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1. INTRODUCTION

In this paper we study the pullback attractors of the 2D- and 3D- Navier-Stokes equations defined on a
non-cylindrical region Qτ and with homogeneous Cauchy-Dirichlet boundary conditions:
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%

Bu

Bt
´ ∆u` pu ¨ ∇qu` ∇π “ fptq in Qτ ,

div u “ 0 in Qτ ,

u ” 0 on Στ ,

upτq “ uτ in Oτ ,

(NS)

where upx, tq “ pu1px, tq, ¨ ¨ ¨ , unpx, tqq is the velocity field, uτ is the initial velocity field, the real function
πpx, tq represents the pressure on the fluid, and fpx, tq “ pf1px, tq, ¨ ¨ ¨ , fnpx, tqq is the external force. The non-
cylindrical region is defined as follows: let tOtutPR be a family of open bounded subset of Rn with n P t2, 3u,
and for τ, T P R with τ ď T let

Qτ,T :“
ď

tPpτ,T q

Ot ˆ ttu, Qτ :“
ď

tPpτ,`8q

Ot ˆ ttu,

Στ,T :“
ď

tPpτ,T q

BOt ˆ ttu and Στ :“
ď

tPpτ,`8q

BOt ˆ ttu.

Clearly, the first equation (NS) is non-autonomous, and the non-autonomous feature is governed by the time-
dependent forcing fptq as well as the time-varying domain. In the 2D case where the uniqueness of solutions
holds (see [32, Theorem 2.8] or [38, Theorem 4.8]), it generates a single-valued dynamical system on a family
of time-dependent phase spaces. The theoretical framework of this type of single-valued dynamical system for
time-dependent phase spaces was initially studied in [19, 21] (see also [9, 12, 13]).

The concept of pullback attractors associated with single-valued dynamical systems (when the phase space
is fixed e.g. [7, 16, 20, 29] and when it acts on time-dependent phase spaces e.g. [19, 21]), or multi-valued
dynamical systems on fixed phase spaces, e.g. [4, 5, 25, 31, 36, 37], has been widely studied in last decades.
In order to study the pullback dynamical behavior of (NS), inspired by the works mentioned above, we will
study the pullback attractor theory for multi-valued dynamical systems on time-dependent phase spaces, and
as expected, by adapting the concepts of dissipativity and asymptotic compactness we construct a pullback
attractor associated with this type of dynamical systems, which is a main novelty of this manuscript.

We also introduce the concept of equivalent dynamical systems. This concept is motivated by the change of
variables used to transform a system of partial differential equations defined over a non-cylindrical domain to
a new system of partial differential equations defined over a cylindrical domain. Hence, the following question
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naturally arises: if both evolutionary systems have a pullback attractor, what is the relationship between such
attractors? This question is answered in Theorem 3.20 and Corollary 3.21. On the other hand, it is currently
known that pullback attractors associated with time-dependent evolution processes that satisfy the smoothing
property have finite fractal dimension, cf. [12, Lemma 6.1], [13, Theorem 4.4] and [27, Theorem 4.11]. In
this work, we present such a result, with a slight modification, and we analyze the consequences for equivalent
time-dependent dynamical systems.

Applying the above theory to the Navier-Stokes equation (NS) we shall show that the time-dependent multi-
valued dynamical system associated with the weak solutions of the 3D-Navier-Stokes equations that satisfy the
energy inequality has a pullback attractor in some tempered universe, and particularly for the 2D case we prove
that the pullback attractor has finite fractal dimension, which extends the analysis presented in [38].

The structure of the paper is as follows. Section 2 is devoted to establishing known results regarding the
Navier-Stokes equations on some non-cylindrical domain. Furthermore, for the case of the 3D-Navier Stokes
equations, on a hypothesis of the existence of weak solutions that satisfy an energy inequality when the associ-
ated initial data are regular, we can show that any weak solution also satisfies the energy inequality. Then, this
will allow us to analyze the asymptotic behavior, in the pullback sense, of the weak solutions associated with
the 3D-Navier Stokes equations. This idea was taken from [18] for the case where the domain is fixed. Section
3 is devoted to studying and developing the theoretical part on the existence of pullback attractors associated
with time-dependent multi-valued dynamical systems that are upper-semicontinuous with closed values, also
to introduce the concept of equivalent dynamical systems and study the consequences that this has concerning
the existence of attractors. Then, we apply this theory to show the existence of a pullback attractor on a tem-
pered universe associated with 3D-Navier-Stokes equations on some non-cylindrical domain. Section 4, in the
same way as [27, Theorem 4.11], we state a method to estimate the fractal dimension of pullback attractors
associated with time-dependent single-valued processes that satisfy the smoothing property, and we analyze the
consequences of this method for equivalent single-valued dynamical systems. Finally, we apply this theory to
prove the finiteness of the fractal dimension of the pullback attractor associated with 2D-Navier-Stokes equa-
tions on some non-cylindrical domain, given in [38, Theorem 6.4]. The latter was achieved by adjusting the
techniques used in [23] for the case of fixed phase space and the external force satisfies the piecewise bounded
integrability condition.

2. THE 2D AND 3D NAVIER-STOKES EQUATIONS ON A NON-CYLINDRICAL DOMAIN

In this section, we present the Navier-Stokes equations on time-varying domains. It should be noted that
the Navier-Stokes equations represent a physical model, which describes the flow of incompressible Newtonian
fluids, cf. [17, 24, 33, 35, 38, 39, 40], for the case of incompressible non-Newtonian fluids cf. [15, 22, 28]. We
are going to recall the existence of weak solutions of the n-dimensional Navier-Stokes equations, with n “ 2, 3.
We will also see some results of regularity for n “ 3.

In this section, let us begin defining the non-cylindrical region where the incompressible Newtonian fluid
will be concentrated. Let tOtutPR be a family of open bounded subsets of Rn. Given τ, T P R with τ ď T ,
denote by

Qτ,T :“
ď

tPpτ,T q

Ot ˆ ttu, Qτ :“
ď

tPpτ,`8q

Ot ˆ ttu,

Στ,T :“
ď

tPpτ,T q

BOt ˆ ttu and Στ :“
ď

tPpτ,`8q

BOt ˆ ttu.

Now, the Navier-Stokes equations on a non-cylindrical domain with homogeneous Cauchy-Dirichlet bound-
ary conditions, which we will indicate by (NS), is the following system:
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’
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%

Bu

Bt
´ ∆u` pu ¨ ∇qu` ∇π “ fptq in Qτ ,

div u “ 0 in Qτ ,

u ” 0 on Στ ,

upτq “ uτ in Oτ ,

(NS)
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where upx, tq “ pu1px, tq, ¨ ¨ ¨ , unpx, tqq is the velocity field, uτ is the given initial velocity vector field, the
function πpx, tq represents the pressure on the fluid, and fpx, tq “ pf1px, tq, ¨ ¨ ¨ , fnpx, tqq is the external force.
Depending on the Euclidean dimension in which we are working (n “ 2 or n “ 3), we will indicate the system
(NS) by 2D-(NS) and 3D-(NS), in dimension n “ 2 and in dimension n “ 3, respectively.

Now, we are going to assume some hypotheses of regularity on the family of open sets tOtutPR within the
framework of a suitable formulation of our problem. Let us denote by O a nonempty bounded open subset of Rn,
n P t2, 3u, with C3 boundary BO, and consider the map rp¨, ¨q “ rpy, tq a vector function r P C1pO ˆ R;Rnq

such that
rp¨, tq : O Ñ Ot is a C3 ´ diffeomorphism @ t P R,

and we denote the inverse by rp¨, tq :“ r´1p¨, tq.
(H1) There exists a level-preserving C3-diffeomorphism rp¨, ¨q : O ˆ ttu Ñ Ot, which satisfies

Jac rpx, tq “ Jac

ˆ

Bri
Bxj

px, tq

˙

”
1

Jptq
ą 0 i, j “ 1, ¨ ¨ ¨ , n,

for all px, tq P Qτ,T .
(H2) The inverse rp¨, tq :“ r´1p¨, tq satisfies

r P C3,1
`

Qτ,T ;Rn
˘

@τ ă T,

i.e., r, Br
Bt ,

Br
Bxi

, B
2r

BxiBxj
, and B

3r
BxiBxjBxk

belong to CpQτ,T ;Rnq for all 1 ď i, j, k ď n and for any τ ă T.

(H3) The set
Ωt :“

ď

sďt

Os

is bounded in Rn for all t P R.
Moreover, for each subset Ωt Ă Rn we will identify the first eigenvalue of ´∆ on H1

0 pΩtq
n as

λ1,t :“ min
wPH1

0 pΩtqnzt0u

}∇w}2L2pΩtqn

}w}2L2pΩtqn

. (2.1)

Note that λ1,p¨q : R Ñ p0,`8q with R Q t ÞÑ λ1,t is a non-increasing function, e.g. [21, Section 7]. In fact,
by definition of the family of bounded sets tΩtutPR, given in the hypothesis (H3), we have

H1
0 pΩsqn Ă H1

0 pΩtq
n for any s ď t,

since Ωs Ă Ωt for all s ď t. Therefore, from (2.1), we obtain λ1,t ď λ1,s for all s ď t.

2.1. Functional spaces and coordinate transformations. In this part we introduce the functional spaces that
are necessary to study the non-cylindrical domain problem (NS). The readers are referred to [21, 38].

2.1.1. Functional spaces evolving families of Banach spaces. Let us denote the inner product in L2pRnqn by
pp¨, ¨qq with norm ||| ¨ ||| “ pp¨, ¨qq1{2, and the norm in H1pRnqn by }} ¨ }}.

Let
␣`

Xt, } ¨ }Xt

˘(

tPR be a family of Banach spaces such that Xt Ă L1
locpOtq

n for each t P R. Given
τ, T P R with τ ă T and p P r1,`8s, let us denote by Lppτ, T ;Xtq the set of functions u P L1

locpQτ,T qn such
that uptq P Xt for a.e. t P rτ, T s and the function }up¨q}Xp¨q

defined by t ÞÑ }uptq}Xt belongs to Lppτ, T q. The
space Lppτ, T ;Xtq is a Banach space with respect to the norm

$

’

’

&

’

’

%

}u}
p
Lppτ,T ;Xtq

“

ż T

τ

}uptq}
p
Xt
dt, if p P r1,`8q,

}u}L8pτ,T ;Xtq “ ess sup
tPrτ,T s

}uptq}Xt , if p “ `8.

Given u P L1
locpQτ,T qn, the trivial extension of u is a function pu : Rn ˆ pτ, T q Ñ Rn, such that

pupx, tq “

#

upx, tq, if px, tq P Qτ,T ,

0, if px, tq P
Ť

sPpτ,T q Oc
s ˆ tsu.

(2.2)

Definition 2.1. Let u P L1
locpQτ,T qn and pu be its trivial extension. Then
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(i) we say that u P C
`

rτ, T s;L2pOtq
n
˘

(resp. u P Cw

`

rτ, T s;L2pOtq
n
˘

) if pu P C
`

rτ, T s;L2pRnqn
˘

(resp. pu P Cw

`

rτ, T s;L2pRnqn
˘

), and we say that a sequence tumu converges to u in the space
C
`

rτ, T s;L2pOtq
n
˘

(resp. inCw

`

rτ, T s;L2pOtq
n
˘

) asm Ñ 8, if the trivial extensions tpumu converge
to pu in C

`

rτ, T s;L2pRnqn
˘

(resp. in Cw

`

rτ, T s;L2pRnqn
˘

) as m Ñ 8.
(ii) we say that u P C

`

rτ, T s;H1
0 pOtq

n
˘

if pu P C
`

rτ, T s;H1pRnqn
˘

, and we say that a sequence tumu

converges to u in C
`

rτ, T s;H1
0 pOtq

n
˘

as m Ñ 8, if the trivial extensions tpumu converge to pu in
C
`

rτ, T s;H1pRnqn
˘

as m Ñ 8.

For u P L1
locpQτ,T qn, we denote by

Bu

Bt
P D1pQτ,T qn the partial derivative of u with respect to time t in the

sense of distributions, that is,
A

Bu

Bt
, ψ

E

“ ´

n
ÿ

i“1

ż T

τ

ż

Ot

uipx, tq
Bψi

Bt
px, tq dxdt,

for all ψ “ pψ1, ¨ ¨ ¨ , ψnq P C8
c pQτ,T qn. Throughout the text we will also use the notation u1 for the derivative

in time, i.e., u1 “ Bu
Bt .

Definition 2.2. We denote by Lppτ, T ;H´1pOtq
nq, p P r1,`8q, the set of all distributions w “ pw1, ¨ ¨ ¨ , wnq

in D1pQτ,T qn of the form

wi “ fi0 ´

n
ÿ

j“1

Bfij
Bxj

, with fij P Lppτ, T ;L2pOtqq for all i “ 1, ¨ ¨ ¨ , n and j “ 0, ¨ ¨ ¨ , n.

that is,

xw,ψy “

n
ÿ

i“1

ż

Qτ,T

fi0px, tqψipx, tq dxdt`

n
ÿ

i,j“1

ż

Qτ,T

fij px, tq
Bψi

Bxj
px, tq dxdt,

for all ψ P C8
c pQτ,T qn.

The space Lppτ, T ;H´1pOtq
nq is a Banach space equipped with the norm

}w}Lppτ,T ;H´1pOtqnq :“

˜

ż T

τ

|wptq|
p
´1,tdt

¸1{p

,

where by [14, Section 5.9] we have that

|wptq|´1,t “

˜

n
ÿ

i“1

n
ÿ

j“0

}fij ptq}2L2pOtq

¸1{2

,

where | ¨ |´1,t is the norm in H´1pOtq
n for any t P R.

2.1.2. Coordinate transformations. In order to handle the time-varying domain we now make some techni-
cal coordinate transformations by which the equation (NS) is transformed to a dynamically equivalent system
defined on a fixed domain. The main idea is inspired by the spirit of [21, 38].

Given τ P R, let us consider the interval rτ,`8q Ă R and define the function vp¨, ¨q “ pv1p¨, ¨q, ¨ ¨ ¨ , vnp¨, ¨qq

as

vkpy, tq “

n
ÿ

i“1

Brk
Bxi

prpy, tq, tq ¨ uiprpy, tq, tq, y P O, t P rτ,`8q, k “ 1, ¨ ¨ ¨ , n, (2.3)

where upx, tq “ pu1px, tq, ¨ ¨ ¨ , unpx, tqq, with x P Ot and t P rτ,`8q. Then we can express the coordinates
of u in terms of the coordinates of v by direct calculation as

ukpx, tq “

n
ÿ

i“1

Brk
Byi

prpx, tq, tq ¨ viprpx, tq, tq, x P Ot, t P rτ,`8q, k “ 1, ¨ ¨ ¨ , n. (2.4)

Lemma 2.3. Let n P N and 1 ď p ď `8. Then
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iq uptq P LppOtq
n if and only if vptq P LppOqn, with t P rτ, T s. Moreover, there are two positive

constants ℓ1 and ℓ2 (which depend only on n, p, τ , T , and rp¨, ¨q) such that

ℓ1}uptq}LppOtqn ď }vptq}LppOqn ď ℓ2}uptq}LppOtqn .

for all uptq P LppOtq
n.

iiq uptq P H1pOtq
n if and only if vptq P H1pOqn, with t P rτ, T s. Moreover, there are two positive

constants pℓ1 and pℓ2 (which depend only on n, p, τ , T , and rp¨, ¨q) such that

pℓ1}uptq}H1pOtqn ď }vptq}H1pOqn ď pℓ2}uptq}H1pOtqn ,

for all uptq P H1pOtq
n.

Proof. Analogous as [38, Lemma 3.1 and Lemma 3.2]. □

Lemma 2.4. Given p, q P r1,`8s and n P N. Under the assumptions given in (H1), let upx, tq and vpy, tq be
the functions satisfying the conditions given in (2.3) and (2.4), respectively. Then

u P Lqpτ, T ;LppOtq
nq ðñ v P Lqpτ, T ;LppOqnq,

u P L2pτ, T ;H1
0 pOtq

nq ðñ v P L2pτ, T ;H1
0 pOqnq.

Proof. In the same way as [38, Lemmas 3.3 and 3.4] or [21] □

Definition 2.5. Given w P Lp
`

τ, T ;H´1pOtq
n
˘

as in Definition 2.2. We say that w P C
`

rτ, T s;H´1pOtq
n
˘

,
if the trivial extension pfij belongs to C

`

rτ, T s;L2pRnq
˘

for i “ 1, ¨ ¨ ¨ , n and j “ 0, ¨ ¨ ¨ , n. We say that a
sequence twmu converges to w in C

`

rτ, T s;H´1pOtq
n
˘

as m Ñ 8, if the sequence t pfmij u converges to pfij in
C
`

rτ, T s;L2pRnq
˘

as m Ñ 8, for i “ 1, ¨ ¨ ¨ , n and j “ 0, ¨ ¨ ¨ , n.

