.4. A family By = {Bo(t) € X; : t € R} is pullback Dx-absorbing for a multi-valued process
U(-,-) ifforanyt € Rand D € Dx, there exists T(D,t) < t suchthatU(t,7)D(T) < By(t) forallT < 7(D,1).

For the absorption property we do not require that the absorbing family above belongs to the universe.

Definition 3.5. o Given a family Dy = {Do(t) = X, : t € R}, multi-valued process U(-,-) is called pullback
Do-asymptotically compact if for any t € R and sequences {Tn} < (—0,t] and {x,} with T, — —o0 and
X, € Do(7y) for all n, it holds that any sequence {yy} with y, € U(t, T,)x,, is relatively compact in X;.

o A multi-valued process U(-,-) is said pullback Dx -asymptotically compact if it is pullback ﬁ—asymptotically
compact for any DeD X



Next, we present the definition of the minimal pullback attractor for a multi-valued process in time-varying
spaces.

Definition 3.6. A family A = {A(t) € X; : t € R} is called the minimal pullback D x -attractor for a multi-
valued process U(+, -) if the following properties are fulfilled:

(i) \A(t) is a nonempty compact subset of X; for each t € R,
(i1) A is pullback Dx -attracting, i.e.

lim distx, (U(t, 7)D(1),A(t)) =0

T——00

for any De Dx and all t € R;
(iii) A is negatively invariant under the process U(-,-), i.e.

A@t) cU(t, 7)A(T) forany t=T;

(v) if C = {C(t) : t € R} is a family of compact sets which pullback Dx -attracts under U(-, ), then
A(t) c C(t) forall t € R.

A pullback attractor fulfilling only conditions ()-(#i7) above (which is a common meaningful definition in
the literature) does not need to be unique (cf. [29]). Condition (iv) of minimality gives uniqueness. On the
other hand, when the attractor A € Dx, then it is also the unique family of closed subsets in Dx satisfying

Note that in the literature the minimality of the pullback attractor is often referred as the minimal among
pullback attracting closed sets, rather than only among pullback attracting compact sets as in Definition 3.6.
The following lemma indicates that the two definitions of the minimality are equivalents.

Lemma 3.7. Suppose that A = {A(t) : t € R} and B = {B(t) : t € R} are two families of closed sets and
are pullback Dx -attracting under multi-valued process U, then A n B := {A(t) n B(t) : t € R} is pullback
Dx-attracting.

Proof. First we show that A(t) n B(t) is nonempty. If A(t) n B(t) = (¢ for some ¢ € R, then by the closedness
of A(t) and B(t) we know there exists a small > 0 such that the open r-neighborhoods of A(t) and B(t),
N, (A(t)) and N,.(B(t)), are disjoint. This contradicts the pullback D x-attracting property of A(t) and B(¢),

because for any D € Dx we have
Ut, —7)D(=7) < Ny(A(t)) and U(t,—7)D(-7) < N(B(t)) 3.0
for 7 large enough, indicating the nonempty of N,.(A(t)) n N,.(B(t)). Hence, A(t) n B(t) # &.

We now prove by contradiction that A n B is pullback D x-attracting. If not, there would be a D € Dy not
pullback attracted by A n B, that is, there are sequences 7,, — —o0 and x,, € D(7,,) such that

distx, (U(t, Tn,zn), A(t) n B(t)) > 25, VYneN,

for some ¢ € R and ¢ > 0; in other words, U (¢, 7, ) ¢ Naos(A(t) n B(t)) for all n. On the other hand, since
D is pullback attracted by A, dist(U(t, 7, xy), A(t)) — 0, so

distx, (U(t, T, Tn), A(t)\Ns(A(t) 0 B(t)) — 0, asn — .
In the same way, we have
distx, (U(t, T, Tn), B{t)\Ns(A(t) n B(t)) - 0, asn — oo,

where we arrived at a contradiction, since A(t)\Ns(A(t) n B(t) and B(t)\Ns(A(t) n B(t) are disjoint closed
sets and cannot be approached by a common sequence. U

Lemma 3.7 indicates that if A is the minimal among pullback D x-attracting compact sets, then it is the
minimal among pullback D x-attracting closed sets. Indeed, for any a pullback D x-attracting closed set C,
AnCis compact and, by Lemma 3.7, is pullback D x -attracting, so by the mlnlmahty of A among pullback
D -attracting compact sets we have 4 c A N C and thereby A = A n C < C, as desired.
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3.1.1. Existence of pullback attractors. The minimal components (in the sense of attraction) that we aim to
collect are the omega-limit families. Namely, given a family D = {D(t) c X; : t € R}, the pullback omega-
limit set of D by U(+,-) at time ¢ (when it makes sense) is defined by

Ax,(D,t) = {g €Xi:€= lm y,, wherey, € U(t,Tn)D(Tn)}, 3.2)

which can be equivalently described (when it make sense) by set theory as

Ax,(D,t) = ﬂUUtT

s<t T<s

t

Proposition 3.8. (¢f. [1, Proposition 1.4]) If the multi-valued process U(-,-) is pullback ﬁo-asymptotically

compact, then, for any t € R, the set Ax,(Dy,t) given in (3.2) is a nonempty compact subset of X;, and

lim distx, (U(t,7)Do(7), Ax,(Do,t)) = 0. (3.3)
e¢]

T——

Moreover, the family {Ax (ﬁo, t) € X, : t € R} is minimal in the sense that ifC = {Ct)c Xy :teR}isa
family of compact sets such that

lim distx, (U(¢, 7)Do(1),C(t)) =0,

T——00

then Ax (Dy,t) < C(t) forall t € R.

Proof. Lett € R and consider two sequences {7,,} < (—o0, ¢] and {z,,} such that 7,, - —o0 and x,, € Do(7,,)
for all n. Now, let {yn} be any sequence with y,, € U(t, 7, )z, for all n € N, thus, since the multi-valued process
U(-,-) is pullback Do asymptotically compact, then, there are a subsequence of {y,} (relabeled the same) and
z € X; such that y,, converge to z in X;. Consequently, we have z € A, (DO, t), and therefore A x, (Do, t)is
nonempty for any ¢ € R.

Now, let us prove that A x, (lA)o, t) is a compact subset of X; forall ¢ € R. Let {y,,} < Ax, (ZA)O, t). It follows
from the definition of A x, (IA)O, t) that there exist 7, < t—nand x,, € Do(7y,) such thatdistx, (yn, U(t, Tn)xs) <
1/n. Since the multi-valued process U(-, -) is pullback Dy-asymptotically compact, any sequence {z,}, with
zn € U(t, ), for any n, possesses a convergent subsequence in X;. Therefore, the corresponding subse-
quence of {y,,} converges in X, to the same point.

On the other hand, let us suppose that (3.3) is not true for some ¢ € R. Thus, there exist e > 0, {7, }, {zn}
with 7,, — —o0 and x,, € Dy(7,,) for all n € R such that

distx, (U(t, o) 2n, Ax, (Do, t)) > & foralln > 1,

therefore, the contradiction arrives since the multi-valued process U(-, -) is pullback ﬁo-asymptotically com-
pact.
Finally, let us consider the family of compact sets {C(t) = X; : t € R} such that

TEril(D distx, (U(t, 7)Do(7),C(t)) = 0. (3.4)

Consider y € Ax, (Do, t), then there exist sequences {7, }, {z} and {y, }, with 7,, — —a0, z,, € Dy(7,,) and

Yn € U(y, )z, for all n € N, such that y,, — y in X;. Then it follows from (3.4) that y € C(t)Xt = C(t).
Therefore, we conclude that Ax, (Do, t) < C(t) for all t € R. O

Lemma 3.9. (Negative invariance) If the multi-valued process U(-,-) is upper-semicontinuous with closed
values for all (t,7) € R? and is pullback Dy-asymptotically compact, then

Ax, (Do, t) c U(t,7)Ax, (Do, 7), forall (t,7) € R2.

Proof. Let us fix (t,7) € R2. Then for any y € Ax, (Do, t) there are sequences y, € U(t, 7, + 7)x, and
xy € Do(1, + 7) with 7,, —> —o0, such that y,, — y in X;.
We know that
U, T + T)xn <UL, T) [M(T, Tn + T)a:n]
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Thus, y,, € U(t, )z, where 2z, € U(T, T + T)2y. Since U(-, ) is pullback Dy-asymptotically compact, then,
there exists a subsequence of {z,} (relabeled the same) such that z,, — z € Ax_ (130, 7).

Moreover, since U(-, ) is an upper-semicontinuous process with closed values, the graph of the map x —
U(t, T)x is closed, and then we have

yeU(t,T)z c U(t,T)AXT(Boy 7).