Proposition 2.6. (cf. [3, Proposition II.5.11.]) Let X and Y be two Banach spaces such that X is continuously
and densely embedded into Y . Let p, r P r1,`8s. For T ą τ , we define

Ep,r “

!

u P Lppτ, T ;Xq | u1 P Lrpτ, T ;Y q

)

.

Then, any element u of Ep,r possesses a continuous representation on rτ, T s with values in Y , and the embed-
ding of Ep,r into Cprτ, T s;Y q is continuous. Moreover, for all s, t P rτ, T s, we have

uptq ´ upsq “

ż t

s

du

dt
pθqdθ,

where it is understood that we have identified u and its continuous representation.

Lemma 2.7. Under the assumptions given in (H1), let upx, tq and vpy, tq be the functions satisfying the condi-
tions given in (2.3) and (2.4), respectively. Then

(a) u P Cprτ, T s;L2pOtq
nq ðñ v P Cprτ, T s;L2pOqnq,

(b) u P Cprτ, T s;H1
0 pOtq

nq ðñ v P Cprτ, T s;H1
0 pOqnq,

(c) u P Cprτ, T s;H´1pOtq
nq ðñ v P Cprτ, T s;H´1pOqnq,

(d) given p, r P r1,`8q, we have
#

u P Lppτ, T ;H1
0 pOtq

nq,

u1 P Lrpτ, T ;H´1pOtq
nq

ðñ

#

v P Lppτ, T ;H1
0 pOqnq,

v1 P Lrpτ, T ;H´1pOqnq.

Proof. It follows from [38, Lemmas 3.8 and 3.9] or [21, Lemma 3.8, 3.9 and 3.11]. □

Remark 2.8. Let u P L2pτ, T ;H1
0 pOtq

nq and u1 P Lppτ, T ;H´1pOtq
nq for some p P r1,`8q. Then,

u P Cprτ, T s;H´1pOtq
nq. Indeed, by item pdq in Lemma 2.7 we have that v P L2pτ, T ;H1

0 pOqnq and
v1 P Lppτ, T ;H´1pOqnq. Then, by applying Proposition 2.6, we have that v P Cprτ, T s;H´1pOqnq. Then,
again by Lemma 2.7, item (c), we conclude that u P Cprτ, T s;H´1pOtq

nq.

Before continuing, let us take into account the following results.
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Lemma 2.9. (cf. [3, Lemma II.5.9]) Let X be a separable and reflexive Banach space, and let Y be a Banach
space, such that X ãÑ Y (continuous embedding). Then

L8p0, T ;Xq X Cwpr0, T s, Y q “ Cwpr0, T s;Xq.

Remark 2.10. A consequence of Lemma 2.7, Remark 2.8 and Lemma 2.9 is that, if

u P L8pτ, T ;L2pOtq
nq X L2pτ, T ;H1

0 pOtq
nq and u1 P Lppτ, T ;H´1pOtq

nq,

for some p P r1,`8q, then u P Cwprτ, T s;L2pOtq
nq. In the particular case that p “ 2, by [38, Lemmas 2.6]

or [21] we have that u belongs to Cprτ, T s;L2pOtq
nq and satisfies the energy equality

}uptq}2L2pOtqn ´ }upsq}2L2pOsqn “ 2

ż t

s

pu1prq, uprqq´1,rdr for all τ ď s ď t ď T.

Lemma 2.11. Under the assumptions given in (H1), we have
n
ÿ

i“1

B

Byi

ˆ

Bri
Bxj

prpy, tq, tq

˙

“ 0 and
n
ÿ

i“1

B

Bxi

ˆ

Bri
Byj

prpx, tq, tq

˙

“ 0,

for all j “ 1, ¨ ¨ ¨ , n, where x “ rpy, tq with y P O and t P rτ, T s.

Proof. We will only consider the three-dimensional case, since the two-dimensional case was done in [38,
Lemma 3.5]. Let us denote by

Apx, tq :“
Bpr1px, tq, r2px, tq, r3px, tqq

Bpx1, x2, x3q
“

¨

˚

˝

Br1
Bx1

px, tq Br1
Bx2

px, tq Br1
Bx3

px, tq
Br2
Bx1

px, tq Br2
Bx2

px, tq Br2
Bx3

px, tq
Br3
Bx1

px, tq Br3
Bx2

px, tq Br3
Bx3

px, tq

˛

‹

‚

.

LetMijpx, tq be the determinant of the submatrix formed by deleting the i-th row and j-th column of the matrix

Apx, tq. Let us denote by Cij “ p´1qi`jMijpx, tq with i, j “ 1, 2, 3. Let Cpx, tq “

´

Cijpx, tq
¯3

i,j“1
be the

co-factor matrix of the matrix Apx, tq.
Therefore, from the property of determinants, it follows that

Bpr1py, tq, r2py, tq, r3py, tqq

Bpy1, y2, y3q
“ Jptq

¨

˝

C11prpy, tq, tq C21prpy, tq, tq C31prpy, tq, tq
C12prpy, tq, tq C22prpy, tq, tq C32prpy, tq, tq
C13prpy, tq, tq C23prpy, tq, tq C33prpy, tq, tq

˛

‚. (2.5)

Then, using the equality (2.5), we obtain
3
ÿ

i“1

B

Byi

ˆ

Bri
Bxj

prpy, tq, tq

˙

“

3
ÿ

i“1

ˆ

B2ri
Bx1Bxj

Br1
Byi

py, tq `
B2ri

Bx2Bxj

Br2
Byi

py, tq `
B2ri

Bx3Bxj

Br3
Byi

py, tq

˙

“ Jptq
3
ÿ

i“1

ˆ

B2ri
Bx1Bxj

Ci1prpy, tq, tq `
B2ri

Bx2Bxj
Ci2prpy, tq, tq `

B2ri
Bx3Bxj

Ci3prpy, tq, tq

˙

“ Jptq
B

Bxj

ˆ

1

Jptq

˙

“ 0.

The case
3
ÿ

i“1

B

Bxi

ˆ

Bri
Byj

prpx, tq, tq

˙

“ 0 is similar. □

Lemma 2.12. Under the assumptions given in (H1), suppose that the functions upx, tq and vpy, tq satisfy the
conditions given in (2.3) and (2.4), respectively. Then we have

div u “ 0 if and only if div v “ 0.

Proof. It is a consequence of Lemma 2.11. □

Now let us build the spaces with free-divergence.
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Definition 2.13. Let us define

V :“ tφ P C8
c pOqn : divφ “ 0u;

H :“ closure of V in the L2pOqn ´ norm;
V :“ closure of V in the H1

0 pOqn ´ norm;
V ˚ :“ the dual space of V,

and, for each t P R, let us define by

Vt :“ tφ P C8
c pOtq

n : divφ “ 0u;
Ht :“ closure of Vt in the L2pOtq

n ´ norm;
Vt :“ closure of Vt in the H1

0 pOtq
n ´ norm;

V ˚
t :“ the dual space of Vt.

Now, for each t P R, let us denote the inner product in Ht by

pu, ruqt :“
n
ÿ

i“1

ż

Ot

uipxqruipxqdx for any u, ru P Ht,

with norm | ¨ |t “ p¨, ¨q
1{2
t . The inner product in Vt is defined by

p∇u,∇ruqt :“
n
ÿ

i,j“1

ż

Ot

Bui
Bxj

pxq
Brui
Bxj

pxqdx for any u, ru P Vt.

Let us denote the dual space of Vt by V ˚
t and p¨, ¨q´1,t the duality between V ˚

t and Vt.
Take into account that

Bui
Bxj

pxq “

n
ÿ

k,p“1

„

B2ri
BypByk

prpx, tq, tq
Brp
Bxj

px, tqvkprpx, tqq `
Bri
Byk

prpx, tq, tq
Brp
Bxj

px, tq
Bvk
Byp

prpx, tqq

ȷ

,

Bvk
Byl

pyq “

n
ÿ

i,q“1

„

B2rk
BxqBxi

prpy, tq, tq
Brq
Byl

py, tquiprpy, tqq `
Brk
Bxi

prpy, tq, tq
Brq
Byl

py, tq
Bui
Bxq

prpy, tqq

ȷ

.

Thus, for each t P R let us denote an inner product in H by

xv, rvyt “

n
ÿ

k,l“1

ż

O
gklpy, tqvkpyqrvlpyq Jacpr, y, tqdy for any v, rv P H. (2.6)

for any v, rv P V , where gklpy, tq “
řn

i“1
Bri
Byk

Bri
Byl

. Also, for each t P R let us denote an inner product of V by

x∇gv,∇grvyt “

n
ÿ

i,k,l,p,q“1

ż

O
gpqpy, tq

B

Byp

ˆ

Bri
Byk

py, tqvkpyq

˙

B

Byq

ˆ

Bri
Byl

py, tqrvlpyq

˙

Jacpr, y, tqdy, (2.7)

for any v, rv P V , where gpqpy, tq “
řn

j“1
Brp
Bxj

prpy, tq, tq
Brq
Bxj

prpy, tq, tq (k, l, p, q “ 1, . . . , n) and the identity
rprpy, tq, tq “ y implies that rpprpy, tq, tq “ yp, and Jacpr, y, tq denotes the absolute value of the determinat

of the Jacobi matrix
´

Bri
Byj

py, tq
¯

nˆn
. Similarly, we denote the dual space of V by V ˚, and x¨, ¨y´1,t the duality

between V and V ˚.

Lemma 2.14. Under the assumptions given in (H1), let upx, tq and vpy, tq be the functions satisfying the
conditions given in (2.3) and (2.4), respectively. Then

u P Cprτ, T s;Htq ðñ v P Cprτ, T s;Hq,

and, given p, r P r1,`8q, we have
#

u P Lrpτ, T ;Vtq,

u1 P Lppτ, T ;V ˚
t q

ðñ

#

v P Lrpτ, T ;V q,

v1 P Lppτ, T ;V ˚q.

Proof. It is a consequence of applying the Lemma 2.7 and Lemma 2.12. □
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2.2. Existence of weak solutions. Inspired by [32, Section 1] and [38, Subsection 3.4], we consider v P

L1
loc

`

O ˆ pτ, T q
˘n

given in (2.3). If u P L1
locpQτ,T qn is a solution of (NS) in the sense that u satisfies each one

of the equations given in (NS) (strong solution), then the function v satisfies the following equation
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

n
ÿ

k“1

Bri
Byk

py, tq

"

v1
kpy, tq `

Brk
Bxi

prpy, tq, tq

„

B2ri
BtByk

py, tqvkpy, tq

`

n
ÿ

p“1

B

Byp

´

Bri
Byk

py, tqvkpy, tq
¯

Brp
Bt

prpy, tq, tq

´

n
ÿ

l,p“1

B2

BypByl

´

Bri
Byk

py, tqvkpy, tq
¯

glppy, tq

´

n
ÿ

p“1

B

Byp

´

Bri
Byk

py, tqvkpy, tq
¯

∆xrpprpy, tq, tq

`

n
ÿ

j,l,p“1

Brj
Byl

py, tq
Brp
Bxj

prpy, tq, tqvlpy, tq
B

Byp

´

Bri
Byk

py, tqvkpy, tq
¯

ȷ*

“

n
ÿ

k“1

Bri
Byk

py, tq
”

pfgqkpy, tq ´ p∇xπgqkpy, tq
ı

, i “ 1, ¨ ¨ ¨ , n, y P O, t ą τ,

div vpy, tq “ 0, y P O, t ě τ,

vpy, tq “ 0, y P BO, t ą τ,

vpy, τq “ vτ pyq, y P O,

(2.8)

where glppy, tq “
řn

j“1
Brl
Bxj

prpy, tq, tq
Brp
Bxj

prpy, tq, tq, and ∆xrpprpy, tq, tq “
řn

j“1
B
2rp

Bx2
j

prpy, tq, tq, j, l, p “

1, 2, 3. Note that, if v satisfies the (2.8), then u satisfies the system (NS). For ease of notation, the system (2.8),
which we will indicate by (CC-NS) "Change Coordinates of Navier-Stokes equations”, is rewritten in a more
compact way as

$

’

’

’

’

&

’

’

’

’

%

Bv

Bt
`Mvpy, tq ´ Lvpy, tq `Nvpy, tq “ fgpy, tq ´ ∇xπg y P O, t ą τ,

div vpy, tq “ 0 y P O, t ě τ,

vpy, tq “ 0 y P BO, t ą τ,

vpy, τq “ vτ pyq y P O,

(CC-NS)

where Mv :“
`

pMvq1, ¨ ¨ ¨ , pMvqn
˘

, Lv :“
`

pLvq1, ¨ ¨ ¨ , pLvqn
˘

, Nv :“
`

pNvq1, ¨ ¨ ¨ , pNvqn
˘

, fg :“
`

pfgq1, ¨ ¨ ¨ , pfgqn
˘

and ∇xπg :“
`

p∇xπgq1, ¨ ¨ ¨ , p∇xπgqn
˘

are defined as:

pMvqkpy, tq :“
n
ÿ

i“1

Brk
Bxi

prpy, tq, tq

«

B2ri
BtByk

py, tqvkpy, tq `

n
ÿ

p“1

B

Byp

´

Bri
Byk

py, tqvkpy, tq
¯

Brp
Bt

prpy, tq, tq

ff

;

pLvqkpy, tq :“
n
ÿ

i“1

Brk
Bxi

prpy, tq, tq

«

n
ÿ

l,p“1

B2

BypByl

´

Bri
Byk

py, tqvkpy, tq
¯

glppy, tq`

n
ÿ

p“1

B

Byp

´

Bri
Byk

py, tqvkpy, tq
¯

∆xrpprpy, tq, tq

ff

;

pNvqkpy, tq :“
n
ÿ

i“1

Brk
Bxi

prpy, tq, tq

«

n
ÿ

j,l,p“1

Brj
Byl

py, tq
Brp
Bxj

prpy, tq, tqvlpy, tq
B

Byp

´

Bri
Byk

py, tqvkpy, tq
¯

ff

;

pfgqkpy, tq :“
n
ÿ

i“1

Brk
Bxi

prpy, tq, tqfiprpy, tq, tq;

`

∇xπg
˘

k
py, tq :“

n
ÿ

i“1

Brk
Bxi

prpy, tq, tq
`

∇π
˘

i
prpy, tq, tq.
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The Navier-Stokes equations are associated with the trilinear function btpu, v, wq (convective term of (NS))
defined as

btpu, v, wq “

n
ÿ

i,j“1

ż

Ot

ujpxq
Bvi
Bxj

pxqwipxqdx.

For simplicity, we indicate btpu, v, wq as btpu, v, wq “

ż

Ot

uj
Bvi
Bxj

widx. Then, cf. [35, Chapter 9, pp. 243] or

[39, Chapter III], we have the following inequalities on btp¨, ¨, ¨q.

Lemma 2.15. In (2D) and (3D) cases, we have
(1) btpu, v, wq “ ´btpu,w, vq for all u P Ht, v, w P Vt;
(2) btpu, v, vq “ 0 for all u P Ht, v, w P Vt;
(3)

|btpu, v, wq| ď ct

$

’

&

’

%

}u}L6pOtqn |∇v|t|w|
1{2
t }w}

1{2
L6pOtqn

, if n P t2, 3u, u, v, w P Vt,

|u|
1{2
t |∇u|

1{2
t |∇v|t|w|

1{2
t |∇w|

1{2
t , if n “ 2, u, v, w P Vt,

|u|
1{4
t |∇u|3{4|∇v|t|w|

1{4
t |∇w|

3{4
t , if n “ 3, @u, v, w P Vt;

(2.9)

(4) for all u P Vt, v P DtpAq, w P Ht,

|btpu, v, wq| ď ct

#

|u|
1{2
t |∇u|

1{2
t |∇v|1{2|Av|

1{2
t |w|t, if n “ 2,

|∇u|t|∇v|
1{2
t |Av|1{2|w|t, if n “ 3;

(2.10)

where A “ ´P∆ is the Stokes operator with domain DtpAq “ H2pOtq
n X Vt (note that P is the

Leray’s operator e.g. [28, Appendix A.4]);
(5) by [40, Inequality (3.79)], for n “ 3 we have

btpw,w, uq ď ct|w|
1{4
t |∇w|

7{4
t }u}L4pOtq3 . (2.11)

Definition 2.16. Let n P t2, 3u, uτ P Hτ , f P L2
locpR;V ˚

t q. We say that a function up¨q “ up¨; τ, uτ q P

L1
locpQτ qn is a weak global solution of (NS) if for any T ą τ the function up¨q belong to the class

u P L8pτ, T ;Htq X L2pτ, T ;Vtq with
Bu

Bt
P Lppτ, T ;V ˚

t q (2.12)

where p “ 2 if n “ 2 and p “ 4{3 if n “ 3, and satisfies the following weak formulation

´

ż T

τ

puptq, φ1ptqqtdt`

ż T

τ

p∇uptq,∇φptqqtdt`

ż T

τ

btpuptq, uptq, ϕptqqdt

“ puτ , φpτqqτ `

ż T

τ

pfptq, φptqq´1,tdt,

(2.13)

for all φ P Uτ,T :“
␣

φ P Cprτ, T s;Vtq : φkpx, tq “ hptq
řn

i“1
Brk
Byi

prpx, tq, tq ¨ viprpx, tqq, k “ 1, ¨ ¨ ¨ , n,

v P V, h P C1prτ, T s;Rq, hpT q “ 0
(

, and also satisfies the initial condition upτq “ uτ .

Remark 2.17. As is known, the way to show the existence of at least one weak global solution to the system
(NS) is to first show that the system (CC-NS) has at least one weak global solution, i.e., for any T ą τ the
function vp¨q belong to the class

v P L8pτ, T ;Hq X L2pτ, T ;V q with
Bv

Bt
P Lppτ, T ;V ˚q (2.14)

where p “ 2 if n “ 2 and p “ 4{3 if n “ 3, and satisfies the following weak formulation

´

ż T

τ

xvptq, φ1ptqytdt`

ż T

τ

xMvptq ´ Lvptq `Nvptq, φptqytdt

“ xvτ , φpτqyτ `

ż T

τ

xfgptq, φptqy´1,tdt,

(2.15)

for all φptq “ hptqv, with v P V , h P C1prτ, T s;Rq such that hpT q “ 0, and also satisfies the initial condition
vpτq “ vτ . Therefore, if v belonging to class (2.14) is a weak solution of (CC-NS), then by Lemmas 2.12 and
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2.14 the function u (defined in (2.4)) belongs to class (2.12) and is a weak solution of (NS). Then all this is
summarized in the following result.

Theorem 2.18. (Existence of weak solutions) Under the hypotheses (H1)-(H2) and n P t2, 3u. Let us consider
τ , T with τ ă T . Then, for any uτ P Hτ , and f P L2pτ, T ;V ˚

t q, there exists at least one weak solution of the
problem (NS). In the case that the dimension n “ 2 the weak solutions to (NS) are unique in the class of the
weak solutions.

Proof. The proof of the existence of at least one weak solution to (NS) is given in [32, Theorem 2.2] or [38,
Theorem 4.5], where is proved that there exists a function v : O ˆ pτ, T q Ñ Rn belonging to the class
v P L8pτ, T ;Hq X L2pτ, T ;V q such that satisfies the weak formulation (2.15). Thus, thanks to the previous
results the function u : Qτ,T Ñ Rn given in (2.4) belong to the class L8pτ, T ;Htq XL2pτ, T ;Vtq and satisfies
the weak formulation (2.13).

It follows from [38, Lemma 4.3] that u1 P L2pτ, T ;V ˚
t q in the case n “ 2. Now, we will focus on showing

that u1 P L4{3pτ, T ;V ˚
t q in the case n “ 3. For each t P R, let twkptq “ wkpy, tqu8

k“1 be the eigenfunctions of
´∆ on V , with respect the inner products given in (2.6) and (2.7), satisfying homogeneous Dirichlet boundary
conditions, i.e.,

x∇gwkptq,∇gvyt “ λkptqxwkptq, vyt for all v P V, t P R.
Thus, we can assume that twkptqu8

k“1 is an orthogonal basis of V and orthonormal basis of H . Now, for
each k P N, let us consider wk “ pw1

k, w
2
k, w

3
kq

wi
kpx, tq “

3
ÿ

j“1

Bri
Byj

prpx, tq, tqwj
kprpx, tqq for i “ 1, 2, 3.

Then, for each t P R it is easy see that twkptqu8
k“1 is an orthogonal basis of Vt and Ht.

On the other hand, let us remember the approximate Galerkin solutions of (CC-NS) which are written as
follows

vmpy, tq “

m
ÿ

k“1

hmk ptqwkptq,

where the coefficients hm1 , ¨ ¨ ¨ , hmm with m P N are solutions of the following ordinary differential system
#

xv1
mptq, wkptqyt “ xLvmptq ´Mvmptq ´Nvmptq, wkptqyt ` xfgptq, wkptqy´1,t,

hmk pτq “ xvτ , wkpτqyτ ,

where k “ 1, ¨ ¨ ¨ ,m. In the same way as [38, Lemma 4.2] or [32, Theorem 2.2], the sequence tvmu is bounded
in L8pτ, T ;Hq X L2pτ, T ;V q. Now, thanks to (2.4) we can consider the sequence tumu given by

umpx, tq “

m
ÿ

k“1

hmk ptqwkpx, tq, with x P Ot, t ě τ.

Then, we have that the sequence tumu is bounded in L8pτ, T ;Htq X L2pτ, T ;Vtq, and for each m P N, um
satisfies

Pm

`

u1
mptq

˘

“ Pm

`

∆umptq
˘

´ Pm

`

pumptq ¨ ∇qumptq
˘

` Pm

`

fptq
˘

,

where Pm : Ht Ñ Spantw1, ¨ ¨ ¨ , wmu is defined as

Pmg “

m
ÿ

k“1

pg, wkqtwk.

Indeed, by using (2.9), for any v P Vt, we have that
`

pum ¨ ∇qum, v
˘

´1,t
ď
ˇ

ˇbtpum, v, umq
ˇ

ˇ ď ct|um|
1{2
t |∇um|

3{2
t |∇v|t

for all v P Vt. Then we obtain
ˇ

ˇpum ¨ ∇qum
ˇ

ˇ

´1,t
“ sup

vPVt, |∇v|t“1

ˇ

ˇ

`

pum ¨ ∇qum, v
˘

´1,t

ˇ

ˇ ď ct|um|
1{2
t |∇um|

3{2
t .
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Note that,
ż T

τ

ˇ

ˇpum ¨ ∇qum
ˇ

ˇ

4{3

´1,t
dt ď pct}um}

2{3
L8pτ,T ;Htq

ż T

τ

|∇um|2tdt ă `8.

Therefore, Pm

`

pum ¨ ∇qum
˘

is bounded in L4{3pτ, T ;V ˚
t q. Then, we conclude that the sequence tu1

mu is
bounded in L4{3pτ, T ;V ˚

t q. □

Remark 2.19. (Energy, e.g. [3, Theorem V.1.4]) Under conditions of Theorem 2.18 and f P L2
locprτ,`8q, V ˚

t q,
we have that
‚ For n “ 2, the weak solution constructed from the Galerkin method is unique and also u P Cprτ,`8q;Htq.
Moreover, any weak solution satisfies the following energy equality

|uptq|2t ` 2

ż t

s

|∇uprq|2rdr “ |upsq|2s ` 2

ż t

s

pfprq, uprqq´1,rdr @τ ď s ď t, (2.16)

‚ For n “ 3, the weak solution constructed from the Galerkin method is weakly continuous, that is, u P

Cwprτ,`8q;Htq, see Remark 2.10. Moreover, it satisfies the following energy inequality

|uptq|2t ` 2

ż t

s

|∇uprq|2rdr ď |upsq|2s ` 2

ż t

s

pfprq, uprqq´1,rdr @τ ď s ď t. (2.17)

It should be noted that, in the case of dimension n “ 3, we cannot guarantee that any weak solution satisfies
the energy inequality given in (2.17), cf. [3, Chapter V].

2.3. A conditional existence result for 3D-Navier-Stokes equations. Since our objective, in the remainder
of the manuscript, is to demonstrate the existence of a pullback attractor associated with the dynamical system
defined from the weak solutions of the system (NS), in the same way as [18] we need an additional hypothesis
about the existence of our weak solutions, that is

(HF) Let n “ 3 and f P L2
locpτ,`8;V ˚

t q. For any uτ P Vτ assume the existence of a globally defined weak
solution such that for any T ą τ

}uptq}L4pOtq3 ď F
`

|∇uτ |τ , τ, T
˘

for all t P rτ, T s, (2.18)

where F is continuous and non-decreasing with respect to the first variable, and non-increasing with
respect to the second variable.

This new hypothesis will allow us to show that our weak solutions have a representative in the space of
continuous functions, i.e., if (HF) is valid, any weak solution u of 3D-(NS) belongs toCprτ, T s;Hq and satisfies
the energy inequality (2.17). Then, this additional regularity will allow us to prove asymptotic compactness by
employing the energy method, which is an important ingredient in the construction of the pullback attractor.

Now, in the same way as [18], we will demonstrate a series of results, which under hypothesis (HF) will
allow us to obtain weak solutions, with continuous representatives, that satisfy the energy inequality given in
(2.17).

Lemma 2.20. Under conditions of the Theorem 2.18 and the hypothesis (HF). Then for any uτ P Vτ the weak
solution given in (HF) satisfies

u P Cprτ,`8q;Htq, u1 P L2
locpτ,`8;V ˚

t q (2.19)

and

|uptq|2t ` 2

ż t

s

|∇uprq|2rdr ď |upsq|2s ` 2

ż t

s

pfprq, uprqq´1,rdr, @τ ď s ď t. (2.20)

Also, u is unique in the class of weak solutions such that u P L8
locpτ,`8;L4pOtq

3q. Moreover, u is unique in
the class of weak solutions satisfying (2.20).

Proof. Since, by hypothesis (HF), u P L8
locpτ,`8;L4pOtq

3q Ă L8
locpτ,`8;L4pOtq

3q, in the same way as [3,
Theorem II.5.16] and [40, Theorem 3.4] we have that u P Cprτ,`8q;Htq, u1 P L2

locpτ,`8;V ˚
t q. Also, the

energy inequality is proved in a standard way since it is possible to use uptq as a test function. Regarding the
uniqueness, let us take into account the following: let uptq, vptq be two weak solutions of 3D-(NS) associated
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with the initial conditions u0 and v0, respectively. Now, denote by w :“ u ´ v and take w as a test function in
the weak formulation, thus we have

1

2

d

dt
|w|2t ` |∇w|2t “ ´2btpw,w, uq.

From (2.11) we have that

btpw,w, uq ď ct|w|
1{4
t |∇w|

7{4
t }u}L4pOtq3 .

By applying Young’s inequality we get
d

dt
|w|2t ď c̃t}u}8L4pOtq3 |w|2t .

Then the uniqueness is immediate. □

Under hypothesis (HF) the following result will prove the existence of weak continuous global solutions for
initial data in Hτ with any τ P R.

Theorem 2.21. Under conditions of the Theorem 2.18 and the hypothesis (HF), we have that for any uτ P Hτ

there exists at least one weak solution such that

u P Cprτ,`8q;Htq, and u P L8ps, T ;L4pOtq
3q for all τ ă s ă T, (2.21)

and
}u}L8pτ`δ,T ;L4pOtq3q ď Gp|uτ |τ , τ, T, δq, (2.22)

for all T ą τ , 0 ă δ ă T ´ τ , where θ ÞÑ Gpθ, τ, T, δq is non-decreasing and continuous. Also, τ ÞÑ

Gpx, τ, T, δq is non-decreasing. Moreover, u satisfies the energy inequality (2.20).

Proof. Let T ą τ be fixed, and let us consider a sequence tumτ u Ă Vτ such that umτ Ñ uτ in Hτ . Thus,
it follows from Lemma 2.20 that there exists a sequence of weak solutions tumu of 3D-(NS) satisfying, the
inequality (2.18) and, by (2.20), the following energy inequality

|umptq|2t `

ż t

τ

|∇umprq|2rdr ď |umτ |2τ `

ż T

τ

|fprq|2´1,rdr. (2.23)

Thus, taking into account }btpum, um, ¨q}V ˚
t

ď ct|um|
1{2
t }um}

3{2
t and Lemma 2.14, we obtain, up to a subse-

quence, that
$

’

’

’

’

’

&

’

’

’

’

’

%

um
˚

á u weakly-star in L8pτ, T ;Htq,

um á u weakly in L2pτ, T ;Vtq,

Bum
Bt

á
Bu

Bt
weakly in L4{3pτ, T ;V ˚

t q,

um Ñ u strongly in L2pτ, T ;Htq.

(2.24)

Note that, with the convergences given in (2.24), it is possible to show that u is a weak solution of 3D-(NS)
corresponding to the initial condition uτ P Hτ , and such that u P Cwprτ, T s;Htq, see Remark 2.10.

On the other hand, let us fix t ą τ . By using (2.23) we have that
ż

t`τ
2

τ

|∇umprq|2rdr ď

ż
t`τ
2

τ

2

t´ τ

ˆ

|umτ |2τ `

ż T

τ

|fpsq|2´1,sds

˙

dr.

Then, for each m there is t˚m P pτ, τ`t
2 q such that

|∇umpt˚mq|2
t˚
m

ď
2

t´ τ

ˆ

|umτ |2τ `

ż T

τ

|fpsq|2´1,sds

˙

. (2.25)

Thus, it follows from Lemma (2.20) that umptq is the unique weak solution to 3D-(NS) on rt˚m, T s with ut˚
m

“

umpt˚mq and satisfying the energy inequality (2.17). Therefore, by applying the hypothesis (HF) on rt˚m, T s we
get

}umpsq}L4pOsq3 ď F

ˆˆ

M

t´ τ

˙1{2

p1 ` |uτ |2τ q1{2, τ, T

˙

“: Gp|uτ |τ , τ, T, t´ τq,
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for all s P rt˚m, T s, where M :“ 2max
!

1,
şT

τ
|fpsq|2´1,sds

)

.
Now, let δ P p0, T ´ τq, and let us take t “ τ ` δ. Then we obtain that

}umpsq}L4pOsq3 ď Gp|uτ |τ , τ, T, δq, (2.26)

for all τ ` δ ď s ď T (note that τ ` δ ě t˚m for all m, since t˚m P pτ, τ`t
2 q for all m).

By using Hölder’s inequality it is easy to see that

|btpu, v, wq| ď ct}u}L4pOtq3 |∇w|t}v}L4pOtq3 for all u, v, w P Vt, t P R.

Thus, using (2.26) we obtain that u1
m is bounded in L2pτ ` δ, T ;V ˚

t q. Then, up to a subsequence, we have that
#

um
˚

á u weakly-star in L8pτ ` δ, T ;L4pOtq
3q,

u1
m á u1 weakly in L2pτ ` δ, T ;V ˚

t q.
(2.27)

Thus, since u P L2pτ, T ;Vtq, u1 P L2pτ ` δ, T ;V ˚
t q, we have that u P Cprτ ` δ, T s;Htq, see Remark 2.10. In

a standard way, it is proven that u satisfies the energy inequality

|uptq|2t ` 2

ż t

s

|∇uprq|2rdr ´ 2

ż t

τ

pfprq, uprqq´1,rdr ď |upτq|2τ . (2.28)

Note that, it follows from (2.28) that
lim sup
tÑτ`

|uptq|2t ď |upτq|2τ .

Since u P Cwprτ, T s;Hq, thus we will deduce that |uptq|t Ñ |upτq|τ as t Ñ τ`, so that, by Definition 2.1, we
have that

lim sup
tÑτ`

|||puptq ´ pupτq|||2 “ lim sup
tÑτ`

|||puptq|||2 ´ 2 lim inf
tÑτ`

pppuptq, pupτqqq ` lim sup
tÑτ`

|||pupτq|||2

ď |||pupτq||| ´ 2pppupτq, pupτqqq ` |||pupτq|||2 “ 0.

Therefore, we deduce that puptq Ñ pupτq in L2pR3q3 also. Hence, u P Cprτ, T s;Hq.
On the other hand, it follows from (2.26) and (2.27), we have that

}u}L8pτ`δ,T ;L4pOtq3q ď Gp|uτ |τ , τ, T, δq.

Then, (2.22) hold and therefore (2.21) is proved. □

Corollary 2.22. Under conditions of Theorem 2.18 and the hypothesis (HF), uτ P Hτ and f P L2
locpτ,`8;V ˚

t q,
for every globally defined weak solution satisfying (2.20) we have that

u P Cprτ,`8q;Htq, u P L8
loc

`

s,`8;L4pOtq
3
˘

, for all s ą τ. (2.29)

Proof. We know that u P L2
locpτ,`8;Vtq. Thus, for any t ą τ there exists s P pτ, tq such that upsq P Vs. Then,

it follows from Lemma (2.20) that u is the unique weak solution to 3D-(NS) on rs,`8q with initial data upsq P

Vs and satisfying (2.20). Therefore, we have u P Cprt,`8q;Htq for any t ą τ , then u P Cppτ,`8q;Htq.
Now we prove the continuity of up¨q at t “ τ . We know that u P Cwprτ,`8q, Htq, so that

|upτq|τ ď lim inf
tÑτ`

|uptq|t.