Proposition 3.10. [f the family Dy = {Dy(t) c X; : t € R} is pullback Dx-absorbing, then
Ax,(D,t) c Ax,(Do,t) forall DeDx, teR.
Moreover, if Dy € Dx, then Axt(ﬁo, t) c Dg(t)Xt forallt e R

Proof. Fix D € Dx and t € R. For any y € AXt(ﬁ,t), there exist two sequences {7,,} < (—o0,¢] and
{yn} < Xy, with 7, —> —o0 and y,, € U(t, 7,,)D(7,,) for all n € N, such that y,, — y in X;.

Since Dy is pullback D -absorbing for (-, -), there exist {7,,,} < {7} with 7,, < ¢ — k, and U(t —
k,Tn,)D(Tn,) < ﬁo(t — k), for all k € N. Then,

Uny, € Ut T ) Dy ) © Ut — B)[U(E — ki, 7 ) D (7 )] © Ut t — k) Dot — k),

with y,, — y in X%, and therefore, y € Ax, (ﬁo, t).
Finally, we consider ¢t € R and we suppose that Dy € Dx. We observe that for any y € Ax, (Do, t), there
exist {r,} < (—o0,t] with 7, —» —oo and {y,} < X; with y,, € U(t, 7,,)Do(7y,) for all n € N, such that

~

yn — yin X;. Since Dy is pullback D x-absorbing for the process (-, -), then from certainn € N, y,, € Dy (t).

Thus, y € Dy (t)Xt O

Combining the above ingredients leads to the following result.

Theorem 3.11. Consider an upper-semicontinuous multi-valued process U(-, ) on the family of metric spaces
{X:}ier with closed values, a pullback Dx-absorbing family By x = {Bo x(t) < X; : t € R} and assume
that U(-,-) is pullback By, x-asymptotically compact. Then the family A = {A(t) < X, : t € R} given by
—/\Xt
Aty = |J Ax,(D,t)  VteR
EEDX

is the minimal pullback Dx -attractor. Moreover,

(1) If By.x € Dx, then A(t) = Ax,(Bo x,t) forall t € R.

X

(2) It holds that A(t) < By x(t)  foranyteR.

(3) If Bo,x € Dx has closed sections and Dx is inclusion-closed then A € Dx.

4) If Ae Dx and U(-,-) is a strict process, then A is invariant under U(-,-), i.e.,

At) =U(t, T)A(T) forany t=T.
Proof. The proof is a generalization of the fixed domain case, see, e.g., [5, Theorem 3]. First note that by
Proposition 3.10 we have A(t) < Ax,(By,x,t) for all t € R, thus, it follows from Proposition 3.8 that A(t) is
a compact subset of X, for all ¢ € R. Also, the pullback attractivity, negative invariance, and minimality follow
immediately from Proposition 3.8, Lemma 3.9 and Proposition 3.10. The items (1)-(3) are a consequence of
Propositions 3.8 and 3.10.
Now let us focus on item (4). Since U(-, -) is a strict process, for any ¢ > r, we have
U, r)Alr) cUt,r)o(r,r +17)A(r + 1) =U({t,r + 7)A(r +7), forallT <0. (3.5)
Thus, since A pullback attracts itself, we have that
lirzloo distx, U(t,r+ 7)A(r + 1), A(t)) = 0.

Then, given £ > 0 there exists 7(¢,7,&,.4) < 0 such that
distx, (U(t,r + 7)A(r + 1), A(t)) <,
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forall T < 7(t,r,e,.A). Thus, by (3.5) we deduce that
distx, (U(t,r)A(r), A(t)) <e, foralle > 0.

Therefore, U(t,r)A(r) A(t)Xt = A(t) for all (t,r) € R2. O

The next result allows us to compare different attractors, for instance for regularity purposes. It is inspired,
for instance, [16, Theorem 3.15] for the single-valued case and [5, Theorem 4] for the multi-valued but fixed
domain case.

Theorem 3.12. Consider two families of metric spaces {( Xy, dx,)} and {(Yy, dy,)} with continuous embedding
X; c Yy, forall t € R, respective universes Dx and Dy, and Dx < Dy . Assume that U(-,-) is a time-
dependent multi-valued process in both family of spaces, i.e, U : {(t,7)x X, : (t,7) e R} - {P(X;) : t e R}
andU : {(t,7) x Y, : (t,7) e R%} - {P(YV}) : t € R}. For eacht € R denote

— Xt = Y
Ax(t)= | Ax,(Dit) and  Av(t) = | Av(Dst)
f)le’DX ﬁQEDY
Then Ax(t) = Ay (t)for allt e R.
Moreover, Ax (t) = Ay (t) for all t € R if the following two conditions hold:

(1) Ax(t) is a compact subset of X, for allt € R;
(i3) for any Dg € Dy and t € R there exist a family D1 € Dx and a t"i such that U(-,-) is pullback D, -

asymptotically compact, and for any s tj; there exists a 7, < 8 such that U(s,7)Do(1) < D1(s)
1
forall T < T

Let us suppose that the family of phase spaces does not vary, i.e. X; = X for all t € R. Now, let D3 be the

universe of fixed bounded sets of X, i.e., D € DX if D= {D(t) = B : t € R} with B a nonempty bounded
subset of X.

Corollary 3.13. Under the assumptions of Theorem 3.11 when X, = X for all t € R, if DX < Dx then
Apx (t) = Ap, () for all t € R. Moreover if there exists T' € R such that | J, . Bo,x (t) is bounded in X, then
Apx (t) = Apy (t) forall t <T.

3.1.2. Equivalent pullback attractors. In this section we will introduce the concept of equivalence of pull-
back attractors for time-varying spaces. Suppose we have two multi-valued time-dependent dynamical sys-
tems (Ux (-, ), {X¢}ier), and Uy (), {Yi}ier), and let us also assume that the families of associated phase
spaces are connected by a family of homeomorphisms, i.e., there exists a family of maps {O(¢)}cr such
that O(t) : X; — Y; is a homeomorphism for each ¢ € R. Then, if there exists a homeomorphism family
{©(t)}+er we are able to show an "equivalence" relationship between dynamical systems (Ux (-, ), {X;}ier)
and (Uy (-, ), {Y:}1er). With this, we will be able to show that (Ux (-, ), {X+}+r) has a pullback attractor if
and only if, (Uy (-, ), {Y: }+er) has a pullback attractor.

Definition 3.14. We say that the families of metric spaces { Xy }ier and {Y; }1cr are equivalent if there exists a
Samily of maps {©(t) }+er such that ©(t) : X; — Y; is a homeomorphism for each t € R.

Definition 3.15. Let Dx and Dy be two universes on the equivalent families of metric spaces { X }ier and
{Y:}ier, respectively. We say that the universes Dx and Dy are equivalent if for any D € Dy the family
{O(t)D(t) € Y; : t € R} € Dy and for any C € Dy the family {0~ (t)C(t) € X; : t € R} € Dx.

Theorem 3.16. Let {X;}ier and {Yi}ier be two equivalent families of metric spaces. Let Ux (-, -) be a multi-
valued process on the family { X, }1er. Then, Uy (-, -) defined as

Uy (t,7)y = O(t) olUx(t,7) 0O 1)y forall (t,7)eR3, yeY,, (3.6)

is a multi-valued process on the family {Y;}icr. Moreover, if the multi-valued process Ux (-,+) is upper-
semicontinuous, then Uy (-, -) is also upper-semicontinuous.

Proof. 1t follows immediately from Definition 3.1 and Remark 3.3. O
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Lemma 3.17. Suppose that © : X — Y is a continuou (single-valued) mapping between metric spaces (X, dx)
and (Y, dy). Then © is upper (resp. lower) semicontinuous on compact sets, i.e., for any compact set Dy and
any family {Ds c X : s € R} of sets with lim,_,o dist x (Ds, Do) = 0 (resp. lims_,o distx (D, Ds) = 0) we
have

lim disty (O(D,), ©(Dy)) = 0, (Tesp. lim disty (©(Dy), O(D,)) = o).

Proof. We first prove the upper semicontinuity by contradiction. If it does not hold, there would exist a sequence
T € Ds, with s, — 0 such that

disty (O(z,),0(Do)) =6, VneN, 3.7

for some § > 0. Since lim,_,q distx (Ds, Do) = 0, for the sequence z,, there has to be a sequence z, € Dy
such that dx (¢, z,) — 0 as n — c0. By the compactness of Dy, up to a subsequence z,, converges to some
2o € Dy which indicates that ,, — zo. Therefore, by the continuity of © we obtain O(z,) — ©(z), which
contradicts (3.7). The upper semicontinuity holds.