On the other hand, by energy inequality (2.17), we obtain

lim sup
tÑτ`

|uptq|t ď |upτq|τ .

Then, we have that limtÑτ |uptq|t “ |upτq|τ and u is continuous on rτ,`8q. Now condition (HF) implies that
u P L8

locps,`8;L4pOtq
3q for all s ą τ . Therefore, the result is proved. □

3. DYNAMICS OF 3D-NAVIER-STOKES EQUATIONS ON A NON-CYLINDRICAL DOMAIN

In this section, we extend some well-known concepts and results concerning non-autonomous dynamical
systems to multi-valued processes that act on families of metric spaces parameterized in time, and we will
establish some results about the existence and relationships of minimal pullback attractors. This theory will be
applied to analyse the asymptotic behavior, in the pullback sense, of the weak solutions of the problem 3D-(NS),
on the families of Hilbert spaces tHtutPR.
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3.1. Multi-valued processes on time-varying phase spaces: theoretical results. The results presented here
generalize, for instance, [31] (for the multi-valued autonomous case) and [5, Section 2] or [1, 4, 6, 30] among
many others (for single-valued non-autonomous case), and [11] (for multi-valued non-autonomous systems on
a fixed domain). When the uniqueness holds, our theory would reduce to the standard pullback attractor theory
for single-valued process, e.g. [16].

Given a family of complete metric spaces tpXt, dXtqutPR, and denoting R2
d “ tpt, sq P R2 : t ě su and

PpXtq the family of nonempty subsets of Xt for each t P R, we recall the notion of multi-valued process.

Definition 3.1. A multi-valued map U : tpt, τq ˆ Xτ : pt, τq P R2
du Ñ tPpXtq : t P Ru is a multi-valued

process on the family tXtutPR if
(i) Upt, τq : Xτ Ñ PpXtq for each pt, τq P R2

d;
(ii) Upτ, τqx “ txu for any τ P R and all x P Xτ ;

(iii) Upt, τqx Ă Upt, sqpUps, τqxq for any τ ď s ď t and all x P Xτ , where Upt, τqB :“ YzPBUpt, τqz,
for any B Ă Xτ .

The multi-valued process U : tpt, τq ˆXτ : pt, τq P R2
du Ñ tPpXtq : t P Ru is said to be strict if the inclusion

in (iii) is an equality.

For each t P R, we denote by distXtpO1,O2q the Hausdorff semi-distance in Xt between two sets O1 and
O2, defined as

distXt
pO1,O2q “ sup

xPO1

inf
yPO2

dXt
px, yq for O1,O2 Ă Xt.

As a convenient shorthand, we will refer to the process Up¨, ¨q rather than the process U : tpt, τq ˆ Xτ :
pt, τq P R2

du Ñ tPpXtq : t P Ru in all that follows. Though for nonlinear processes the notation Upt, τ, xq is
also often employed in the literature, we keep here the notation Upt, τqx for any pt, τq P R2

d and x P Xτ .

Definition 3.2. A multi-valued process Up¨, ¨q on the family tXtutPR is upper-semicontinuous if for any pair
pt, τq P R2

d, the mapping Upt, τq : Xτ Ñ PpXtq satisfies that, given a sequence txnunPN in Xτ and x P Xτ

with xn Ñ x as n Ñ 8, then
lim
nÑ8

distXt
pUpt, τqxn,Upt, τqxq “ 0.

Remark 3.3. A multi-valued process Up¨, ¨q on the family tXtutPR is upper-semicontinuous if for any pair
pt, τq P R2

d, the mapping Upt, τq : Xτ Ñ PpXtq satisfies for each x P Xτ and neighborhood VtpUpt, τqxq Ă

Xt of Upt, τqx that there exists a neighborhood Vτ pxq Ă Xτ of x such that Upt, τqy Ă VtpUpt, τqxq for any
y P Vτ pxq.

In the context of non-autonomous dynamical systems it is more natural to consider not only fixed sets but
also families of sets indexed in time. This is due to the fact that at what time the data was put often affects the
dynamical behavior of a non-autonomous dynamical system, as we saw in Section 2 (this is originally motivated
by the random dynamical system theory; it also provides extra information about attractors even in the fixed
bounded sets setting).

Let DX be a universe of some families of nonempty sets, that is, each element pD of DX is a family pD “

tDptq Ă Xt : Dptq ‰ H, t P Ru satisfying certain conditions. For ease of analysis we assume that the universe
DX is inclusion-closed, i.e., if pD P DX and pD1 “ tD1ptq Ă Xt : D

1ptq ‰ H, t P Ru satisfies D1ptq Ă Dptq

for all t P R, then pD1 P DX .
The key ingredients for the establishment of an attraction object are absorption and asymptotic compactness.

Definition 3.4. A family pB0 “ tB0ptq Ă Xt : t P Ru is pullback DX -absorbing for a multi-valued process
Up¨, ¨q if for any t P R and pD P DX , there exists τp pD, tq ď t such that Upt, τqDpτq Ă B0ptq for all τ ď τp pD, tq.

For the absorption property we do not require that the absorbing family above belongs to the universe.

Definition 3.5. ‚ Given a family pD0 “ tD0ptq Ă Xt : t P Ru, multi-valued process Up¨, ¨q is called pullback
pD0-asymptotically compact if for any t P R and sequences tτnu Ă p´8, ts and txnu with τn Ñ ´8 and
xn P D0pτnq for all n, it holds that any sequence tynu with yn P Upt, τnqxn is relatively compact in Xt.

‚ A multi-valued process Up¨, ¨q is said pullback DX -asymptotically compact if it is pullback pD-asymptotically
compact for any pD P DX .
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Next, we present the definition of the minimal pullback attractor for a multi-valued process in time-varying
spaces.

Definition 3.6. A family A “ tAptq Ă Xt : t P Ru is called the minimal pullback DX -attractor for a multi-
valued process Up¨, ¨q if the following properties are fulfilled:

(i) Aptq is a nonempty compact subset of Xt for each t P R;
(ii) A is pullback DX -attracting, i.e.

lim
τÑ´8

distXtpUpt, τqDpτq,Aptqq “ 0

for any pD P DX and all t P R;
(iii) A is negatively invariant under the process Up¨, ¨q, i.e.

Aptq Ă Upt, τqApτq for any t ě τ ;

(iv) if pC “ tCptq : t P Ru is a family of compact sets which pullback DX -attracts under Up¨, ¨q, then
Aptq Ă Cptq for all t P R.

A pullback attractor fulfilling only conditions piq-piiiq above (which is a common meaningful definition in
the literature) does not need to be unique (cf. [29]). Condition pivq of minimality gives uniqueness. On the
other hand, when the attractor A P DX , then it is also the unique family of closed subsets in DX satisfying
piiq-piiiq.

Note that in the literature the minimality of the pullback attractor is often referred as the minimal among
pullback attracting closed sets, rather than only among pullback attracting compact sets as in Definition 3.6.
The following lemma indicates that the two definitions of the minimality are equivalents.

Lemma 3.7. Suppose that A “ tAptq : t P Ru and B “ tBptq : t P Ru are two families of closed sets and
are pullback DX -attracting under multi-valued process U , then A X B :“ tAptq X Bptq : t P Ru is pullback
DX -attracting.

Proof. First we show thatAptqXBptq is nonempty. IfAptqXBptq “ H for some t P R, then by the closedness
of Aptq and Bptq we know there exists a small r ą 0 such that the open r-neighborhoods of Aptq and Bptq,
NrpAptqq and NrpBptqq, are disjoint. This contradicts the pullback DX -attracting property of Aptq and Bptq,
because for any D̂ P DX we have

Upt,´τqDp´τq Ă NrpAptqq and Upt,´τqDp´τq Ă NrpBptqq (3.1)

for τ large enough, indicating the nonempty of NrpAptqq XNrpBptqq. Hence, Aptq XBptq ‰ H.
We now prove by contradiction that A X B is pullback DX -attracting. If not, there would be a D̂ P DX not

pullback attracted by A X B, that is, there are sequences τn Ñ ´8 and xn P Dpτnq such that

distXtpUpt, τn, xnq, Aptq XBptqq ą 2δ, @n P N,

for some t P R and δ ą 0; in other words, Upt, τn, xnq R N2δpAptq XBptqq for all n. On the other hand, since
D̂ is pullback attracted by A, distpUpt, τn, xnq, Aptqq Ñ 0, so

distXtpUpt, τn, xnq, AptqzNδpAptq XBptqq Ñ 0, as n Ñ 8.

In the same way, we have

distXtpUpt, τn, xnq, BptqzNδpAptq XBptqq Ñ 0, as n Ñ 8,

where we arrived at a contradiction, since AptqzNδpAptq XBptq and BptqzNδpAptq XBptq are disjoint closed
sets and cannot be approached by a common sequence. □

Lemma 3.7 indicates that if A is the minimal among pullback DX -attracting compact sets, then it is the
minimal among pullback DX -attracting closed sets. Indeed, for any a pullback DX -attracting closed set pC,
A X pC is compact and, by Lemma 3.7, is pullback DX -attracting, so by the minimality of A among pullback
DX -attracting compact sets we have A Ă A X pC and thereby A “ A X pC Ă pC, as desired.
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3.1.1. Existence of pullback attractors. The minimal components (in the sense of attraction) that we aim to
collect are the omega-limit families. Namely, given a family pD “ tDptq Ă Xt : t P Ru, the pullback omega-
limit set of pD by Up¨, ¨q at time t (when it makes sense) is defined by

ΛXt

`

pD, t
˘

“

!

ξ P Xt : ξ “ lim
τnÑ´8

yn, where yn P Upt, τnqDpτnq

)

, (3.2)

which can be equivalently described (when it make sense) by set theory as

ΛXt

`

pD, t
˘

“
č

sďt

ď

τďs

Upt, τqDpτq
Xt

.

Proposition 3.8. (cf. [1, Proposition 1.4]) If the multi-valued process Up¨, ¨q is pullback pD0-asymptotically
compact, then, for any t P R, the set ΛXt

p pD0, tq given in (3.2) is a nonempty compact subset of Xt, and

lim
τÑ´8

distXt
pUpt, τqD0pτq,ΛXt

p pD0, tqq “ 0. (3.3)

Moreover, the family tΛXp pD0, tq Ă Xt : t P Ru is minimal in the sense that if pC “ tCptq Ă Xt : t P Ru is a
family of compact sets such that

lim
τÑ´8

distXt
pUpt, τqD0pτq, Cptqq “ 0,

then ΛXp pD0, tq Ă Cptq for all t P R.

Proof. Let t P R and consider two sequences tτnu Ă p´8, ts and txnu such that τn Ñ ´8 and xn P D0pτnq

for all n. Now, let tynu be any sequence with yn P Upt, τnqxn for all n P N, thus, since the multi-valued process
Up¨, ¨q is pullback pD0-asymptotically compact, then, there are a subsequence of tynu (relabeled the same) and
z P Xt such that yn converge to z in Xt. Consequently, we have z P ΛXtp pD0, tq, and therefore ΛXtp pD0, tq is
nonempty for any t P R.

Now, let us prove that ΛXtp pD0, tq is a compact subset of Xt for all t P R. Let tynu Ă ΛXtp pD0, tq. It follows
from the definition of ΛXtp pD0, tq that there exist τn ď t´n and xn P D0pτnq such that distXtpyn,Upt, τnqxnq ď

1{n. Since the multi-valued process Up¨, ¨q is pullback pD0-asymptotically compact, any sequence tznu, with
zn P Upt, τnqxn for any n, possesses a convergent subsequence in Xt. Therefore, the corresponding subse-
quence of tynu converges in Xt to the same point.

On the other hand, let us suppose that (3.3) is not true for some t P R. Thus, there exist ε ą 0, tτnu, txnu

with τn Ñ ´8 and xn P D0pτnq for all n P R such that

distXtpUpt, τnqxn,ΛXtp pD0, tqq ą ε for all n ě 1,

therefore, the contradiction arrives since the multi-valued process Up¨, ¨q is pullback pD0-asymptotically com-
pact.

Finally, let us consider the family of compact sets tCptq Ă Xt : t P Ru such that

lim
τÑ´8

distXtpUpt, τqD0pτq, Cptqq “ 0. (3.4)

Consider y P ΛXtp pD0, tq, then there exist sequences tτnu, txnu and tynu, with τn Ñ ´8, xn P D0pτnq and

yn P Upy, τnqxn for all n P N, such that yn Ñ y in Xt. Then it follows from (3.4) that y P Cptq
Xt

“ Cptq.
Therefore, we conclude that ΛXtp pD0, tq Ă Cptq for all t P R. □

Lemma 3.9. (Negative invariance) If the multi-valued process Up¨, ¨q is upper-semicontinuous with closed
values for all pt, τq P R2

d and is pullback pD0-asymptotically compact, then

ΛXtp pD0, tq Ă Upt, τqΛXτ p pD0, τq, for all pt, τq P R2
d.

Proof. Let us fix pt, τq P R2
d. Then for any y P ΛXt

p pD0, tq there are sequences yn P Upt, τn ` τqxn and
xn P D0pτn ` τq with τn Ñ ´8, such that yn Ñ y in Xt.

We know that
Upt, τn ` τqxn Ă Upt, τq

“

Upτ, τn ` τqxn
‰

.
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Thus, yn P Upt, τqzn, where zn P Upτ, τn ` τqxn. Since Up¨, ¨q is pullback pD0-asymptotically compact, then,
there exists a subsequence of tznu (relabeled the same) such that zn Ñ z P ΛXτ

p pD0, τq.
Moreover, since Up¨, ¨q is an upper-semicontinuous process with closed values, the graph of the map x ÞÑ

Upt, τqx is closed, and then we have

y P Upt, τqz Ă Upt, τqΛXτ p pD0, τq.

□

Proposition 3.10. If the family pD0 “ tD0ptq Ă Xt : t P Ru is pullback DX -absorbing, then

ΛXt
p pD, tq Ă ΛXt

p pD0, tq for all pD P DX , t P R.

Moreover, if pD0 P DX , then ΛXt
p pD0, tq Ă D0ptq

Xt
for all t P R.

Proof. Fix pD P DX and t P R. For any y P ΛXt
p pD, tq, there exist two sequences tτnu Ă p´8, ts and

tynu Ă Xt, with τn Ñ ´8 and yn P Upt, τnqDpτnq for all n P N, such that yn Ñ y in Xt.
Since pD0 is pullback DX -absorbing for Up¨, ¨q, there exist tτnk

u Ă tτnu with τnk
ď t ´ k, and Upt ´

k, τnk
qDpτnk

q Ă pD0pt´ kq, for all k P N. Then,

ynk
P Upt, τnk

qDpτnk
q Ă Upt, t´ kq

“

Upt´ k, τnk
qDpτnk

q
‰

Ă Upt, t´ kq pD0pt´ kq,

with ynk
Ñ y in Xt, and therefore, y P ΛXtp pD0, tq.

Finally, we consider t P R and we suppose that pD0 P DX . We observe that for any y P ΛXt
p pD0, tq, there

exist tτnu Ă p´8, ts with τn Ñ ´8 and tynu Ă Xt with yn P Upt, τnq pD0pτnq for all n P N, such that
yn Ñ y inXt. Since pD0 is pullback DX -absorbing for the process Up¨, ¨q, then from certain n P N, yn P pD0ptq.

Thus, y P D0ptq
Xt

. □

Combining the above ingredients leads to the following result.

Theorem 3.11. Consider an upper-semicontinuous multi-valued process Up¨, ¨q on the family of metric spaces
tXtutPR with closed values, a pullback DX -absorbing family pB0,X “ tB0,Xptq Ă Xt : t P Ru and assume
that Up¨, ¨q is pullback pB0,X -asymptotically compact. Then the family A “ tAptq Ă Xt : t P Ru given by

Aptq “
ď

pDPDX

ΛXtp pD, tq
Xt

@t P R

is the minimal pullback DX -attractor. Moreover,
(1) If pB0,X P DX , then Aptq “ ΛXtp pB0,X , tq for all t P R.

(2) It holds that Aptq Ă B0,Xptq
Xt

for any t P R.
(3) If pB0,X P DX has closed sections and DX is inclusion-closed then A P DX .
(4) If A P DX and Up¨, ¨q is a strict process, then A is invariant under Up¨, ¨q, i.e.,

Aptq “ Upt, τqApτq for any t ě τ.

Proof. The proof is a generalization of the fixed domain case, see, e.g., [5, Theorem 3]. First note that by
Proposition 3.10 we have Aptq Ă ΛXt

p pB0,X , tq for all t P R, thus, it follows from Proposition 3.8 that Aptq is
a compact subset of Xt for all t P R. Also, the pullback attractivity, negative invariance, and minimality follow
immediately from Proposition 3.8, Lemma 3.9 and Proposition 3.10. The items (1)-(3) are a consequence of
Propositions 3.8 and 3.10.

Now let us focus on item (4). Since Up¨, ¨q is a strict process, for any t ě r, we have

Upt, rqAprq Ă Upt, rq ˝ Upr, r ` τqApr ` τq “ Upt, r ` τqApr ` τq, for all τ ď 0. (3.5)

Thus, since A pullback attracts itself, we have that

lim
τÑ´8

distXt
pUpt, r ` τqApr ` τq,Aptqq “ 0.

Then, given ε ą 0 there exists τpt, r, ε,Aq ă 0 such that

distXt
pUpt, r ` τqApr ` τq,Aptqq ă ε,
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for all τ ď τpt, r, ε,Aq. Thus, by (3.5) we deduce that

distXt
pUpt, rqAprq,Aptqq ă ε, for all ε ą 0.

Therefore, Upt, rqAprq Ă Aptq
Xt

“ Aptq for all pt, rq P R2
d. □

The next result allows us to compare different attractors, for instance for regularity purposes. It is inspired,
for instance, [16, Theorem 3.15] for the single-valued case and [5, Theorem 4] for the multi-valued but fixed
domain case.

Theorem 3.12. Consider two families of metric spaces tpXt, dXt
qu and tpYt, dYt

qu with continuous embedding
Xt Ă Yt, for all t P R, respective universes DX and DY , and DX Ă DY . Assume that Up¨, ¨q is a time-
dependent multi-valued process in both family of spaces, i.e., U : tpt, τqˆXτ : pt, τq P R2

du Ñ tPpXtq : t P Ru

and U : tpt, τq ˆ Yτ : pt, τq P R2
du Ñ tPpYtq : t P Ru. For each t P R denote

AXptq “
ď

pD1PDX

ΛXt
p pD1, tq

Xt

, and AY ptq “
ď

pD2PDY

ΛYt
p pD2, tq

Yt

.

Then AXptq Ă AY ptq for all t P R.
Moreover, AXptq “ AY ptq for all t P R if the following two conditions hold:

piq AXptq is a compact subset of Xt for all t P R;
piiq for any pD2 P DY and t P R there exist a family pD1 P DX and a t˚

pD1
such that Up¨, ¨q is pullback pD1-

asymptotically compact, and for any s ď t˚
pD1

there exists a τs ă s such that Ups, τqD2pτq Ă D1psq

for all τ ď τs.

Let us suppose that the family of phase spaces does not vary, i.e. Xt “ X for all t P R. Now, let DX
F be the

universe of fixed bounded sets of X , i.e., pD P DX
F if pD “ tDptq “ B : t P Ru with B a nonempty bounded

subset of X.

Corollary 3.13. Under the assumptions of Theorem 3.11 when Xt “ X for all t P R, if DX
F Ă DX then

ADX
F

ptq Ă ADX
ptq for all t P R. Moreover if there exists T P R such that

Ť

tďT B0,Xptq is bounded in X, then
ADX

F
ptq “ ADX

ptq for all t ď T.

3.1.2. Equivalent pullback attractors. In this section we will introduce the concept of equivalence of pull-
back attractors for time-varying spaces. Suppose we have two multi-valued time-dependent dynamical sys-
tems pUXp¨, ¨q, tXtutPRq, and pUY p¨, ¨q, tYtutPRq, and let us also assume that the families of associated phase
spaces are connected by a family of homeomorphisms, i.e., there exists a family of maps tΘptqutPR such
that Θptq : Xt Ñ Yt is a homeomorphism for each t P R. Then, if there exists a homeomorphism family
tΘptqutPR we are able to show an "equivalence" relationship between dynamical systems pUXp¨, ¨q, tXtutPRq

and pUY p¨, ¨q, tYtutPRq. With this, we will be able to show that pUXp¨, ¨q, tXtutPRq has a pullback attractor if
and only if, pUY p¨, ¨q, tYtutPRq has a pullback attractor.

Definition 3.14. We say that the families of metric spaces tXtutPR and tYtutPR are equivalent if there exists a
family of maps tΘptqutPR such that Θptq : Xt Ñ Yt is a homeomorphism for each t P R.

Definition 3.15. Let DX and DY be two universes on the equivalent families of metric spaces tXtutPR and
tYtutPR, respectively. We say that the universes DX and DY are equivalent if for any pD P DX the family
tΘptqDptq Ă Yt : t P Ru P DY and for any pC P DY the family tΘ´1ptqCptq Ă Xt : t P Ru P DX .

Theorem 3.16. Let tXtutPR and tYtutPR be two equivalent families of metric spaces. Let UXp¨, ¨q be a multi-
valued process on the family tXtutPR. Then, UY p¨, ¨q defined as

UY pt, τqy :“ Θptq ˝ UXpt, τq ˝ Θ´1pτqy for all pt, τq P R2
d, y P Yτ , (3.6)

is a multi-valued process on the family tYtutPR. Moreover, if the multi-valued process UXp¨, ¨q is upper-
semicontinuous, then UY p¨, ¨q is also upper-semicontinuous.

Proof. It follows immediately from Definition 3.1 and Remark 3.3. □
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Lemma 3.17. Suppose that Θ : X Ñ Y is a continuou (single-valued) mapping between metric spaces pX, dXq

and pY, dY q. Then Θ is upper (resp. lower) semicontinuous on compact sets, i.e., for any compact set D0 and
any family tDs Ă X : s P Ru of sets with limsÑ0 distXpDs, D0q “ 0 (resp. limsÑ0 distXpD0, Dsq “ 0) we
have

lim
sÑ0

distY pΘpDsq,ΘpD0qq “ 0,
´

resp. lim
sÑ0

distY pΘpD0q,ΘpDsqq “ 0
¯

.

Proof. We first prove the upper semicontinuity by contradiction. If it does not hold, there would exist a sequence
xn P Dsn with sn Ñ 0 such that

distY pΘpxnq,ΘpD0qq ě δ, @n P N, (3.7)

for some δ ą 0. Since limsÑ0 distXpDs, D0q “ 0, for the sequence xn there has to be a sequence zn P D0

such that dXpxn, znq Ñ 0 as n Ñ 8. By the compactness of D0, up to a subsequence zn converges to some
z0 P D0 which indicates that xn Ñ z0. Therefore, by the continuity of Θ we obtain Θpxnq Ñ Θpz0q, which
contradicts (3.7). The upper semicontinuity holds.

The lower semicontinuity is proved analogously. If it were not the case, there would exist sequences sn Ñ 0
and xn P D0 such that

distY pΘpxnq,ΘpDsnqq ě δ, @n P N, (3.8)

for some δ ą 0. Since limnÑ8 distXpD0, Dsnq “ 0, for each xn P D0 there is a zn P Dsn such that
dXpxn, znq Ñ 0 as n Ñ 8. By the compactness of D0, up to a subsequence xn converges to some x0 P D0

which indicates that zn Ñ x0. By the continuity of Θ we obtain Θpxnq Ñ Θpx0q as well as Θpznq Ñ Θpx0q.
Therefore, dY pΘpxnq,Θpznqq Ñ 0, contradicting (3.8). Hence, the lower semicontinuity holds. □

The upper and lower semi-continuity on compact sets together imply the full continuity in Hausdorff metric
on compact sets. That is, we have the following corollary.

Corollary 3.18. Suppose that Θ : X Ñ Y is a continuous mapping between metric spaces pX, dXq and
pY, dY q. Then Θ is continuous w.r.t. Hausdorff metric for compact sets in the following sense: for any compact
set D0 and any family tDs Ă X : s P Ru of sets with

lim
sÑ0

DistXpDs, D0q “ 0, then lim
sÑ0

DistY pΘpDsq,ΘpD0qq “ 0,

where DistX and DistY denote the Hausdorff metrics on X and Y , respectively.

Remark 3.19. Note that the full continuity in Hausdorff metric does not imply the upper or the lower semi-
continuity. Therefore, Lemma 3.17 is often more applicable since in many cases, as in this paper, one would
need only the upper or the lower semi-continuity, not both. For more discussion on the continuity of set-valued
maps see [2, Chapter 1].

Theorem 3.20. Let tXtutPR and tYtutPR be two equivalent families of metric spaces. Consider UXp¨, ¨q a
process and an universe DX on the family tXtutPR, and let us consider the process UY p¨, ¨q, given in (3.6), and
the universe DY . If ADX

is the minimal pullback DX -attractor for the multi-valued process UXp¨, ¨q, then the
family ADY

“ tADY
ptq : t P Ru defined by

ADY
ptq :“ ΘptqADX

ptq, t P R,

is the minimal pullback DY -attractor for the multi-valued process UY p¨, ¨q, i.e.,
(i) ADY

ptq is a nonempty compact subset of Yt for each t P R;
(ii) ADY

is pullback DY -attracting, i.e.,

lim
τÑ´8

distYtpUY pt, τqDpτq,ADY
ptqq “ 0

for any pD P DY and all t P R;
(iii) ADY

is negatively invariant under the process UY p¨, ¨q, i.e.,

ADY
ptq Ă UY pt, τqADY

pτq for any t ě τ ;

(iv) (Minimality) if pC “ tCptq : t P Ru is a family of compact sets which pullback DY -attracts under
UY p¨, ¨q, then ADY

ptq Ă Cptq for all t P R.
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Proof. (i) Since the map Θptq : Xt Ñ Yt is continuous for all t P R, ADY
ptq “ ΘptqADX

ptq is a compact set
in Yt for all t P R.
(ii) It follows from Lemma 3.17, that

lim
τÑ´8

distYtpUY pt, τqDpτq,ADY
ptqq “ lim

τÑ´8
distYtpΘptqUXpt, τqΘ´1pτqDpτq,ΘptqADX

ptqq

“ lim
τÑ´8

distYtpΘptqUXpt, τqBpτq,ΘptqADX
ptqq

“ 0,

where pB “ tBptq “ Θ´1ptqDptq : t P Ru P DX with pD P DY .
(iii) Observe that

ADY
ptq “ ΘptqADX

ptq Ă Θptq ˝ UXpt, τqADX
pτq “ Θptq ˝ UXpt, τq ˝ Θ´1pτq ˝ ΘpτqADX

pτq

“ Θptq ˝ UXpt, τq ˝ Θ´1pτqADY
pτq “ UY pt, τqADY

pτq.

Thus, ADY
ptq Ă UY pt, τqADY

pτq for all pt, τq P R2
d.

(iv) Let pC “ tCptq Ă Yt : t P Ru be a family of compact sets which pullback DY -attracts under UY p¨, ¨q.
Then by Lemma 3.17 the family pCΘ “ tΘ´1ptqCptq : t P Ru is pullback DX -attracting under UXp¨, ¨q,
therefore it follows from Theorem 3.11 that ADX

ptq Ă Θ´1ptqCptq for all t P R. Then we conclude that
ADY

ptq “ ΘptqADX
ptq Ă Cptq for all t P R. □

Corollary 3.21. Let tXtutPR and tYtutPR be two equivalent families of metric spaces. If UXp¨, ¨q is an upper-
semicontinuous multi-valued process with closed values, dissipative, and pullback DX -asymptotically compact,
then the multi-valued process UY p¨, ¨q, defined in (3.6), has a minimal pullback DY -attractor on the universe
DY , given in Definition 3.15.

Proof. Since the time-dependent multi-valued dynamical system pUXp¨, ¨q, tXtutPRq satisfies the conditions of
the Theorem 3.11, it has a minimal pullback DX -attractor. Then, it follows from Theorem 3.20 that the time-
dependent multi-valued dynamical system pUY p¨, ¨q, tYtutPRq also has a minimal pullback DY -attractor. □

Corollary 3.22. If ADX
P DX and UXp¨, ¨q is a strict process, then ADY

is invariant under UY p¨, ¨q, i.e.,
ADY

ptq “ UY pt, τqADY
pτq for any t ě τ .

Proof. It follows from item (4) from Theorem 3.11 that ADX
is invariant under UXp¨, ¨q. Then ADY

is invariant
under UY p¨, ¨q. □

3.1.3. An example: equivalence of pullback attractors with different universes. An important universe (or fam-
ily) in the theory of dynamical systems is the universe of bounded sets. Note that this was already introduced
in Corollary 3.13. Now by Theorems 3.11, 3.12, and 3.20 we shall see what relationship the pullback attractor
associated with the universe of bounded sets has when it is carried by a family of homeomorphisms to another
equivalent universe.

Let us consider a fixed phase space Xt ” X and an equivalent family of phase spaces tYtutPR, i.e., there
exists a family of homeomorphisms Θptq : X Ñ Yt for all t P R. Now, let DX

F be the universe of fixed bounded
subsets of X , and let DX be another universe on X such that DX

F Ă DX . Then, under the conditions of
Corollary 3.13, we have that ADX

F
ptq Ă ADX

ptq for all t P R, and if there exists T P R such that
Ť

tďT B0,Xptq

is bounded in X, then ADX
F

ptq “ ADX
ptq for all t ď T.

Let DY be the universe on the family tYtutPR, which is equivalent to universe DX , see Definition 3.15, and
let us denote by DY

1,F :“ tΘptqD : D P DX
F , t P Ru, ADY

1,F
:“ tΘptqADX

F
ptq : t P Ru and ADY

:“

tΘptqADX
ptq : t P Ru. Then, it follows from Theorem 3.20 that ADY

1,F
and ADY

are pullback attractors of the

time-dependent multi-valued process UY p¨, ¨q w.r.t. the universes DY
1,F and DY , respectively, and

ADY
1,F

ptq Ă ADY
ptq for all t P R.

Moreover, if there exists a T P R such that
Ť

tďT B0,Xptq is bounded in X, then ADY
1,F

ptq “ ADY
ptq for all

t ď T.
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On the other hand, let us denote by DY
2,F the universe of bounded sets on the family tYtutPR in the following

sense pD P DY
2,F if pD “ tDptq Ă BYt

p0, Rq : t P Ru for some R ą 0, (where BYt
p0, Rq is the open ball

centered at zero with radius R). Let us assume that DY
2,F Ă DY .

Let us assume that there is a pullback DY -absorbing family pB0,Y P DY , and also that there exists a T P R
such that B0,Y ptq Ă BYt

r0, Rs for all t ď T , and some R ą 0 (where BYt
r0, Rs is the closed ball with center

at zero and radius R). Then, by Theorem 3.11 for any t ď T , we get

ADY
ptq “ ΛYt

p pB0,Y , tq “
č

sďt

ď

τďs

UY pt, τqB0,Y pτq
Yt

Ă
č

sďt

ď

τďs

UY pt, τqBYτ r0, Rs
Yt

“ ΛYtp pBY,R, tq

Ă
ď

pDF PDY
2,F

ΛYt
p pDF , tq

Yt

“ ADY
2,F

ptq,

where pBY,R “ tBYt
r0, Rs : t P Ru. With this and Theorem 3.12, we conclude that

ADY
ptq “ ADY

2,F
ptq, and ADX

ptq “ Θ´1ptqADY
2,F

ptq for all t ď T.

In addition, if
Ť

tďT B0,Xptq is also bounded in X, then

ADX
F

ptq “ ADX
ptq “ Θ´1ptqADY

2,F
ptq and ADY

1,F
ptq “ ADY

ptq “ ADY
2,F

ptq for all t ď T.

3.2. Pullback attractor of the 3D-Navier-Stokes equation: Construction. In this section we are interested
in studying the asymptotic behavior, in the pullback sense, of the weak solutions of the problem 3D-(NS), on
the families of Hilbert spaces tHtutPR. For this, we will consider the hypotheses (H1)-(H3) and the hypothesis
(HF) and f P L2

locpR;V ˚
t q.

3.2.1. Generation of an upper semicontinuous multi-valued process. Given an initial time τ P R and an initial
datum uτ P Hτ , we denote by Ψpτ, uτ q a set of weak solutions to 3D-(NS) in rτ,`8q with initial datum
uτ P Hτ :

Ψpτ, uτ q :“

"

up¨, τ, uτ q

ˇ

ˇ

ˇ

ˇ

u is a weak solution to 3D-(NS) with

upτ, τ, uτ q “ uτ satisfying (2.20)

*

.

Then, it follows from Theorem 2.18 and Theorem 2.21 that the family Ψpτ, uτ q is not empty. Now, we can
define a family of multi-valued maps Up¨, ¨q : tpt, τq ˆHτ : pt, τq P R2

du Ñ tPpHtq : t P Ru by

Upt, τquτ :“ tuptq : u P Ψpτ, uτ qu P PpHtq, uτ P Hτ , τ ď t. (3.9)

The following lemma will allow us to show that the evolution process associated with the weak solutions of
3D-(NS), given in (3.9), is upper-semicontinuous and has closed values, see Corollary 3.24. The energy method
will play a key role, e.g. [18, 26].