The lower semicontinuity is proved analogously. If it were not the case, there would exist sequences s,, — 0
and z,, € Dy such that

disty (©(z,),0(D,,)) =6, VYneN, (3.8)

for some § > 0. Since lim,_, distx (Do, Ds,) = 0, for each z, € Dy there is a z, € D, such that
dx (%n,z,) — 0as n — oo. By the compactness of Dy, up to a subsequence x,, converges to some o € Dy
which indicates that z,, — xo. By the continuity of © we obtain O(x,,) — O(x¢) as well as O(z,,) — O(xg).
Therefore, dy (©(x,,), ©(z,)) — 0, contradicting (3.8). Hence, the lower semicontinuity holds. O

The upper and lower semi-continuity on compact sets together imply the full continuity in Hausdorff metric
on compact sets. That is, we have the following corollary.

Corollary 3.18. Suppose that © : X — Y is a continuous mapping between metric spaces (X,dx) and
(Y,dy). Then © is continuous w.r.t. Hausdorff metric for compact sets in the following sense: for any compact
set Do and any family {Ds; c X : s € R} of sets with

liH(l) Distx (Ds, Do) = 0, then lirr(1) Disty (©(Ds), ©(Dy)) = 0,
where Dist x and Disty denote the Hausdorff metrics on X andY, respectively.

Remark 3.19. Note that the full continuity in Hausdorff metric does not imply the upper or the lower semi-
continuity. Therefore, Lemma 3.17 is often more applicable since in many cases, as in this paper, one would
need only the upper or the lower semi-continuity, not both. For more discussion on the continuity of set-valued
maps see [2, Chapter 1].

Theorem 3.20. Let {X;}icr and {Y;}icr be two equivalent families of metric spaces. Consider Ux(+,-) a
process and an universe Dx on the family { X, }cr, and let us consider the process Uy (-, -), given in (3.6), and
the universe Dy. If Ap is the minimal pullback D x -attractor for the multi-valued process Ux (-, -), then the
family Ap, = {Ap, (t) : t € R} defined by
Ap, (t) == 0O(t)Ap, (t), teR,

is the minimal pullback Dy -attractor for the multi-valued process Uy (-, ), i.e.,

(i) Ap, (t) is a nonempty compact subset of Yz for each t € R;

(ii) Ap, is pullback Dy -attracting, i.e.,

lim disty, Uy (t,7)D(7), Ap, (t)) = 0

T——00

for any De Dy and all t € R;
(i) Ap, is negatively invariant under the process Uy (-, -), i.e.,

Ap, (t) c Uy (t,7)Ap, (1) forany t=T;

@iv) (Minimality) lfé = {C(t) : t € R} is a family of compact sets which pullback Dy -attracts under
Uy (-, ), then Ap,, (t) < C(t) forall t € R.
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Proof. (i) Since the map O(¢) : X; — Y; is continuous for all ¢ € R, Ap, (t) = O(¢)Ap, (t) is a compact set
inY; forall t € R.
(i) It follows from Lemma 3.17, that

Tl—i}’il&’) disty, (Uy (t, 7)D(1), Ap, (t)) lim disty, (©(t)Ux (t,7)O  (7)D(1),0(t) Ap, (1))

= :il:l;lz disty, (O(t)Ux (t,7)B(7), O(t)Ap, (t))

=0,

where B = {B(t) = ©~1(t)D(t) : t € R} € Dx with D € Dy.
(iii) Observe that

Ap, (t) = O(t)Apy (t) © O(t) oUx (t, 7) A (1) = O(t) oUx (t,7) 0 O (7) 0 O(7) Ap (7)
= O(t) oUx (t,7) 0O (1) Ap, (1) = Uy (t,7)Apy (7).

Thus, Ap, (t) < Uy (t,7)Ap, (1) for all (¢,7) € RZ.

(iv) Let C = {C(t) € Y; : t € R} be a family of compact sets which pullback Dy -attracts under Uy (-, -).
Then by Lemma 3.17 the family Co = {6~ 1(t)C(t) : t € R} is pullback Dx-attracting under Ux (-, -),
therefore it follows from Theorem 3.11 that Ap, (t) = ©71(¢t)C(t) for all t € R. Then we conclude that
Ap, (t) = O(t)Ap, (t) < C(t) forall t € R. O

Corollary 3.21. Let {X;}icr and {Yi}ier be two equivalent families of metric spaces. If Ux (-, ) is an upper-
semicontinuous multi-valued process with closed values, dissipative, and pullback D x -asymptotically compact,
then the multi-valued process Uy (-, ), defined in (3.6), has a minimal pullback Dy -attractor on the universe
Dy, given in Definition 3.15.

Proof. Since the time-dependent multi-valued dynamical system (Ux (-, -), { X: }:er) satisfies the conditions of
the Theorem 3.11, it has a minimal pullback D x-attractor. Then, it follows from Theorem 3.20 that the time-
dependent multi-valued dynamical system (Uy (-, -), {Y%}+er) also has a minimal pullback Dy -attractor. O

COrOllary 3.22. I_fA'DX € DX and UX(7 ) is a strict process, then -ADY is invariant under Z/{Y(7 .), i_e.’
Ap, (t) = Uy (t,7)Ap, (T) forany t > 1.

Proof. Tt follows from item (4) from Theorem 3.11 that Ap, is invariant under Ux (-, -). Then Ap, is invariant
under Uy (-, -). O

3.1.3. An example: equivalence of pullback attractors with different universes. An important universe (or fam-
ily) in the theory of dynamical systems is the universe of bounded sets. Note that this was already introduced
in Corollary 3.13. Now by Theorems 3.11, 3.12, and 3.20 we shall see what relationship the pullback attractor
associated with the universe of bounded sets has when it is carried by a family of homeomorphisms to another
equivalent universe.

Let us consider a fixed phase space X; = X and an equivalent family of phase spaces {Y;}+cr, i.e., there
exists a family of homeomorphisms O(t) : X — Y; forall ¢ € R. Now, let D2 be the universe of fixed bounded
subsets of X, and let Dx be another universe on X such that Df§ c Dx. Then, under the conditions of
Corollary 3.13, we have that Apx (t) < Ap, (t) forall t € R, and if there exists 7 € R such that | J, ., Bo,x (t)
is bounded in X, then Apx (t) = Ap, (¢) forall t < T.

Let Dy be the universe on the family {Y}}:cr, which is equivalent to universe Dx, see Definition 3.15, and
let us denote by D} , := {©(t)D : D € Dy, t € R}, Apy = {O()Apx(t) : t € R} and Ap, :=
{O(t)Ap, (t) : t € R}. Then, it follows from Theorem 3.20 that,.ADI/,F and Ap, are pullback attractors of the

time-dependent multi-valued process Uy (-, -) w.r.t. the universes D{ 5 and Dy, respectively, and
'ADlY,F(t) c Ap, (t) forallteR.

Moreover, if there exists a 7' € R such that | ;<7 Bo,x (t) is bounded in X, then Apy (t) = Ap, (t) for all
t<T. ’
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On the other hand, let us denote by D%/)  the universe of bounded sets on the family {Y; }+cg in the following
sense D € D{F if D = {D(t) < By,(0,R) : t € R} for some R > 0, (where By, (0, R) is the open ball
centered at zero with radius R). Let us assume that D%j r € Dy.

Let us assume that there is a pullback Dy -absorbing family E(Ly € Dy, and also that there exists a 7' € R
such that By y (t) < By, [0, R] for all ¢ < T, and some R > 0 (where By, [0, R] is the closed ball with center
at zero and radius R). Then, by Theorem 3.11 for any ¢ < T, we get

~ Yy
Ap, (t) = Ay, (Boy,t) = () |J Uy (t,7)Bo.y (1)
s<tT<s
Yy ~

< ﬂ U Uy (t,7)By,[0,R] = Ay,(By,r,t)

s<tT<s
= Yy

c U ADrt) =dApy (),

ﬁFED;F ’

where By = {By,[0, R] : t € R}. With this and Theorem 3.12, we conclude that
Ap, (t) = ‘AD;F (t), and Ap,(t) = @_1(t)AD;F (t) forallt <T.
In addition, if | J, Bo,x(t) is also bounded in X, then

Apx (t) = Apy (1) = ©7 (1) Apy (1) and Apy (1) = Ap, (t) = Apy (1) forallt < T.