Theorem 3.23. Assume conditions of Theorem 2.18 and the hypothesis (HF) hold. Then for any strongly
convergent sequence tumτ u, τ P R, of initial data with umτ Ñ uτ in Hτ and any sequence tumu Ă Ψpτ, umτ q,
there exist a subsequence of tumu (relabeled the same) and u P Ψpτ, uτ q such that

umpsq Ñ upsq strongly in Hs for any s ě τ. (3.10)

Proof. Let us fix T P R with T ą τ . In the same way as Theorem 2.21 and Corollary 2.22 and making use
of the energy inequality given in (2.20), tumu is bounded in L8pτ, T ;Htq and L2pτ, T ;Vtq, and the sequence
t Bum

Bt u is bounded in L4{3pτ, T ;V ˚
t q. By the Aubin-Lions compactness Lemma, there exist a subsequence of
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tumu (relabeled the same) and u P L8pτ, T ;Htq X L2pτ, T ;Vtq with Bu
Bt P L4{3pτ, T ;V ˚

t q such that
$

’

’

’

’

’

&

’

’

’

’

’

%

um
˚

á u weakly-star in L8pτ, T ;Htq,

um á u weakly in L2pτ, T ;Vtq,

Bum
Bt

á
Bu

Bt
weakly in L4{3pτ, T ;V ˚

t q,

um Ñ u strongly in L2pτ, T ;Htq.

(3.11)

Again, in the same way as [32, Theorem 2.2] the convergences given in (3.11) allow us to pass to limit in
the weak formulation (2.13). Moreover, it is not difficult to check that upτq “ uτ . Therefore, we have that
u P Ψpτ, uτ q.

On the other hand, let pum and pu be the trivial extension, given in (2.2), of um and u, respectively. Then by
Proposition 2.6 the sequence tpumu is equicontinuous in H´1pR3q3 on rτ, T s, in fact

}pumptq ´ pumpsq}H´1pR3q3 ď

ż t

s

›

›

›

Bum
Bt

prq

›

›

›

V ˚
r

dr

ď |t´ s|1{4

ˆ
ż T

τ

›

›

›

Bum
Bt

prq

›

›

›

4{3

V ˚
r

dr

˙3{4

, for all τ ď s ď t ď T.

Also, in the same way as (2.27), we have that u1
m á u1 weakly in L2pτ ` δ, T ;V ˚

t q for any δ ą 0. Therefore,
by [3, Theorem II.5.12], tpumu is bounded in Cprτ ` δ, T s;L2pR3q3q, for any δ ą 0. Therefore, by the Arzelà-
Ascoli Theorem, up to a subsequence, there follows that

pum Ñ pu strongly in Cprτ ` δ, T s;H´1pR3q3q for any δ ą 0.

Hence, by the boundness of tpumu in Cprτ ` δ, T s;L2pR3q3q for any δ ą 0, and umpτq Ñ uτ , we conclude that

pumpsq á pupsq weakly in L2pR3q3 for any τ ď s ď T (3.12)

which implies that
umpsq á upsq weakly in Hs for any τ ď s ď T . (3.13)

Thus, it follows from energy inequality (2.17) that the estimate

|zprq|2r ď |zpsq|2s ` 2

ż r

s

pfpθq, zpθqq´1,θdθ, τ ď s ď r ď T,

holds for z “ um and z “ u, it follows that the functions Jm, J : rτ, T s Ñ R defined by
$

’

&

’

%

Jmprq “ |umprq|2r ´ 2

ż r

τ

pfpθq, umpθqq´1,θdθ,

Jprq “ |uprq|2r ´ 2

ż r

τ

pfpθq, upθqq´1,θdθ,
(3.14)

are non-increasing and continuous, and by (3.11) satisfy

Jmprq Ñ Jprq a.e. r P pτ, T q.

Now, we will prove that Jmprq Ñ Jprq for any r P rτ, T s. Let us consider the following extended energy
functionals

pJmprq “ |||pumprq|||2 ´ 2

ż r

τ

xx pfpθq, pumpθqyydθ,

pJprq “ |||puprq|||2 ´ 2

ż r

τ

xx pfpθq, pupθqyydθ.

Thus, it follows from (3.14) that pJm and pJ are non-increasing and continuous, and satisfy

pJmprq Ñ pJprq a.e. r P pτ, T q.
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Now, consider a fixed t˚ P pτ, T s and an increasing sequence ttku Ă rτ, t˚q such that tk Ñ t˚ and pJmptkq Ñ

pJptkq for all k ě 1. Thus, by the continuity of pJ and pJm, for any ϵ ą 0 there exist M, K ą 0 such that

| pJptkq ´ pJpt˚q| ď
ϵ

2
for k ě K,

| pJmptKq ´ pJptKq| ď
ϵ

2
for m ě M.

Since pJm is a non-increasing function, we have that
pJmpt˚q ´ pJpt˚q ď pJmptKq ´ pJpt˚q

ď | pJmptKq ´ pJptKq| ` | pJptKq ´ pJpt˚q| ď ϵ

for all m ě M , and consequently lim sup
mÑ8

pJmpt˚q ď pJpt˚q. Taking into account that

ż t˚

τ

xx pfpθq, pumpθqyydθ Ñ

ż t˚

τ

xx pfpθq, pupθqyydθ,

we deduce that lim sup
mÑ8

|||pumpt˚q||| ď |||pupt˚q|||. Then, from the latter and (3.12), we have

lim sup
mÑ8

|umpt˚q ´ upt˚q|2t˚ “ lim sup
mÑ8

|||pumpt˚q ´ pupt˚q|||2

“ lim sup
mÑ8

|||pumpt˚q|||2 ´ 2 lim inf
mÑ8

pppumpt˚q, pupt˚qqq ` lim sup
mÑ8

|||pupt˚q|||2

ď |||pupt˚q|||2 ´ 2|||pupt˚q|||2 ` |||pupt˚q|||2 “ 0.

Hence, we conclude that (3.10) holds for all s P rτ, T s. □

Corollary 3.24 (Upper semicontinuity). Let f P L2
locpR;V ˚

t q. Suppose that the conditions (H1)-(H2) and
(HF) hold. Then the time-dependent multi-valued bi-parametric family Up¨, ¨q defined in (3.9) is an upper-
semicontinuous multi-valued process with closed values on the family tHtutPR.

Proof. It follows from Theorem 3.23. □

3.2.2. Asymptotic compactness and the pullback attractor. In this subsection, we will prove that the multi-
valued process defined in (3.9) has a pullback attractor w.r.t. some tempered universe. For this, we will show that
there is a family of pullback absorbing bounded sets, and that the process is pullback asymptotically compact.
The asymptotic compactness will be proved with the energy method, which was used also in the proof of
Theorem 3.23.

The following lemma is fundamental because it guarantees the dissipativity of the system.

Lemma 3.25. Let us consider f P L2
locpR;V ˚

t q. Suppose that conditions (H1)-(H3) and (HF) hold. Then, for
any uτ P Hτ , any weak solution up¨q “ up¨, τ ;uτ q P Ψpτ, uτ q satisfies the following estimates, for all t ě τ ,

|uptq|2t ď e´λ1,tpt´τq|uτ |2τ `

ż t

τ

e´λ1,tpt´sq|fpsq|2´1,sds, (3.15)

and
ż t

τ

|∇upsq|2sds ď |uτ |2τ `

ż t

τ

|fpsq|2´1,sds. (3.16)

Proof. Given τ P R and uτ P Hτ , let u P Ψpτ, uτ q for all t ě τ a weak solution to 3D-(NS). Then u satisfies
1

2

d

dt
|u|2t ` |∇u|2t ď pfptq, uptqq´1,t a.e. t ě τ, (3.17)

since btpu, u, uq “ 0. Thus, we obtain
1

2

d

dt
|u|2t `

1

2
|∇u|2t ď

1

2
|fptq|2´1,t a.e. t ě τ. (3.18)

Now, multiplying by eλ1,ts, we have
d

ds

´

eλ1,ts|u|2s

¯

ď eλ1,ts|fpsq|2´1,s.
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Therefore, integrating in s from τ to t, we deduce that

|uptq|2t ď e´λ1,tpt´τq|uτ |2τ ` e´λ1,tt

ż t

τ

eλ1,ts|fpsq|2´1,sds,

for all t ě τ . Lastly, note that from (3.18), we also deduce that
ż t

τ

|∇upsq|2sds ď |uτ |2τ `

ż t

τ

|fpsq|2´1,sds,

for all t ě τ . □

Definition 3.26 (Tempered universe). Let Dλ be the universe of all families of subsets pD “ tDptq : t P R,
Dptq Ă Ht and Dptq ‰ Hu such that

lim
τÑ´8

eλ1,ττ sup
uτ PDpτq

|uτ |2τ “ 0.

Now, let us denote by

I2,λ
˚ :“

"

f P L2
locpR;V ˚

t q :

ż t

´8

eλ1,ts|fpsq|2´1,sds ă `8 for all t P R
*

.

Corollary 3.27. Let f P I2,λ
˚ and suppose that the conditions (H1)-(H3) and (HF) hold. Then, the family

pB0 “
␣

BHt
r0,Rptqs : t P R

(

is pullback Dλ-absorbing for the multi-valued process Up¨, ¨q, where

R2ptq “ 1 `

ż t

´8

e´λ1,tpt´sq|fpsq|2´1,sds. (3.19)

Moreover, pB0 P Dλ.

Proof. The existence of a pullback absorbing set follows immediately from Lemmas 3.25. Following the same
reasoning as [21, Lemma 7.1], we obtain

lim
τÑ´8

eλ1,ττR2pτq “ 0.

Consequently, the family pB0 P Dλ. □

Lemma 3.28. Let f P I2,λ
˚ and suppose that the conditions (H1)-(H3) and (HF) hold. Then, given h ą 0,

for any t P R and for each pD P Dλ, there exists τ1pt, h, pDq ă t ´ 3h ´ 3 such that for all τ ď τ1pt, h, pDq,
uτ P Dpτq, and u P Ψpτ, uτ q it holds

$

’

&

’

%

|uprq|r ď ϱ1ptq, @r P rt´ h´ 1, ts,
ż r

r´1

|∇upsq|2sds ď ϱ2ptq, @r P rt´ h, ts,

where

ϱ21ptq “ 1 ` eλ1,tp1`h´tq

ż t

´8

eλ1,ts|fpsq|2´1,sds,

ϱ2ptq “ ϱ21ptq `

ż t

t´h´1

|fpsq|2´1,sds.

Proof. Let t P R. Then, it follows from the Lemma 3.25 that for any h ą 0 and for each r P rt´ h´ 1, ts, one
has

|uprq|2r ď e´λ1,rpr´τq|uτ |2τ `

ż r

τ

e´λ1,rpr´sq|fpsq|2´1,sds

ď eλ1,tp1`h´tqeλ1,tτ |uτ |2τ ` eλ1,tp1`h´tq

ż t

´8

eλ1,ts|fpsq|2´1,sds,
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for all τ ď t´ h´ 1. Thus, by Definition 3.26, for t P R and h ą 0, there exists τ1pt, h, pDq P R such that

|uprq|2r ď 1 ` eλ1,tp1`h´tq

ż t

´8

eλ1,ts|fpsq|2´1,sds, (3.20)

for all uτ P Dpτq, τ ď τ1pt, h, pDq, and r P rt´ h´ 1, ts. Thus, denoting by

ϱ21ptq :“ 1 ` eλ1,tp1`h´tq

ż t

´8

eλ1,ts|fpsq|2´1,sds,

we have
|uprq|r ď ϱ1ptq,

for all uτ P Dpτq, τ ď τ1pt, h, pDq, and r P rt´ h´ 1, ts.
In the same way as (3.20) and making uses of (3.16), we obtain

ż r

r´1

|∇upsq|2sds ď ϱ21ptq `

ż t

t´h´1

|fpsq|2´1,sds “: ϱ2ptq,

for all uτ P Dpτq, τ ď τ1pt, h, pDq, and r P rt´ h, ts. □

Lemma 3.29 (Asymptotic compactness). Let f P I2,λ
˚ and suppose that conditions (H1)-(H3) and (HF) hold.

Then, the time-dependent multi-valued process Up¨, ¨q given in (3.9) is pullback Dλ-asymptotically compact.

Proof. Similarly to Theorem 3.23, we shall demonstrate the asymptotic compactness of the multi-valued pro-
cess using the energy method, e.g. [25, Proposition 22] or [26, Lemma 5.11]. Given t0 P R and pD P Dλ, let
tuτmu be any sequence, where uτm P Dpτmq for each m P N and τm Ñ ´8 as m Ñ 8. Now, let us consider
the sequence twmu, such that wm P Upt0, τmquτm for eachm P N. Then we will prove that the sequence twmu

is relatively compact in Ht0 . In fact: for each m P N let us denote by ump¨q P Ψpτm, uτmq a weak solution of
3D-(NS) associated to the initial condition uτm P Dpτmq, such that wm “ umpt0q for all m P N. Then, since
τm Ñ ´8, it follows from Lemma 3.28 that, for t0 and some h ą 0, there exists m0pt0, hq P N such that

|umprq|r ď ϱ1pt0q, @r P rt0 ´ h´ 1, t0s,
ż r

r´1

|∇umpsq|2sds ď ϱ2pt0q, @r P rt0 ´ h, t0s,
(3.21)

for all m ě m0pt0, hq.
Since for each m ě m0pt0, hq, the function um is a weak solution of 3D-(NS) on rt0 ´ h, t0s. Thus, with

the same reasoning as Theorem 3.23, there exists a subsequence (relabeled the same) and a limit function u that
converge in the same sense as in (3.11). Moreover, u P Cprt0 ´h, t0s;Htq and u is a weak solution of 3D-(NS)
on pt0 ´ h, t0q, and as in (3.13)), we have

umpsq á upsq weakly in Hs for any t0 ´ h ď s ď t0. (3.22)

Moreover, putting z “ u and um, z satisfies the following energy inequality

|zptq|2t ď |zpsq|2s ` 2

ż t

s

pfprq, zprqq´1,rdr,

for all t0 ´ h ď s ď t ď t0. Then, we can define the functions Jm, J : rt0 ´ h, t0s Ñ R as

Jmptq “ |umptq|2t ´ 2

ż t

t0´h

pfprq, umprqq´1,rdr

Jptq “ |uptq|2t ´ 2

ż t

t0´h

pfprq, uprqq´1,rdr,

which are non-increasing and continuous, and satisfy

Jmptq Ñ Jptq a.e. t P pt0 ´ h, t0q.

Therefore, with the properties of functionals Jp¨q and Jmp¨q, the convergence given in (3.22), and the same
reasoning as in Theorem 3.23, we obtain that

um Ñ u strongly in Cprt0 ´ h, t0s, Htq.
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In particular umpt0q Ñ upt0q in Ht0 , so the proof is completed. □

Theorem 3.30. Let f P I2,λ
˚ and suppose that conditions (H1)-(H3) and (HF) hold. Then there exists the

minimal pullback Dλ-attractor Aλ P Dλ for the multi-valued processes Up¨, ¨q.

Proof. First, note that the existence of a family pullback Dλ-absorbing, pB0 “ tBHt
r0,Rptqs : t P Ru, was

given by the Corollary 3.27, where the radius function R : R Ñ p0,`8q was set in (3.19). On the other hand,
the asymptotic compactness of the multi-valued process Up¨, ¨q is given by Lemma 3.29. Then, It follows from
Theorem 3.11 that there exists a minimal pullback Dλ-attractor associated with the time-dependent multi-valued
process Up¨, ¨q. □

3.2.3. Pullback attractor of the equivalent system (CC-NS). Now, we are interested in showing the existence
of a pullback attractor associated with the problem (CC-NS) on the Hilbert space H . For this, we will consider
the hypotheses (H1)-(H3) and (HF) and pf P L2

locpR;Hq. On the other hand, let tΘptq : H Ñ Ht : t P Ru be
the family of homeomorphisms defined as

Θptqpv1, v2, v3q “ pu1, u2, u3q, (3.23)

where

ukpxq “

3
ÿ

i“1

Brk
Byi

prpx, tq, tq ¨ viprpx, tqq for all x P Ot, k “ 1, 2, 3.

Then, given an initial time τ P R and an initial datum vτ P H , we denote by pΨpτ, vτ q the set of all vp¨; τ, vτ q :
rτ,`8q Ñ R3 that are weak solutions to (CC-NS) with initial datum vτ P H , such that

upt; τ, uτ q “ Θptqvpt; τ, vτ q P tuptq : u P Ψpτ, uτ qu (3.24)

for all t ě τ , where uτ “ Θpτqvτ P Hτ . Define

pΨpτ, vτ q “

#

vp¨ ; τ, vτ q

ˇ

ˇ

ˇ

ˇ

ˇ

v is weak solution to (CC-NS) with vpτq “ vτ such

that up¨; τ ;uτ q given in (3.24) belongs to Ψpτ, uτ q

+

.