3.2. Pullback attractor of the 3D-Navier-Stokes equation: Construction. In this section we are interested
in studying the asymptotic behavior, in the pullback sense, of the weak solutions of the problem 3D-(NS), on
the families of Hilbert spaces { H }+cgr. For this, we will consider the hypotheses (H1)-(H3) and the hypothesis
(HF) and f € L? (R;V;*).

loc

3.2.1. Generation of an upper semicontinuous multi-valued process. Given an initial time 7 € R and an initial
datum u, € H,, we denote by ¥(7,u,) a set of weak solutions to 3D-(NS) in [, +00) with initial datum
ur € H;:

u is a weak solution to 3D-(NS) with
¥(rur) = {ute7 ) |

u(T, T, u,) = u, satisfying (2.20)

Then, it follows from Theorem 2.18 and Theorem 2.21 that the family ¥ (7, u.) is not empty. Now, we can
define a family of multi-valued maps U(-,-) : {(t,7) x H, : (t,7) € R} — {P(H,) : t € R} by

U, Tur :={u(t) :ue ¥(r,u,)} € P(Hy), u,€H,, 7<t. (3.9)

The following lemma will allow us to show that the evolution process associated with the weak solutions of
3D-(NS), given in (3.9), is upper-semicontinuous and has closed values, see Corollary 3.24. The energy method
will play a key role, e.g. [18, 26].

Theorem 3.23. Assume conditions of Theorem 2.18 and the hypothesis (HF) hold. Then for any strongly
convergent sequence {u'}, T € R, of initial data with u* — w. in H, and any sequence {u,,} < ¥(r,u’),
there exist a subsequence of {un,} (relabeled the same) and w € ¥ (7, u,) such that

um(s) = u(s)  strongly in Hy for any s > 7. (3.10)

Proof. Letus fix T € R with T > 7. In the same way as Theorem 2.21 and Corollary 2.22 and making use
of the energy inequality given in (2.20), {u,,} is bounded in L* (7, T; H;) and L?(7,T; V;), and the sequence
{ag;” } is bounded in L*? (7, T; V}*). By the Aubin-Lions compactness Lemma, there exist a subsequence of
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{tm} (relabeled the same) and u € L (7, T; Hy) n L(7,T; V;) with 2% € L43(7, T; V;*) such that

U =~ u  weakly-star in L® (7, T; Hy),

Um — u  weakly in L* (1, T; V3),
, (.11
ag‘—: N % weakly in L3 (7, T; V;*),

Um — u  strongly in L2(7, T; Hy).

Again, in the same way as [32, Theorem 2.2] the convergences given in (3.11) allow us to pass to limit in
the weak formulation (2.13). Moreover, it is not difficult to check that u(7) = wu,. Therefore, we have that
ue U(r,u,).

On the other hand, let @,, and « be the trivial extension, given in (2.2), of u,, and u, respectively. Then by
Proposition 2.6 the sequence {i,, } is equicontinuous in H~1(R*)2 on [, T], in fact

- - " Ot
[ (8) = B ()10 < [ |20

T oun,
< |t5|1/4(J\ W(T)

T

dr
v,E

4/3

3/4
*dr) , forallT<s<t<T.
Vi

Also, in the same way as (2.27), we have that v/, — u’ weakly in L%(7 + 6,T; V;*) for any § > 0. Therefore,
by [3, Theorem 11.5.12], {@,, } is bounded in C ([ + 6, T]; L*(R?)?), for any § > 0. Therefore, by the Arzela-
Ascoli Theorem, up to a subsequence, there follows that

Uy, — 0 strongly in C([7 + 6, T]; H~*(R*)®) forany § > 0.
Hence, by the boundness of {4, } in C ([ +6,T]; L?(R?)3) for any § > 0, and u,, (7) — u., we conclude that
Upm(s) — 1(s) weakly in L*(R3)® forany 7 < s < T (3.12)
which implies that
Um(s) — u(s) weakly in H, forany 7 < s < T. (3.13)
Thus, it follows from energy inequality (2.17) that the estimate

T

()2 < |2(s) 2 + 2 j (F(0),2(0)) 100, T<s<r<T

S

holds for z = u,, and z = w, it follows that the functions J,,, J : [, T] — R defined by

r

T(r) = [ ()2 — 2 f (F(6), tn (6)) 1 9116, e

J(r) = Ju(r)f2 - 2 f ((8), u(0)) 1,000,

T

are non-increasing and continuous, and by (3.11) satisfy
I (r) = J(r) ae.re(r,T).

Now, we will prove that .J,,,(r) — J(r) for any r € [7,T]. Let us consider the following extended energy
functionals

Tr) = I = 2 [ <0, (@300,
3ty = et ~2 [ 7o), aopa.

Thus, it follows from (3.14) that jm and .J are non-increasing and continuous, and satisfy

Jn(r) > J(r) ae.re(r,T).
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Now, consider a fixed t* € (7, T'] and an increasing sequence {t;,} < [7,t*) such that¢;, — ¢* and T (ty) —
J(tg) for all k > 1. Thus, by the continuity of J and .J,,,, for any ¢ > 0 there exist M, K > 0 such that

~

|J(tx) — J(t*)| < = fork > K,

~ ~

1Tnti) — J(tx)| < S form = M.

NN ORI}

Since J,, is a non-increasing function, we have that

~ ~ A~

I (£%) = T(t*) < T (tx) — J(t*)
< |Imltr) = T(t)| + | T (tx) — T(t*) < e

for all . > M, and consequently lim sup .J,, (t*) < Ji (t*). Taking into account that
m—00

t* ¥
CFO) m(®))d0 — [ CF0), 000,
we deduce that lim sup |||@, (¢*)|]| < [||@(¢*)|||. Then, from the latter and (3.12), we have
m—00

lim sup|u, (t*) — u(t*)|% = limsup |||, (%) — a(t*)][]?
m—0 m—00

= limsup [[[d, (£%)[[[* — 21im inf (@, (£%), @(t*))) + lim sup [[[a(t*)]]]?
m—0 m— m— 0

< @) = 2@ + laeE)l* = o.
Hence, we conclude that (3.10) holds for all s € [, T]. O
Corollary 3.24 (Upper semicontinuity). Let f € L? (R;V*). Suppose that the conditions (H1)-(H2) and

loc

(HF) hold. Then the time-dependent multi-valued bi-parametric family U(-,-) defined in (3.9) is an upper-
semicontinuous multi-valued process with closed values on the family { H;}1cr.

Proof. Tt follows from Theorem 3.23. O

3.2.2. Asymptotic compactness and the pullback attractor. In this subsection, we will prove that the multi-
valued process defined in (3.9) has a pullback attractor w.r.t. some tempered universe. For this, we will show that
there is a family of pullback absorbing bounded sets, and that the process is pullback asymptotically compact.
The asymptotic compactness will be proved with the energy method, which was used also in the proof of
Theorem 3.23.

The following lemma is fundamental because it guarantees the dissipativity of the system.

Lemma 3.25. Let us consider f € L? (R; V;*). Suppose that conditions (H1)-(H3) and (HF) hold. Then, for

loc
any u, € H, any weak solution u(-) = u(-, 7;u,) € U(1,u,) satisfies the following estimates, for all t > T,

t
(@)} < e ug ]2 + f e f(s)[2 ds, (3.15)
and
t t
| [wuo)ds < furl2 + | 1762 . (3.16)
Proof. GivenT € Rand u, € H,,letu € (7, u,) for all t > 7 a weak solution to 3D-(NS). Then w satisfies
1d
sl + IVt < (f@©) u®) -1 aet=m, (3.17)
since b;(u, u, ) = 0. Thus, we obtain
1d 1 1
5%|u|§ + 5|Vu\§ < §|f(t)|2,1,1t ae. t>T. (3.18)

Now, multiplying by e*t:+*, we have

d .
g (@) < M)
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Therefore, integrating in s from 7 to ¢, we deduce that

t
() < e ey |2 4 e het f Mt f(s) |2y ds,

T

for all ¢ > 7. Lastly, note that from (3.18), we also deduce that

t t
j Vu(s)[2ds < Juy |2 +f F($)]2 1o,
forallt > 7. O

Definition 3.26 (Tempered universe). Let Dy be the universe of all families of subsets D = {D(t) : t € R,
D(t) € Hy and D(t) # &} such that

lim e ™ sup |u,|? = 0.

T—® ur€D(T)

Now, let us denote by
t
72N = {f e L} (R; V) : f Mo f(s)|2 ,ds < +oo  forallt e R}.
—o0

gorollary 3.27. Let f € Ii’A and suppose that the conditions (H1)-(H3) and (HF) hold. Then, the family
By = {Bg,[0,R(t)] : t € R} is pullback Dx-absorbing for the multi-valued process U(-, -), where

t
R2(t) =1 +J e M 79| £ ()2, ds. (3.19)
—o0

Moreover, By € D.

Proof. The existence of a pullback absorbing set follows immediately from Lemmas 3.25. Following the same
reasoning as [21, Lemma 7.1], we obtain

lim e* " "R2(1) = 0.

T—>—00

Consequently, the family ﬁo € Dy. g

Lemma 3.28. Let f € I and suppose that the conditions (H1)-(H3) and (HF) hold. Then, given h > 0,
for any t € R and for each D € D,, there exists 71(t, h, D) < t — 3h — 3 such that for all T < 11 (t, h, D)
ur € D(7), and w € U (7, ur,) it holds

lu(r)|r < 01(8), Vre[t—h—1,1],

J |Vu(s)|?ds < 02(t), Vre [t — h,t],

r—1

where

t
A(t) = 1 + Ml f 9| F () 1 ods,
-0

t

o) = O+ [ IR s

—h—1

Proof. Lett € R. Then, it follows from the Lemma 3.25 that for any & > 0 and for each r € [t — h — 1, 1], one
has

Ju(r)|? <6’A1“"(T’T)IUT|3+J A (5)2 ds

t
< e>\1,t(1+h_t)e>\1,t7'|u7_|z + ekl,f,(l-i—h—t)J 6)\1,t3|f(8)|2_17sds7
—0o0
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forall 7 <t — h — 1. Thus, by Definition 3.26, for ¢ € R and h > 0, there exists 7 (¢, h, ZA)) € R such that
Ju(r)[} < 1+ M0 f LA f(s) s, (3.20)
—wo
forall u, € D(7), 7 < 71(t,h, D), and r € [t — h — 1, ¢]. Thus, denoting by

t
A(t) = 1 4 Pl j A (5)]2 1 ods,
—0

we have
u(r)lr < e1(2),
forallu, € D(7), 7 < 71(t,h, D), and r € [t — h — 1,1].
In the same way as (3.20) and making uses of (3.16), we obtain
t

[ Va2 < 2(0) + f )P 1 ads = 0a(0),

r— —h—1
forall u, € D(7), 7 < 71(t,h, D), and r € [t — h,t]. O

Lemma 3.29 (Asymptotic compactness). Let f € Ii A and suppose that conditions (H1)-(H3) and (HF) hold.
Then, the time-dependent multi-valued process U(-, ) given in (3.9) is pullback D y-asymptotically compact.

Proof. Similarly to Theorem 3.23, we shall demonstrate the asymptotic compactness of the multi-valued pro-
cess using the energy method, e.g. [25, Proposition 22] or [26, Lemma 5.11]. Given g € R and DeD ), let
{ur, } be any sequence, where u.,, € D(7,,) for each m € N and 7,,, — —c0 as m — oo. Now, let us consider
the sequence {w,, }, such that w,, € U(tg, 7 )ur,, for each m € N. Then we will prove that the sequence {w;, }
is relatively compact in Hy,. In fact: for each m € N let us denote by u,,(-) € ¥(7,,,, ur,, ) a weak solution of
3D-(NS) associated to the initial condition w,, € D(7,,), such that w,,, = wu,,(to) for all m € N. Then, since
Tm — —00, it follows from Lemma 3.28 that, for ¢y and some h > 0, there exists mq(tg, h) € N such that

|u7rL(T)|T < Ql(t()), Vr e [tO —h— 17t0]a

f |Vum(s)2ds < 02(to), Vr € [to — h, to], (3:2D)
r—1
for all m = mq(to, h).

Since for each m = mq(to, h), the function w,, is a weak solution of 3D-(NS) on [tg — h,tg]. Thus, with
the same reasoning as Theorem 3.23, there exists a subsequence (relabeled the same) and a limit function w that
converge in the same sense as in (3.11). Moreover, u € C([tg — h, to]; H;) and u is a weak solution of 3D-(NS)
on (to — h,tp), and as in (3.13)), we have

Um(s) — u(s) weakly in H, for any to — h < s < to. (3.22)

Moreover, putting z = u and u,,, z satisfies the following energy inequality
t

2()]F < |2(s)]3 + QJ (f(r), 2(r))—1rdr,

S

forall tg — h < s < ¢ < to. Then, we can define the functions J,,, J : [to — h,tg] — R as
t

Ta®) = lun®F =2 [ (70D 0n) -1

J(t) = Ju(®)? — 2 j (), u(r)) s rdr,

to— h
which are non-increasing and continuous, and satisfy

Jm(t) - J(t) ae. te (to — h,to).

Therefore, with the properties of functionals J(-) and J,,,(-), the convergence given in (3.22), and the same
reasoning as in Theorem 3.23, we obtain that

U — w  strongly in C([tg — h,to], Ht).
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In particular u,, (t9) — u(to) in Hy,, so the proof is completed. O

Theorem 3.30. Let f € I,,%’A and suppose that conditions (H1)-(H3) and (HF) hold. Then there exists the
minimal pullback Dy-attractor Ay € Dy, for the multi-valued processes U(-, -).

Proof. First, note that the existence of a family pullback Dy-absorbing, By = {By, [0, R(t)] : t € R}, was
given by the Corollary 3.27, where the radius function R : R — (0, +c0) was set in (3.19). On the other hand,
the asymptotic compactness of the multi-valued process U+, -) is given by Lemma 3.29. Then, It follows from
Theorem 3.11 that there exists a minimal pullback D -attractor associated with the time-dependent multi-valued
process U(+, -). O

3.2.3. Pullback attractor of the equivalent system (CC-NS). Now, we are interested in showing the existence
of a pullback attractor associated with the problem (CC-NS) on the Hilbert space H. For this, we will consider
the hypotheses (H1)-(H3) and (HF) and f € L? (R; H). On the other hand, let {O(¢) : H — H; : t € R} be
the family of homeomorphisms defined as

@(t)(’lj],’l}Q,’U?,) = (Ul,UQ,Ug), (323)

where
3
(?Tk
ug(x) = T(x,t),t) - v (T(x, t forallz e O, k=1,2,3.
k() ;ayi(( ), t) - vi(F(z,1)) ‘

Then, given an initial time 7 € R and an initial datum v, € H, we denote by @(7, v, ) the set of all v(+; 7, v,) :
[, +00) — R3 that are weak solutions to (CC-NS) with initial datum v, € H, such that

u(t; T,ur) = O()v(t;1,0,) € {u(t) :ue U(r,ur)} (3.24)
for all t = 7, where u, = O(7)v,; € H,. Define
v is weak solution to (CC-NS) with v(7) = v, such
that u(-; 7; u,) given in (3.24) belongs to ¥ (7, u,) }

\/I\J(T, vy) = {v( $ T, Ur)

Then, it follows from Theorem 2.18 that the family \TI(T, v;) is not empty. Now, we can define a family of
multi-valued maps U(-,-) : {(t,7) x H : (t,7) € R2} — P(H) given by

Ut 7)o, = {v(t) cve U(r, UT)} e P(H), v, eH, <t (3.25)

Lemma 3.31. The time-dependent dynamical systems (U(-,-),{H}ier) and (LA{ (+,-), H), given in (3.9) and
(3.25), respectively, are equivalents.

Proof. By Remark 2.17 and Theorem 2.18 the time-dependent multi-valued families of maps {Z/AI (t,7): H—
P(H): (t,7) e R:} and {U(t,7) : Hr — P(Hy) : (t,7) € R?} satisfy the following relationship
U(t, 7y := O (t) oU(t,7) 0 O(7)v € P(H) forall (t,7) € R2, v e H.
0
Definition 3.32. We define D, the class of all families of subsets D = {D(t) : t € R, D(t)  H and D(t) #

O} such that

lim M7 sup |u,* =0,
T v-€D(T)

where \1 is the first eigenvalue of —A on H} (O)" i.e.,
Ay = va”%’z(o)n

min .
weH} (0)"\{0} w72 (0yn
Lemma 3.33. The universes Dy and ZSA, given in the Definitions 3.26 and 3.32, respectively, are equivalents.

Proof. Tt follows immediately from the definitions of universes 3.26 and 3.32, and the family of homeomor-
phisms {O(t) }+cr, given in (3.23). O
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Theorem 3.34. The time-dependent multi-valued bi-parametric family U (+,-) (defined in (3.25)) is an upper-
semicontinuous multi-valued process with closed values on H. Moreover, the family A A= {ﬁ At) i te R},
defined as

Ax(t) := O (1) Ax(t), forallteR,
is a pullback 73,\-attract0rf0r the multi-valued process Z/Al(7 ).

Proof. 1t follows from Theorem 3.20. O

4. DYNAMICS OF 2D-NAVIER-STOKES EQUATIONS ON A NON-CYLINDRICAL DOMAIN

In this section we study the 2D case of the Navier-Stokes equation (NS) on a non-cylindrical domain. Since
in this case the weak solutions are unique and generate a single-valued process, we are able to show, under
certain conditions, the finite fractal dimension of the pullback attractor. The fractal dimension problem for the
multi-valued 3D case remains open.