Then, it follows from Theorem 2.18 that the family pΨpτ, vτ q is not empty. Now, we can define a family of
multi-valued maps pUp¨, ¨q : tpt, τq ˆH : pt, τq P R2

du Ñ PpHq given by

pUpt, τqvτ “

!

vptq : v P pΨpτ, vτ q

)

P PpHq, vτ P H, τ ď t. (3.25)

Lemma 3.31. The time-dependent dynamical systems pUp¨, ¨q, tHtutPRq and p pUp¨, ¨q, Hq, given in (3.9) and
(3.25), respectively, are equivalents.

Proof. By Remark 2.17 and Theorem 2.18 the time-dependent multi-valued families of maps t pUpt, τq : H Ñ

PpHq : pt, τq P R2
du and tUpt, τq : Hτ Ñ PpHtq : pt, τq P R2

du satisfy the following relationship

pUpt, τqv :“ Θ´1ptq ˝ Upt, τq ˝ Θpτqv P PpHq for all pt, τq P R2
d, v P H.

□

Definition 3.32. We define pDλ the class of all families of subsets pD “ tDptq : t P R, Dptq Ă H and Dptq ‰

Hu such that
lim

τÑ´8
eλ1τ sup

vτ PDpτq

|uτ |2 “ 0,

where λ1 is the first eigenvalue of ´∆ on H1
0 pOqn ,i.e.,

λ1 :“ min
wPH1

0 pOqnzt0u

}∇w}2L2pOqn

}w}2L2pOqn

.

Lemma 3.33. The universes Dλ and pDλ, given in the Definitions 3.26 and 3.32, respectively, are equivalents.

Proof. It follows immediately from the definitions of universes 3.26 and 3.32, and the family of homeomor-
phisms tΘptqutPR, given in (3.23). □
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Theorem 3.34. The time-dependent multi-valued bi-parametric family pUp¨, ¨q (defined in (3.25)) is an upper-

semicontinuous multi-valued process with closed values on H . Moreover, the family pAλ “

!

pAλptq : t P R
)

,
defined as

pAλptq :“ Θ´1ptqAλptq, for all t P R,
is a pullback pDλ-attractor for the multi-valued process pUp¨, ¨q.

Proof. It follows from Theorem 3.20. □

4. DYNAMICS OF 2D-NAVIER-STOKES EQUATIONS ON A NON-CYLINDRICAL DOMAIN

In this section we study the 2D case of the Navier-Stokes equation (NS) on a non-cylindrical domain. Since
in this case the weak solutions are unique and generate a single-valued process, we are able to show, under
certain conditions, the finite fractal dimension of the pullback attractor. The fractal dimension problem for the
multi-valued 3D case remains open.

4.1. Fractal dimension of sets in time-varying spaces: theoretical results. We first establish a theoretical
result on the fractal dimension of pullback attractors that applies to time-varying phase spaces.

Definition 4.1. Let X be a metric space and K a compact subset of X . The fractal dimension of K is defined
by

dXf pKq “ lim sup
rÑ0

logNrpK,Xq

´ log r
,

where NrpK,Xq is the minimum number of balls of radius r, centered at some point of K, that cover K.

The fractal dimension is also called the upper box-counting dimension in the literature (e.g., [7, 15, 8, 34]).

Theorem 4.2. (cf. [27, Theorem 4.11]) Let t0 P R be fixed and consider tXtutPp´8,t0s and tWtutPp´8,t0s

two families of normed vector spaces such that Wt is compactly embedded in Xt for every t ď t0. Assume
that tCtutPp´8,t0s is a family of bounded subsets of tXtutPp´8,t0s and there exists a positive constant ϱ0 “

ϱ0pt0q ą 0 such that for each t P R there is an ut P Ct satisfying

Ct Ă BXtput, ϱ0q for all t ď t0. (4.1)

Also suppose that there exists a family of operators tLt : Xt´1 Ñ WtutPp´8,t0s such that
(1) Ct Ă LtCt´1 for all t ď t0;
(2) there exists a function κ : p´8, t0s Ñ p0,`8q such that

}Ltx´ Lty}Wt ď κptq}x´ y}Xt´1 , for all x, y P Ct´1, t ď t0;

(3) there is an Nt0 P N such that
sup
sďt0

Ns
1{4κpsq ď Nt0 , (4.2)

where N t
ϵ :“ NϵpBWt

p0, 1q, Xtq for any ϵ ą 0 and t ď t0.
Then,

sup
sďt0

dXs

f pCsq ď
logNt0

log 2
.

Proof. Let t ď t0. Then, it follows from (1), (2) and (4.1) that

Ct “
“

LtCt´1

‰

X Ct Ă BWtpLtut´1, κptqϱ0q Ă

Nt
1{4κptq
ď

i“1

BXt

´

ũt,i,
ϱ0
4

¯

,

where ũt,i P Xt for all i P t1, ¨ ¨ ¨ , N t
1{4κptqu. Assuming without lost of generality that CtXBXt

`

ũt,i,
ϱ0

4

˘

‰ H

for any i P

!

1, . . . , N t
1{4κptq

)

we can take ut,i P Ct such that

Ct Ă

Nt
1{4κptq
ď

i“1

BXt

´

ut,i,
ϱ0
2

¯

, for all t ď t0.
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Then we have that NXtpCt, ϱ0{2kq ď Nt0 . Then, proceeding by induction, it is proven that

NXt
pCt, ϱ0{2kq ď N k

t0 , for all k ě 1, t ď t0.

Consequently, in a standard way, we arrive at

dXt

f pCtq ď
logNt0

log 2
for all t ď t0.

□

Lemma 4.3. (cf. [7, Lemma 4.2]) Let X , Y be two normed spaces. Consider C Ă X , and f : C Ñ Y a
Hölder continuous function with exponent θ, θ P p0, 1s, i.e., there exists an L ą 0 such that

}fpxq ´ fpyq}Y ď L}x´ y}θX ,

for all x, y P C . Then,

dYf pfpC qq ď
1

θ
dXf pC q.

Now we apply the previous results to pullback attractors of single-valued processes. Before that, for the
readers’ convenience let us briefly recall the existence of a pullback attractor. The readers are referred to
[19, 9, 13, 5, 21, 26], see also Theorem 3.11 for the corresponding multi-valued version.

Definition 4.4. A bi-parametric family of operators tUpt, τq : Xτ Ñ Xt : pτ, tq P R2
du is called a single-valued

evolution process, or simply called a process, on a family of complete metric spaces tpXt, dXt
qutPR if

(i) Upτ, τq “ IdXτ (identity on Xτ ) for any τ P R,
(ii) Upt, sq ˝ Ups, τq “ Upt, τq for any τ ď s ď t.

In addition, a process tUpt, τqu is called continuous, if each Upt, τq is a continuous operator.

Lemma 4.5. (cf. [19, Theorem 23]) Consider a continuous process Up¨, ¨q on the family of metric spaces
tXtutPR, a pullback DX -absorbing family pB0,X “ tB0,Xptq Ă Xt : t P Ru and assume that Up¨, ¨q is pullback
pB0,X -asymptotically compact. Then, the family A “ tAptq Ă Xt : t P Ru given by

Aptq “
ď

pDPDX

ΛXtp pD, tq
Xt

, @t P R,

is the minimal pullback DX -attractor.

Theorem 4.6. Let tXtutPR and tWtutPR be two families of normed vector spaces such that Wt is compactly
embedded in Xt for every t P R. Consider that the single-valued process UXp¨, ¨q has a pullback DX -attractor
ADX

. Assume that for any pt, sq P R2
d there exists a Lt,s ą 0 such that

}UXpt, sqx1 ´ UXpt, sqx2}Xt
ď Lt,s}x1 ´ x2}Xs

, for all x1, x2 P ADX
psq. (4.3)

Moreover, we assume that there exists t0 P R such that
(1) there is a positive constant ϱ0 “ ϱpt0q such that for each t ď t0 there is an ut P ADX

ptq satisfying

ADX
ptq Ă BXt

put, ϱ0q for all t ď t0; (4.4)

(2) there exists a function κ : R Ñ p0,`8q such that

}UXpt, t´ 1qx´ UXpt, t´ 1qy}Wt
ď κptq}x´ y}Xt´1

,

for all x, y P ADX
pt´ 1q, t ď t0;

(3) there is an Nt0 P N such that
sup
sďt0

Ns
1{4κpsq ď Nt0 , (4.5)

where N t
ϵ :“ NϵpBWt

p0, 1q, Xtq for any ϵ ą 0 and t ď t0.
Then

sup
sPR

dXs

f pADX
psqq ď

logNt0

log 2
.
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Proof. Applying the Theorem 4.2 with Lt :“ UXpt, t´ 1q and Ct “ ADX
ptq for each t ď t0, we have

dXt

f pADX
ptqq ď

logNt0

log 2
for all t ď t0. (4.6)

On the other hand, it follows from the invariance of the pullback attractor ADX
that

ADX
ptq “ UXpt, t0qADX

pt0q for all t ą t0.

Therefore, it follows from estimate (4.6), the Lipschitz condition (4.3), and Lemma 4.3 that

dXt

f pADX
ptqq ď

logNt0

log 2
for all t ą t0.

□

Remark 4.7. The result to estimate the fractal dimension of pullback attractors with non-cylindrical domains
was developed in [12, Lemma 6.1], [13, Theorem 4.4] and [27, Theorem 4.11]. Here our result, Theorem 4.6,
is new in the following sense: The proof presented in [27] is given for a family of time-dependent maps, acting
on a family of time-dependent compact sets, satisfying the hypotheses of negative invariance, Lipschitzianity,
etc., for all time t P R. On the other hand, our hypotheses need not hold for all time t P R (as required by [27,
Theorem 4.11]), but only need hold for t ď t0. It is essentially the invariance of the pullback attractor which
contributed to the improvement.

The following result establishes the relationship of the fractal dimension of pullback attractors associated
with equivalent dynamical systems.

Theorem 4.8. Let tXtutPR and tYtutPR be two equivalent families of normed spaces. Consider the time-
dependent single-valued evolution processes UXp¨, ¨q, and UY p¨, ¨q satisfying the relation given in Theorem
3.16. Let ADX

and ADY
be the pullback DX -attractor and the pullback DY -attractor, associated with UXp¨, ¨q

and UY p¨, ¨q, respectively. Then,

iq if the homeomorphism family tΘptq : Xt Ñ Yt : t P Ru is a family of Lipschitz transformations, i.e.,
for each t P R there exists a ℓt ą 0 such that

}Θptqx´ Θptqy}Yt ď ℓt}x´ y}Xt for all x, y P Xt.

Then dYt

f

`

ADY
ptq

˘

ď dXt

f

`

ADX
ptq

˘

for all t P R;
iiq if the homeomorphism family tΘptq : Xt Ñ Yt : t P Ru is a family of bi-Lipschitz transformations, i.e.,

for each t P R there are positive numbers ℓ1,t, ℓ2,t such that

ℓ1,t}x´ y}Xt ď }Θptqx´ Θptqy}Yt ď ℓ2,t}x´ y}Xt for all x, y P Xt.

Then dYt

f

`

ADY
ptq

˘

“ dXt

f

`

ADX
ptq

˘

for all t P R.

Proof. It follows directly from Lemma 4.3. □

4.2. Pullback attractor of the 2D-Navier-Stokes equation: Fractal dimension. In this section, we are inter-
ested in estimating the fractal dimension of the pullback attractor of the 2D-Navier-Stokes equation (NS) on the
time-dependent family of Hilbert spaces tHtutPR.

Note that under the hypotheses (H1)-(H2) and f P L2
locpR;V ˚

t q, given τ P R and uτ P Hτ , Theorem 2.18
guarantees the existence of a unique weak solution up¨q “ up¨, τ, uτ q of the system 2D-(NS) that passes through
uτ P Hτ in the instant of time τ P R, i.e., upτq “ uτ . This allows us to define the bi-parametric family of
single-valued maps tUpt, τq : Hτ Ñ Ht : pt, τq P R2

du as

Upt, τq : Hτ Ñ Ht by Upt, τquτ “ upt, τ, uτ q, (4.7)

where up¨q “ up¨, τ, uτ q is the unique weak solution of 2D-(NS) associated to the initial condition uτ P Hτ for
any pt, τq P R2

d.

Corollary 4.9. Let f P L2
locpR;V ˚

t q. Then the bi-parametric family Up¨, ¨q defined in (4.7) is a continuous
process.
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Proof. In the same way as [32, Theorem 2.8] or [38, Theorem 4.8], let uptq, vptq be two weak solutions of
2D-(NS) associated with the initial conditions uτ and vτ , respectively. Now, denote by w :“ u ´ v and take w
as a test function in the weak formulation, thus we have

1

2

d

dt
|w|2t ` |∇w|2t ` btpu, u, wq ´ btpv, v, wq “ 0.

From (2.9) we have that

btpu, u, wq ´ btpv, v, wq “ btpu, u, wq ´ btpu, v, wq ` btpu, v, wq ´ btpv, v, wq

“ btpu,w,wq ` btpw, v, wq “ btpw, v, wq

ď ct}w}2L4pOtq2 |∇v|t ď ctd
2
t |w|t|∇w|t|∇v|t,

where we have used the Ladyzhenskaya inequality, i.e., }w}L4pOtq2 ď dt|w|
1{2
t |∇w|

1{2
t . Now, applying Young

inequality we obtain
d

dt
|w|2t ` |∇w|2t ď c1,t|∇v|2t |w|2t , (4.8)

where c1,t “ c2td
4
t . Hence, by integrating and applying the Gronwall inequality we have

|Upt, τquτ ´ Upt, τqvτ |2t ď |uτ ´ vτ |2τ exp

"

c1,t

ż t

τ

|∇vprq|2rdr

*

,

for any uτ , vτ P Hτ and pt, τq P R2
d. Therefore, the time-dependent evolution process Up¨, ¨q is continuous. □

Remark 4.10. Let pt, τq P R2
d and uτ , vτ P Hτ . Making up¨q “ Up¨, τquτ and vp¨q “ Up¨, τqvτ , and using

(4.8), we have
ż t

s

|∇uprq ´ ∇vprq|2rdr ď |upsq ´ vpsq|2s ` c1,t

ż t

s

|∇vprq|2r|uprq ´ vprq|2rdr, (4.9)

for all τ ď s ď t.

Inspired by [23], we need an additional hypothesis on the external force f to obtain high regularity of the
weak solutions of 2D-(NS), and with this being able to show the smoothing property of the time-dependent
dynamical system.

(H4) Let us consider the external force f P L2
locpR;Htq satisfying the piecewise bounded integrability con-

dition on the family tHtutPR, i.e.,

Mf ptq :“ sup
sďt

ż s

s´1

|fpsq|2sds ă 8, for all t P R.

Note that (H4) is a condition between the translation-bounded and the tempered conditions, see [10, Propo-

sition 4.1]. In fact, (H4) is equivalent to sup
sď0

ż s

s´1

|fpsq|2sds ă 8.

Lemma 4.11. Suppose that hypotheses (H1)-(H4) hold. Then, any weak solution to 2D-(NS) satisfies the
following estimates

|Upt, squs|2t ď e´λ1,tpt´sq|us|2s ` λ´1
1,t p1 ` λ´1

1,t qMf ptq,

for all us P Hs, s ď t, and
ż t

s

|∇Upr, squs|2rdr ď |us|2s ` λ´1
1,tMf ptq, if s P rt´ 1, ts,

ż t

t´1

|∇Upr, squs|2rdr ď e´λ1,tpt´1´sq|us|2s ` 2λ´1
1,t p1 ` λ´1

1,t qMf ptq, if s ă t´ 1.

Proof. Let us P Hs and denote by up¨q “ Up¨, squs. Then, from (3.17) and Poincaré inequality, we have u
satisfying

d

dt
|u|2t ` λ1,t|u|2t ď

1

λ1,t
|fptq|2t , (4.10)
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Thus, multiplying (4.10) by eλ1,tt and integrating from s to t, we get

|uptq|2t ď e´λ1,tpt´sq|upsq|2s ` λ´1
1,te

´λ1,tt

ż t

s

eλ1,tθ|fpθq|2θdθ. (4.11)

By the hypothesis (H4), can estimate the last term on the left side of inequality (4.11) as

λ´1
1,te

´λ1,tt

ż t

s

eλ1,tθ|fpθq|2θdθ ď λ´1
1,te

´λ1,tt

ż t

´8

eλ1,tθ|fpθq|2θdθ

“ λ´1
1,te

´λ1,tt
8
ÿ

n“0

ż t´n

t´pn`1q

eλ1,tθ|fpθq|2θdθ

ď λ´1
1,te

´λ1,tt
8
ÿ

n“0

eλ1,tpt´nq

ż t´n

t´pn`1q

|fpθq|2θdθ

ď λ´1
1,t p1 ´ e´λ1,tq´1Mf ptq

ď λ´1
1,t p1 ` λ´1

1,t qMf ptq.