4.1. Fractal dimension of sets in time-varying spaces: theoretical results. We first establish a theoretical
result on the fractal dimension of pullback attractors that applies to time-varying phase spaces.

Definition 4.1. Let X be a metric space and K a compact subset of X. The fractal dimension of K is defined
by
log N,.(K, X
d;( (K) = limsup 08 A) ( )
r—0 —logr
where N,.(K, X) is the minimum number of balls of radius r, centered at some point of K, that cover K.

The fractal dimension is also called the upper box-counting dimension in the literature (e.g., [7, 15, 8, 34]).

Theorem 4.2. (cf. [27, Theorem 4.11]) Let ty € R be fixed and consider {Xi}ie(—o,t9] and {Wite(—oo,10]
two families of normed vector spaces such that Wy is compactly embedded in X; for every t < to. Assume
that {6} }1e(—wo,10] I8 a family of bounded subsets of {X;}ie(—w,t,] and there exists a positive constant gy =
00(to) > 0 such that for each t € R there is an u; € €, satisfying

6: < Bx,(ut,00) forallt <ty. “4.1)

Also suppose that there exists a family of operators {Ls : X1 — Wi}ie(—o0,10] Such that
(1) 6, € LG, forall t < ty;
(2) there exists a function k : (—o0,tg] — (0, +00) such that
”Lt‘r - LtyHWt < H(t)”l? - yHXt—N forall T,y € Cgt—lv t < to;

(3) there is an Ny, € N such that
Sup Ny jp(s) < My, 4.2)

s<to
where Nt := N.(Byw,(0,1), X;) for any € > 0 and t < t.
Then,

log NV;
d¥(%,) < 0,
o (%) log 2

Proof. Lett < ty. Then, it follows from (1), (2) and (4.1) that

Nlt/4~(t)
%, = [Li6-1] n €, < Bw,(Liw—1, k() 0o) = U Bx, (ﬂt,i, %) ;
i=1
where @, ; € X, foralli e {1,--- ’Nf/%(t)}- Assuming without lost of generality that 4; ~ Bx, (ﬂt,i, %) #*
for any i € {1, ... ,Nf/%(t) we can take u; ; € 6, such that
N1t/4~(t)

¢ < U Bx, (ut,i, %) , forallt < tg.
i=1
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Then we have that N, (6}, 00/2%) < Ni,. Then, proceeding by induction, it is proven that
Nx, (%, 00/2%) < N7, forallk > 1, t < t,.

Consequently, in a standard way, we arrive at

1
0g Ny forall t < tg.
log 2

A} (6) <
O

Lemma 4.3. (¢f. [7, Lemma 4.2]) Let X, Y be two normed spaces. Consider € < X, and f : € — Y a
Hoélder continuous function with exponent 0, 0 € (0, 1], i.e., there exists an L > 0 such that

[f(x) = F)ly < Llz -y,

forall x,y € €. Then,

4 (F(%)) < 5af (€).

Now we apply the previous results to pullback attractors of single-valued processes. Before that, for the
readers’ convenience let us briefly recall the existence of a pullback attractor. The readers are referred to
[19,9, 13,5, 21, 26], see also Theorem 3.11 for the corresponding multi-valued version.

Definition 4.4. A bi-parametric family of operators {U(t,7) : X; — Xy : (1,t) € R2} is called a single-valued
evolution process, or simply called a process, on a family of complete metric spaces {(X¢,dx,)}ter if

(i) U(7,7) = 1dx, (identity on X.) for any T € R,

(i) U(t,s)oU(s,7) =U(t,T) forany T < s < t.

In addition, a process {U(t,T)} is called continuous, if each U(t, T) is a continuous operator.

Lemma 4.5. (¢f. [19, Theorem 23]) Consider a continuous process U(-,-) on the family of metric spaces
{X+}iem, a pullback Dx -absorbing family By x = {Bo x (t) € X, : t € R} and assume that U(-, -) is pullback
By, x -asymptotically compact. Then, the family A = {A(t) € X, : t € R} given by

—/\Xt

Aty = |J Ax.(D,t) , VieR,

EEDX
is the minimal pullback D x -attractor.
Theorem 4.6. Ler {X;}icr and {Wi}ier be two families of normed vector spaces such that Wy is compactly

embedded in X, for every t € R. Consider that the single-valued process Ux (-, -) has a pullback Dx -attractor
Ap. Assume that for any (t, s) € R? there exists a Ly s > 0 such that

[Ux (t, 8)z1 —Ux (t, 8)x2]x, < Lts x., forall x1,29€ Ap,(s). 4.3)

|z1 — 22|
Moreover, we assume that there exists ty € R such that

(1) there is a positive constant oy = 0(to) such that for each t < tg there is an u; € Ap,, (t) satisfying
Ap, (t) € Bx,(ut, 00) forallt < to; 4.4
(2) there exists a function K : R — (0, 4+00) such that
[t (8,1 — D)z — Ux (8t — Dylw, < k@)]|z—ylx,_.,

forallz,ye Ap, (t —1),t < to;
(3) there is an Ny, € N such that
sup Nf/4n(s) g MO? (45)

s<tg
where Nt := N (Bw,(0,1), X;) for any € > 0 and t < t.
Then

log N;
dxe < o,
sup dy (Ap (s)) log 2
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Proof. Applying the Theorem 4.2 with L; := Ux (t,t — 1) and 6; = Ap, (t) for each ¢t < ¢, we have
log NV
X to
On the other hand, it follows from the invariance of the pullback attractor Ap, that
A'Dx (t) = Z/{X(t, tO)ADx (to) forall t > to.

Therefore, it follows from estimate (4.6), the Lipschitz condition (4.3), and Lemma 4.3 that

1
A (Apy (1) < OligN; for all ¢ > to.

O

Remark 4.7. The result to estimate the fractal dimension of pullback attractors with non-cylindrical domains
was developed in [12, Lemma 6.1], [13, Theorem 4.4] and [27, Theorem 4.11]. Here our result, Theorem 4.6,
is new in the following sense: The proof presented in [27] is given for a family of time-dependent maps, acting
on a family of time-dependent compact sets, satisfying the hypotheses of negative invariance, Lipschitzianity,
etc., for all time t € R. On the other hand, our hypotheses need not hold for all time t € R (as required by [27,
Theorem 4.11]), but only need hold for t < ty. It is essentially the invariance of the pullback attractor which
contributed to the improvement.

The following result establishes the relationship of the fractal dimension of pullback attractors associated
with equivalent dynamical systems.

Theorem 4.8. Ler {X,}ier and {Y:}ier be two equivalent families of normed spaces. Consider the time-
dependent single-valued evolution processes Ux (-, -), and Uy (-,+) satisfying the relation given in Theorem
3.16. Let Ap,, and Ap, be the pullback Dx-attractor and the pullback Dy -attractor, associated with Ux (-, -)
and Uy (-, -), respectively. Then,

i) if the homeomorphism family {O(t) : Xy — Y; : t € R} is a family of Lipschitz transformations, i.e.,
for each t € R there exists a ¢y > 0 such that

0@z —OM)yly, < lillz —ylx, forallz,ye X;.

Then dy' (Ap, () < d}* (Apy (1)) forall t € R;
i) if the homeomorphism family {O(t) : X; — Y; : t € R} is a family of bi-Lipschitz transformations, i.e.,
for each t € R there are positive numbers {1 +, {3 ; such that

blr —ylx, <|0@)z —O@)yly, < Loy
Then d}t (Ap, (t)) = df* (Ap, (t)) forall t € R.

|z — yllx, forallz,ye X;.

Proof. 1t follows directly from Lemma 4.3. g

4.2. Pullback attractor of the 2D-Navier-Stokes equation: Fractal dimension. In this section, we are inter-
ested in estimating the fractal dimension of the pullback attractor of the 2D-Navier-Stokes equation (NS) on the
time-dependent family of Hilbert spaces { Hy }ier.

Note that under the hypotheses (H1)-(H2) and f € LIQOC(R; Vi*), given 7 € R and w, € H,, Theorem 2.18
guarantees the existence of a unique weak solution u(-) = u(-, 7, u,) of the system 2D-(NS) that passes through
u,; € H, in the instant of time 7 € R, i.e., u(7) = u,. This allows us to define the bi-parametric family of

single-valued maps {U(t,7) : H, — H; : (t,7) € R2} as
U, ) : H - H by U(t,T)ur = u(t,T,u;), 4.7)

where u(-) = u(-, 7, u,) is the unique weak solution of 2D-(NS) associated to the initial condition u, € H., for
any (t,7) € R2.

Corollary 4.9. Let f € L} _(R;V*). Then the bi-parametric family U(-,-) defined in (4.7) is a continuous
process.
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Proof. In the same way as [32, Theorem 2.8] or [38, Theorem 4.8], let u(t), v(t) be two weak solutions of
2D-(NS) associated with the initial conditions u.. and v, respectively. Now, denote by w := u — v and take w
as a test function in the weak formulation, thus we have

1d
§%|w|t2 + [Vw|? + by (u, u, w) — by(v,v,w) = 0.
From (2.9) we have that
be(u, u, w) — by (v, v,w) = be(u, u, w) — by (u, v, w) + be(u, v, w) — be(v, v, w)
= bt(u7waw> + bt(w,v,w) = bt(wvvvw)
< crwlFago, 2| Vole < edf[wli| V| Vol
where we have used the Ladyzhenskaya inequality, i.e., |w]|z4(0,)2 < dt|w\t1 / 2|Vw|,}/ %, Now, applying Young
inequality we obtain
d
J el + Vel? < e Vol lwl, (4.8)

where ¢ ; = c7dj. Hence, by integrating and applying the Gronwall inequality we have

¢
Ut TYr — Ut T)or 2 < Jur — s ]2 exp {cl,tf |w(r>|,%dr},
T
for any u,,v, € H, and (t,7) € R2. Therefore, the time-dependent evolution process U+, -) is continuous. [J

Remark 4.10. Let (t,7) € R? and u,,v, € H.. Making u(-) = U(-,7)u, and v(-) = U(-,T)v,, and using
(4.8), we have

f |Vu(r) — Vo(r)2dr < |u(s) —v(s)|? + thf |Vo(r) 2 u(r) — o(r)|2dr, 4.9)
< t.

forall T < s <

Inspired by [23], we need an additional hypothesis on the external force f to obtain high regularity of the
weak solutions of 2D-(NS), and with this being able to show the smoothing property of the time-dependent
dynamical system.

(H4) Let us consider the external force f € L? (R; H;) satisfying the piecewise bounded integrability con-

dition on the family { H;}icr, i.e.,

My (t) := supJ |f(s)|?ds < oo, forallteR.
s<t —1

Note that (H4) is a condition between the translation-bounded and the tempered conditions, see [10, Propo-

S
sition 4.1]. In fact, (H4) is equivalent to supf |f(s)|?ds < oo.
-1

s<0 Js
Lemma 4.11. Suppose that hypotheses (H1)-(H4) hold. Then, any weak solution to 2D-(NS) satisfies the
following estimates

Ut s)uslf < e U g |24 AT+ ALy My (8),

forall us € Hg, s < t, and

t
| 1vutr sy < e+ X0, Fse -1,

t
J IVU(r, s)us|2dr < e 7 o2 42X 71 (1 + A )My (t), ifs <t—1.
t—1
Proof. Let us € Hg and denote by u(-) = U(-, s)us. Then, from (3.17) and Poincaré inequality, we have u
satisfying

1 2
E|f(t)|tv (4.10)

)

d
S ul? + Aalul? <
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)\1ytt

Thus, multiplying (4.10) by e and integrating from s to ¢, we get

t
()] < e INu(s)[2 + A;,%e-*”tj A0 7(9) 0.

S

By the hypothesis (H4), can estimate the last term on the left side of inequality (4.11) as

t t
At [ R < Apte et | @)l
—00

S

0 t—n
gl J A0 7 (0) 2o
n=0 t*(nJFl)

o0 t—n
<apte et S e [0 (o) as
n=0 t—(n+1)
<A@ —e M) TEM(2)
SAL (L4 ML) My(t).

Therefore, by (4.11) we have
[u()[f < e fug |2+ AL+ AL M (2),
forall us € H,, t > s.

On the other hand, again from (3.17), u satisfies

d o 2 1 2
— V < —\f(t)]7.
dt|u|t + |Vul; At |f ()]

Then, integrating from s to ¢, we obtain

t t
1
f Vu(r) B < a2 + - f P 2dr < Jusl? + ATM (),

for all us € Hg, t > s, in particular for s € [t — 1,¢].

@.11)

4.12)

4.13)

Now, let us assume that s < ¢ — 1. Integrating in (4.13) from ¢ — 1 to ¢ and using the inequality (4.12), we

obtain

t 1 t
f \Vu(r)\%dr<\u(t—l)\%_1+—f F(r)|2dr
t—1 t

At Jia
< fu(t = D)F_y + ATy M (2)

N

< e M9y 12 L on L1 AT M ().
1.

forall u, € Hy,and s <t —

e M T g 24 AT (L AT M (t = 1) + A My (¢)

O

Corollary 4.12. Suppose that conditions (H1)-(H4) hold. Let De Dy, to € R, and h > 0. Then, there exists a

7(to, h, D) € R such that for all us € D(s) with s < 7(to, h, D),
[U(t, s)usl < Ri(tg) forallte [to —h —2,t0],
and

¢
J |VU(r, s)us|?dr < Ra(to) forallte [ty —h —1,t0],
t

-1
where R3(to) := 1+ Ay, (1+ Ap g, )My (to) and Ra(to) := 1+ 2A7 (1 + ATy, )M (to).

Proof. By Lemma 4.11, we know that

U(t, s)us|? < e M1t |y |2 4 Ai(L+ AT)Mg(t), forany wyeH,, s<t.

Therefore, for D € Dy, to € R and h > 0, there exists a 7(to, h, 13) € R such that
U, s)usl? < 1+ A5 (1+ A7y, )My (to),

(4.14)
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forall s < 7(to, h, ﬁ) andt € [to — h — 2,t0].
On the other hand, using (4.13), we deduce that

t
| 19utBar < ue - DB 4 kg
t—1
Then, from (4.14), we get
t
f IVU(r, s)us|Fdr < 1+ 275 (14 A7 4, ) M(to),
t—1

forall s < 7(to, h, D) and t € [to — h — 1, t,]. O

Lemma 4.13. Suppose that conditions (H1)-(H4) hold. Then, there exist positive non-decreasing functions
Cy#(+),C¢(-) : R — (0,+400), such that given ty € R, D € Dy and h > 0, there exists a T(to, h, D) € R such
that

¢
|VU(t, s)usly < C(to), and J |AU(r, 8)us|2dr < Cy(to), (4.15)
t—1

for all ug € D(s), with s < 7(to, h, D), and t € [t — h, to], where
C2(to) 1= [1+ AT (1+ AL )My (to) + ATk My (to)] - et

and
Cr(to) := C3(to) + &, O (to)R?(to) + 2M (to).

Proof. Lettye Rand D = {D(t)  H, : t € R} € DX and denote by u(t) = U(t, s)us with s < t < t, and
us € D(s). Then, taking Au as a test function, we get
1d
2.dt
Note that by (2.10), we have

|Vu|f + \Au|f + by (u,u, Au) = (f(t), Au)y. (4.16)

1 [
oo, w, Aw)| < eouly [Vl Auf}* < Z1Auf} + Flulf|Vul}.
Now, by using (4.16), we obtain
d ~ ~
T Vul? + 1Aul? < 20O + Bulf | Vulf = 2 OF + Efulf |Vl Vul}, @17)

Considering z(t) := |Vul?, a(t) := & |u|?|Vu|?, and b(t) := 2|f(¢)|?. Then, the inequality (4.17) has the

following form

dz
dt
Then, it follows from Corollary 4.12 that there exists a 7(¢, h, D) € R such that

(t) < b(t) + a(t)z(t). (4.18)

t
f a(0)df < alto) = &, R2(to)Ra(to),
t—1 4.19)

Jt b(0)do < b(te) 1= 2M(to),
t—1

for all u, € D(s), s < 7(ty, h, D) and t € [ty — h — 1, t,]. Furthermore, from (4.18) we deduce that

d ¢ ¢

—§%a(6)do ) < —§a(6)do
i (e z(0)) < b(l)e .
Now, integrating from r to ¢, with r € [t — 1, ¢], we have that

t
e~ a7y < 7(r) + f b(£)e 5200 gy,

I
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Then, by using (4.19), we get
t
z(t) < z(r)e*t) + f b(E)eSZ 200 g < z(r)e o) 1 b(tg)e ),

r

for all r € [¢ — 1,¢]. Thus, integrating with respect to r, from ¢ — 1 to ¢, we have that

z(t) < et (Jf ) z(r)dr + b(t0)> .
—
Thus
|Vu(t)? < e*to) <ft 1 \Vu(r)|2dr + b(t0)>, forall t € [to — h — 1, %]

.