Therefore, by (4.11) we have

|uptq|2t ď e´λ1,tpt´sq|us|2s ` λ´1
1,t p1 ` λ´1

1,t qMf ptq, (4.12)

for all us P Hs, t ě s.
On the other hand, again from (3.17), u satisfies

d

dt
|u|2t ` |∇u|2t ď

1

λ1,t
|fptq|2t . (4.13)

Then, integrating from s to t, we obtain
ż t

s

|∇uprq|2rdr ď |us|2s `
1

λ1,t

ż t

s

|fprq|2rdr ď |us|2s ` λ´1
1,tMf ptq,

for all us P Hs, t ě s, in particular for s P rt´ 1, ts.
Now, let us assume that s ă t ´ 1. Integrating in (4.13) from t ´ 1 to t and using the inequality (4.12), we

obtain
ż t

t´1

|∇uprq|2rdr ď |upt´ 1q|2t´1 `
1

λ1,t

ż t

t´1

|fprq|2rdr

ď |upt´ 1q|2t´1 ` λ´1
1,tMf ptq

ď e´λ1,t´1pt´1´sq|us|2s ` λ´1
1,t´1p1 ` λ´1

1,t´1qMf pt´ 1q ` λ´1
1,tMf ptq

ď e´λ1,tpt´1´sq|us|2s ` 2λ´1
1,t p1 ` λ´1

1,t qMf ptq.

for all us P Hs, and s ă t´ 1. □

Corollary 4.12. Suppose that conditions (H1)-(H4) hold. Let pD P Dλ, t0 P R, and h ą 0. Then, there exists a
τpt0, h, pDq P R such that for all us P Dpsq with s ď τpt0, h, pDq,

|Upt, squs|t ď R1pt0q for all t P rt0 ´ h´ 2, t0s,

and
ż t

t´1

|∇Upr, squs|2rdr ď R2pt0q for all t P rt0 ´ h´ 1, t0s,

where R2
1pt0q :“ 1 ` λ´1

1,t0
p1 ` λ´1

1,t0
qMf pt0q and R2pt0q :“ 1 ` 2λ´1

1,t0
p1 ` λ´1

1,t0
qMf pt0q.

Proof. By Lemma 4.11, we know that

|Upt, squs|2t ď e´λ1,tpt´sq|us|2s ` λ´1
1,t p1 ` λ´1

1,t qMf ptq, for any us P Hs, s ď t.

Therefore, for pD P Dλ, t0 P R and h ą 0, there exists a τpt0, h, pDq P R such that

|Upt, squs|2t ď 1 ` λ´1
1,t0

p1 ` λ´1
1,t0

qMf pt0q, (4.14)
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for all s ď τpt0, h, pDq and t P rt0 ´ h´ 2, t0s.
On the other hand, using (4.13), we deduce that

ż t

t´1

|∇uprq|2rdr ď |upt´ 1q|2t´1 ` λ´1
1,tMf ptq.

Then, from (4.14), we get
ż t

t´1

|∇Upr, squs|2rdr ď 1 ` 2λ´1
1,t0

p1 ` λ´1
1,t0

qMf pt0q,

for all s ď τpt0, h, pDq and t P rt0 ´ h´ 1, t0s. □

Lemma 4.13. Suppose that conditions (H1)-(H4) hold. Then, there exist positive non-decreasing functions
Cf p¨q, pCf p¨q : R Ñ p0,`8q, such that given t0 P R, pD P Dλ and h ą 0, there exists a τpt0, h, pDq P R such
that

|∇Upt, squs|t ď Cf pt0q, and
ż t

t´1

|AUpr, squs|2rdr ď pCf pt0q, (4.15)

for all us P Dpsq, with s ď τpt0, h, pDq, and t P rt0 ´ h, t0s, where

C2
f pt0q :“

“

1 ` λ´1
1,t0

p1 ` λ´1
1,t0

qMf pt0q ` λ´1
1,t0

Mf pt0q
‰

¨ eapt0q

and
pCf pt0q :“ C2

f pt0q ` rct0C
4
f pt0qR2pt0q ` 2Mf pt0q.

Proof. Let t0 P R and pD “ tDptq Ă Ht : t P Ru P DH
λ , and denote by uptq “ Upt, squs with s ď t ď t0 and

us P Dpsq. Then, taking Au as a test function, we get

1

2

d

dt
|∇u|2t ` |Au|2t ` btpu, u,Auq “ pfptq, Auqt. (4.16)

Note that by (2.10), we have

|btpu, u,Auq| ď ct|u|
1{2
t |∇u|t|Au|

3{2
t ď

1

4
|Au|2t `

rct
2

|u|2t |∇u|4t .

Now, by using (4.16), we obtain

d

dt
|∇u|2t ` |Au|2t ď 2|fptq|2t ` rct|u|2t |∇u|4t “ 2|fptq|2t ` rct|u|2t |∇u|2t |∇u|2t . (4.17)

Considering zptq :“ |∇u|2t , aptq :“ rct|u|2t |∇u|2t , and bptq :“ 2|fptq|2t . Then, the inequality (4.17) has the
following form

dz

dt
ptq ď bptq ` aptqzptq. (4.18)

Then, it follows from Corollary 4.12 that there exists a τpt, h, pDq P R such that
$

’

’

&

’

’

%

ż t

t´1

apθqdθ ď apt0q :“ rct0R2
1pt0qR2pt0q,

ż t

t´1

bpθqdθ ď bpt0q :“ 2Mf pt0q,

(4.19)

for all us P Dpsq, s ď τpt0, h, pDq and t P rt0 ´ h´ 1, t0s. Furthermore, from (4.18) we deduce that

d

dℓ

´

e´
şℓ
r
apθqdθzpℓq

¯

ď bpℓqe´
şℓ
r
apθqdθ.

Now, integrating from r to t, with r P rt´ 1, ts, we have that

e´
şt
r
apθqdθzptq ď zprq `

ż t

r

bpℓqe´
şℓ
r
apθqdθdℓ.
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Then, by using (4.19), we get

zptq ď zprqeapt0q `

ż t

r

bpℓqe
şt
ℓ
apθqdθdℓ ď zprqeapt0q ` bpt0qeapt0q,

for all r P rt´ 1, ts. Thus, integrating with respect to r, from t´ 1 to t, we have that

zptq ď eapt0q

ˆ
ż t

t´1

zprqdr ` bpt0q

˙

.

Thus

|∇uptq|2t ď eapt0q

ˆ
ż t

t´1

|∇uprq|2rdr ` bpt0q

˙

, for all t P rt0 ´ h´ 1, t0s.

Then, again from Corollary 4.12, we have

|∇Upt, squs|t ď Cf pt0q, for all s ď τpt, pDq and t P rt0 ´ h´ 1, t0s, (4.20)

where C2
f pt0q “

“

R2pt0q ` λ´1
1,t0

Mf pt0q
‰

¨ eapt0q. Now, taking into account (4.17), we have
ż t

t´1

|Auprq|2rdr ď |∇upt´ 1q|2t´1 ` rct

ż t

t´1

|uprq|2r|∇uprq|4rdr ` 2

ż t

t´1

|fprq|2rdr.

It follows from Corollary 4.12 and (4.20) that
ż t

t´1

|AUpr, squs|2rdr ď C2
f pt0q ` rct0C

4
f pt0qR2

1pt0q ` 2Mf pt0q,

for all us P Dpsq, s ď τpt0, h, pDq and t P rt0 ´ h, t0s. □

Corollary 4.14. Under the conditions of Lemma 4.13. The family pBV “
␣

BVtr0, Cf ptqs : t P R
(

is pullback
Dλ-absorbing, for the process Up¨, ¨q defined in (4.7). Moreover the family pBV P Dλ.

Proof. It follows directly from Lemma 4.13. □

4.2.1. Pullback attractor of 2D-(NS). The existence of the pullback Dλ-attractor for process
`

Up¨, ¨q, tHtutPR
˘

was given in [38, Theorem 6.4]. Now, with the regularity of the weak solutions, obtained in the previous results,
we are able to give a simpler demonstration of the existence of a minimal pullback Dλ-attractor.

Theorem 4.15 (Existence and regularity of a pullback Dλ-attractor)). Let the conditions (H1)-(H4) hold. Then
the family Aλ “ tAλptq Ă Vt : t P Ru defined by

Aλptq “ ΛHtp pBV , tq “
č

sďt

ď

τďs

Upt, τqBVτ r0, Cf pτqs
Ht

Ă BVtr0, Cf ptqs, @t P R,

is the unique pullback Dλ-attractor for the solution process Up¨, ¨q belonging to Dλ, where pBV is given in the
Corollary 4.14.

Proof. The evolution process Up¨, ¨q is dissipative due to Corollary 4.14 with the family pBV “ tBVt
r0, Cf ptqs :

t P Ru that is pullback Dλ-absorbing. Regarding asymptotic compactness, let us consider the sequence tuτnu

such that uτn P BVτn
r0, Cf pτnqs for all n P N and τn Ñ ´8. Now, let t ě τn for all n P N, and consider the

sequence tUpt, τnquτnu. We affirm that sequence tUpt, τnquτnu has a convergent subsequence inHt. Indeed, it
follows from Corollary 4.14 that the family pBV P Dλ, so that there exists an m0ptq P N such that Upt, τnquτn P

BVtr0, Cf ptqs for all n ě m0ptq. Since BVtr0, Cf ptqs is a compact set of Ht (for any t P R), the sequence
tUpt, τnquτnuněm0ptq has a convergent subsequence in Ht, therefore the asymptotic compactness is proven.
Then, applying Theorem 3.11, there exists a minimal pullback Dλ-attractor Aλ that belongs to the universe
Dλ. □



35

4.2.2. Fractal dimension of the pullback attractor. A consequence of the following result is that the evolution
process Up¨, ¨q, defined in (4.7), satisfies the smoothing property on the pullback Dλ-attractor Aλ constructed
in Theorem 4.15.

Proposition 4.16. Given t P R and pD “ tDptq Ă Ht : t P Ru P Dλ, then there exist κt ą 0 (that is a positive
non-decreasing function of t) and τpt, pDq P R such that

|∇upt; s, usq ´ ∇vpt; s, vsq|t ď κt|upt´ 1; s, usq ´ vpt´ 1; s, vsq|t´1

for all us, vs P Dpsq and s ď τpt, pDq, where κt is a non-decreasing function of t given by κt :“ C4,t

“

C4
f ptq `

Cf ptq pCf ptq
‰“

1 ` c1,tC
2
f ptq exptc1,tC

2
f ptqu

‰

.

Proof. Let us denote by uptq “ Upt, squ0, vptq “ Upt, sqv0 and by w :“ u ´ v. Then, by taking Aw as a test
function, we have

1

2

d

dt
|∇w|2t ` |Aw|2t ` btpu, u,Awq ´ btpv, v, Awq “ 0.

Let us focus on term btpu, u,Awq ´ btpv, v, Awq. By using (2.10), we have

btpu, u,Awq ´ btpv, v, Awq “ btpu, u,Awq ´ btpu, v,Awq ` btpu, v,Awq ´ btpv, v, Awq

“ btpu,w,Awq ` btpw, v,Awq

ď ct|u|
1{2
t |∇u|

1{2
t |∇w|

1{2
t |Aw|

3{2
t ` ct|w|

1{2
t |∇w|

1{2
t |∇v|

1{2
t |Av|

1{2
t |Aw|t

ď
C4,t

2

”

|∇u|4t |∇w|2t ` |∇w|2t |∇v|t|Av|t

ı

`
1

2
|Aw|2t .

Consequently, we obtain

d

dt
|∇w|2t ` |Aw|2t ď C4,t

`

|∇u|4t ` |∇v|t|Av|t
˘

|∇w|2t .

Integrating in time, we have

|∇wptq|2t `

ż t

r

|Awpθq|2tdθ ď |∇wprq|2r ` C4,t

ż t

r

`

|∇upθq|4θ ` |∇vpθq|θ|Avpθq|θ
˘

|∇wpθq|2θdθ.

Applying the Gronwall inequality, we obtain

|∇wptq|2t ď |∇wprq|2r exp

"

C4,t

ż t

r

`

|∇upθq|4θ ` |∇vpθq|θ|Avpθq|θ
˘

dθ

*

Now, integrating in r between t´ 1 to t, we obtain

|∇wptq|2t ď exp

"

C4,t

ż t

t´1

`

|∇upθq|4θ ` |∇vpθq|θ|Avpθq|θ
˘

dθ

*
ż t

t´1

|∇wprq|2rdr. (4.21)

Thus, by the inequality (4.9) and Lemma 4.13, there exist κt ą 0 and τpt, pDq P R such that

|∇wptq|2t ď κt|wpt´ 1q|2t´1, for all s ď τpt, pDq.

□

Lemma 4.17. Given t P R, there exists κt ą 0, which is a non-decreasing function of t, such that

|∇Upt, t´ 1qu´ ∇Upt, t´ 1qv|t ď κt|u´ v|t´1

for all u, v P Aλpt´ 1q and t P R, where κt was given in Proposition 4.16.

Proof. This is proved in the same way as Proposition 4.16, and taking into consideration, by Theorem 4.15, that
Aλptq Ă BVt

r0, Cf ptqs for all t P R. □

The following results are introduced in order to help prove the condition (4.2) in Theorem 4.2 when we apply
the abstract results to our Navier-Stokes problem.
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Proposition 4.18. (cf. [27, Corollary 4.14] ) For each t P R, the set Ωt :“
Ť

sďt Os is bounded in R2. Then,
for any ϵ ą 0, we have

sup
sďt

Nϵ

`

BH1pOsq2p0, 1q, L2pOsq2
˘

ď Nϵ

`

BH1pΩtq2p0, 1q, L2pΩtq
2
˘

. (4.22)

Remark 4.19. It follows from Theorem 4.15 that there exists a non-decreasing function ϱ : R Ñ p0,`8q

(given as ϱptq :“ 2λ´1
1,tCf ptq for all t P R) such that for each t P R there exists a ut P Aλptq satisfying

Aλptq Ă BHt

`

ut, ϱptq
˘

for all t P R.
On the other hand, if we denote by N t

ϵ :“ NϵpBVt
p0, 1q, Htq for any ϵ ą 0 and t P R, then, by the inequality

(4.22), Nt :“ supsďtN
s
ϵ ă 8 for any t P R.

Theorem 4.20. Assume that all conditions from Theorem 4.15 hold. Then the pullback attractor Aλ associated
with the time-dependent dynamical system pUp¨, ¨q, tHtutPRq has finite fractal dimension, that is,

sup
sďt

dHs

f pAλpsqq ď
logNt

log 2
ă `8, for all t P R.

Proof. Denote by Ut :“ Upt, t´ 1q for all t P R. It follows from Lemma 4.17 that the evolution process Up¨, ¨q
satisfies the smoothing property on pullback Dλ-attractor Aλ, given in the Theorem 4.15, i.e.,

|∇Utu´ ∇Utv|t ď κt|u´ v|t´1, for all u, v P Aλpt´ 1q, t P R.
Therefore, it follows from Theorem 4.6 and Remark 4.19 that

sup
sďt

dHs

f pAλpsqq ď
logNt

log 2
, for all t P R.

□

Corollary 4.21. Suposse that all conditions from Theorem 4.15 hold. Then the pullback attractor Aλ has finite
fractal dimension on the family of Banach spaces tVtutPR, that is,

sup
sďt

dVs

f pAλpsqq ď sup
sďt

dHs

f pAλpsqq ď
logNt

log 2
, for all t P R.

Proof. It follows immediately from Theorem 4.20 and Lemma 4.3. □

Finally, we note that the pullback attractor of the transformed system 2D-(CC-NS) has also finite fractal
dimension on the Hilbert space H . To see this, let us define the bi-parametric family of single-valued maps
t pUpt, τq : H Ñ H : pt, τq P R2

du as

pUpt, τq : H Ñ H by pUpt, τqvτ “ vpt; τ, vτ q, (4.23)

where vp¨q “ vp¨; τ, vτ q is the unique weak solution of 2D-(CC-NS) associated to the initial condition vτ P H

for any pt, τq P R2
d, and in the same way as Definition 3.32 and Theorem 3.34 we define the pullback pDλ-

attractor pAλ of p pUp¨, ¨q, Hq. Then, it follows from Lemma 2.3 and Theorem 4.8 that

sup
sďt

dHf
`

pAλpsq
˘

“ sup
sďt

dHs

f

`

Aλpsq
˘

ď
logNt

log 2
, for all t P R.
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