Then, again from Corollary 4.12, we have
[VU(t, s)us|i < Cf(to), foralls < 7(t,D)and t € [to — h — 1, %], (4.20)

where C(ty) = [Ra(to) + )\1_}0 My (t9)] - e(). Now, taking into account (4.17), we have

t t

() 2| Vau(r)[Adr + zf £ () 2dr.

t—1

t
f | Au(r)2dr < |Vau(t — )2, + af
t

—1 t—1

It follows from Corollary 4.12 and (4.20) that
t
J AU, $)us 2dr < C2(to) + 2, CL(to)R2 (o) + 2M s (fo),
t—1

for all ug € D(s), s < 7(to, h, D) and t € [to — h, to]. O
Corollary 4.14. Under the conditions of Lemma 4.13. The family By = {Bv,[0,C¢(t)] : t € R} is pullback
Da-absorbing, for the process U(-, -) defined in (4.7). Moreover the family év € Da.

Proof. 1t follows directly from Lemma 4.13. 0

4.2.1. Pullback attractor of 2D-(NS). The existence of the pullback D, -attractor for process (U (-,), {H; }teR)
was given in [38, Theorem 6.4]. Now, with the regularity of the weak solutions, obtained in the previous results,
we are able to give a simpler demonstration of the existence of a minimal pullback D, -attractor.

Theorem 4.15 (Existence and regularity of a pullback D) -attractor)). Let the conditions (H1)-(H4) hold. Then
the family Ay = {Ax(t) € V; : t € R} defined by

Ax(t) = An,(Bv,t) = () | U(t,7) By, [0, cf(r)]Ht < By,[0,04(1)], VteR,

s<tT<s

is the unique pullback Dy-attractor for the solution process U(-, ) belonging to D), where év is given in the
Corollary 4.14.

Proof. The evolution process (-, -) is dissipative due to Corollary 4.14 with the family By = {By, [0, C +(t)] -
t € R} that is pullback D) -absorbing. Regarding asymptotic compactness, let us consider the sequence {u., }
such that u,, € By, [0,Cy(r,)] foralln € Nand 7, — —c0. Now, lett > 7, for all n € N, and consider the
sequence {U(t, T, )ur, }. We affirm that sequence {U (¢, 7, )u, } has a convergent subsequence in H;. Indeed, it
follows from Corollary 4.14 that the family év € D,, so that there exists an mg(t) € N such that U (¢, 7, )u, €
By, [0,C(t)] for all n = mg(t). Since By, [0, C¢(t)] is a compact set of Hy (for any ¢t € R), the sequence
{U(t, Tn)tr, }n=m(+) has a convergent subsequence in Hy, therefore the asymptotic compactness is proven.
Then, applying Theorem 3.11, there exists a minimal pullback D, -attractor A, that belongs to the universe
Dy. 0
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4.2.2. Fractal dimension of the pullback attractor. A consequence of the following result is that the evolution
process U(+, -), defined in (4.7), satisfies the smoothing property on the pullback D) -attractor Ay constructed
in Theorem 4.15.

Proposition 4.16. Givent € Rand D = {D(t) © H, : t € R} € Dy, then there exist r; > 0 (that is a positive
non-decreasing function of t) and T(t, D) € R such that

[Vu(t; s,us) — Vo(t; s,vs)|t < Kelu(t — 158, us) — v(t — 1; 8, vs)|t—1

Sorall ug,vs € D(s) and s < 7(¢, lA)) where Ky is a non-decreasing function of t given by k; := Cyy [C?(t) +
Cf(t)C’f(t)] [1 + cl,tC]%(t) exp{cl,tCJ%(t)}].
Proof. Let us denote by u(t) = U(t, s)ug, v(t) = U(t, s)vg and by w := u — v. Then, by taking Aw as a test

function, we have
1d

2.dt
Let us focus on term by (u, u, Aw) — bs(v, v, Aw). By using (2.10), we have
be(u, u, Aw) — by (v, v, Aw) = be(u, u, Aw) — be(u, v, Aw) + be(u, v, Aw) — b (v, v, Aw)
= by (u, w, Aw) + by(w, v, Aw)
1/2 1/2 1/2 3/2 1/2 2 1/2 1/2
< caluly [Vl [Vl Awf{? + cifuwly* [ Vwly* Vol 2| Aol | Awl,
Cat
2

|Vw|? 4 [Aw|? + by (u, u, Aw) — bs(v,v, Aw) = 0.

1
< S| IVali Vol + [w Vol vl ] + 54w

Consequently, we obtain
d
%\Vwﬁ + JAw|? < C’47,g(|Vu|;1 + |Vv\t\Av|t)|Vw|f.

Integrating in time, we have

t

[Vw(t)[f + f [Aw(9)[fd0 < [Vuw(r)[} + 0474 (IVu(®)[g + [Vo(0)|o| Av(0)]e) Ve (0) 5d0-

T

Applying the Gronwall inequality, we obtain

Fu(O < [Vl exp { Cas [ (V)i +700)ol40@)lo)d0 )

I
Now, integrating in r between ¢ — 1 to ¢, we obtain
t

t
Vw)? < exp {cj (IVa(O) [} + |VU(9)|0|AU(9)|6)d9} [ veepe a2
t—1 t—1
Thus, by the inequality (4.9) and Lemma 4.13, there exist x; > 0 and 7(¢, lA)) € R such that

IVw(t)? < kew(t —1)2,, forall s < 7(t, D).

Lemma 4.17. Givent € R, there exists k; > 0, which is a non-decreasing function of t, such that
[VU(t,t — 1)u — VUt — 1)v]p < Keu — v]i—1
SJorall u,v e Ax(t — 1) and t € R, where 1 was given in Proposition 4.16.

Proof. This is proved in the same way as Proposition 4.16, and taking into consideration, by Theorem 4.15, that
Ax(t) € By,[0,Cy(t)] forall t € R. O

The following results are introduced in order to help prove the condition (4.2) in Theorem 4.2 when we apply
the abstract results to our Navier-Stokes problem.
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Proposition 4.18. (cf. [27, Corollary 4.14] ) For each t € R, the set Q; := | J, <t Os is bounded in R2. Then,
for any € > 0, we have

sup Ne (B (0,)2(0,1), L*(05)?) < Ne(Bpi(a,)2(0,1), L*(€)?). (4.22)

s<t
Remark 4.19. Ir follows from Theorem 4.15 that there exists a non-decreasing function ¢ : R — (0, +o0)
(given as o(t) 1= 2)\1_7%Cf(t) Sor all t € R) such that for each t € R there exists a uy € A\ (t) satisfying
Ax(t) € By, (ug, 0(t)) forallt e R.
On the other hand, if we denote by N! := N.(By,(0,1), H;) for any ¢ > 0 and t € R, then, by the inequality
(4.22), Ny :=sup,, N2 < o foranyt € R.

Theorem 4.20. Assume that all conditions from Theorem 4.15 hold. Then the pullback attractor Ay, associated
with the time-dependent dynamical system (U(-,-), { Ht}+er) has finite fractal dimension, that is,

log Vy
log 2
Proof. Denote by Uy, := U(t,t — 1) for all ¢ € R. It follows from Lemma 4.17 that the evolution process U+, -)
satisfies the smoothing property on pullback D, -attractor Ay, given in the Theorem 4.15, i.e.,
VU — VUw|e < K|lu —v]i_q, forallu,ve Ay(t—1), teR.
Therefore, it follows from Theorem 4.6 and Remark 4.19 that
log \V;
sup dff* (Ax(s)) < T

b
s<t log

sup d?s (Ax(s)) < < 400, forallteR.
s<t

forall t e R.

O

Corollary 4.21. Suposse that all conditions from Theorem 4.15 hold. Then the pullback attractor Ay has finite
fractal dimension on the family of Banach spaces {V, }ier, that is,

log V;
supd}f (A (s)) < sup dff* (Ay(s)) <~

b
s<t s<t log 2

forallt e R.

Proof. Tt follows immediately from Theorem 4.20 and Lemma 4.3. g

Finally, we note that the pullback attractor of the transformed system 2D-(CC-NS) has also finite fractal
dimension on the Hilbert space H. To see this, let us define the bi-parametric family of single-valued maps
{Ut,7): H—> H:(t,7) e R%} as

Ut,7): H—>H by Ut 7). =v(t;T,0,.), (4.23)
where v(-) = v(-; 7, v,) is the unique weak solution of 2D-(CC-NS) associated to the initial condition v, € H

for any (¢,7) € R2, and in the same way as Definition 3.32 and Theorem 3.34 we define the pullback ZsA—
attractor Ay of (U(-,-), H). Then, it follows from Lemma 2.3 and Theorem 4.8 that

log Ny
log2 "’

sup d? (fb\(s)) = sup df‘“’ (Ax(s)) < forallt e R.

s<t
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