Filtros : "Financiamento FAPESP" "Indexado no MathSciNet" "SISTEMAS DINÂMICOS" Limpar

Filtros



Refine with date range


  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRUZ, Leonardo Pereira Costa da e OLIVEIRA, Regilene Delazari dos Santos e TORREGROSA, Joan. Limit cycles in piecewise quadratic Kolmogorov systems. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-16, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109285. Acesso em: 08 out. 2025.
    • APA

      Cruz, L. P. C. da, Oliveira, R. D. dos S., & Torregrosa, J. (2026). Limit cycles in piecewise quadratic Kolmogorov systems. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-16. doi:10.1016/j.cnsns.2025.109285
    • NLM

      Cruz LPC da, Oliveira RD dos S, Torregrosa J. Limit cycles in piecewise quadratic Kolmogorov systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-16.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109285
    • Vancouver

      Cruz LPC da, Oliveira RD dos S, Torregrosa J. Limit cycles in piecewise quadratic Kolmogorov systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-16.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109285
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, SINGULARIDADES, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCÍA, Isaac A e GINÉ, Jaume e RODERO, Ana Livia. Dulac functions and monodromic singularities. Journal of Mathematical Analysis and Applications, v. 547, n. 2, p. 1-14, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129309. Acesso em: 08 out. 2025.
    • APA

      García, I. A., Giné, J., & Rodero, A. L. (2025). Dulac functions and monodromic singularities. Journal of Mathematical Analysis and Applications, 547( 2), 1-14. doi:10.1016/j.jmaa.2025.129309
    • NLM

      García IA, Giné J, Rodero AL. Dulac functions and monodromic singularities [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-14.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129309
    • Vancouver

      García IA, Giné J, Rodero AL. Dulac functions and monodromic singularities [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-14.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129309
  • Source: Qualitative Theory of Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRUZ, Leonardo Pereira Costa da e REZENDE, Alex Carlucci e TORREGROSA, Joan. Coexistence of analytic and piecewise analytic limit cycles in planar piecewise quadratic differential systems. Qualitative Theory of Dynamical Systems, v. 24, n. 2, p. 1-19, 2025Tradução . . Disponível em: https://doi.org/10.1007/s12346-025-01252-8. Acesso em: 08 out. 2025.
    • APA

      Cruz, L. P. C. da, Rezende, A. C., & Torregrosa, J. (2025). Coexistence of analytic and piecewise analytic limit cycles in planar piecewise quadratic differential systems. Qualitative Theory of Dynamical Systems, 24( 2), 1-19. doi:10.1007/s12346-025-01252-8
    • NLM

      Cruz LPC da, Rezende AC, Torregrosa J. Coexistence of analytic and piecewise analytic limit cycles in planar piecewise quadratic differential systems [Internet]. Qualitative Theory of Dynamical Systems. 2025 ; 24( 2): 1-19.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12346-025-01252-8
    • Vancouver

      Cruz LPC da, Rezende AC, Torregrosa J. Coexistence of analytic and piecewise analytic limit cycles in planar piecewise quadratic differential systems [Internet]. Qualitative Theory of Dynamical Systems. 2025 ; 24( 2): 1-19.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12346-025-01252-8
  • Source: Rendiconti del Circolo Matematico di Palermo Series 2. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BACELAR, Leandro e LLIBRE, Jaume. Reversible nilpotent centers with cubic nonlinearities. Rendiconti del Circolo Matematico di Palermo Series 2, v. 74, n. 5, p. 1-25, 2025Tradução . . Disponível em: https://doi.org/10.1007/s12215-025-01256-y. Acesso em: 08 out. 2025.
    • APA

      Bacelar, L., & Llibre, J. (2025). Reversible nilpotent centers with cubic nonlinearities. Rendiconti del Circolo Matematico di Palermo Series 2, 74( 5), 1-25. doi:10.1007/s12215-025-01256-y
    • NLM

      Bacelar L, Llibre J. Reversible nilpotent centers with cubic nonlinearities [Internet]. Rendiconti del Circolo Matematico di Palermo Series 2. 2025 ; 74( 5): 1-25.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12215-025-01256-y
    • Vancouver

      Bacelar L, Llibre J. Reversible nilpotent centers with cubic nonlinearities [Internet]. Rendiconti del Circolo Matematico di Palermo Series 2. 2025 ; 74( 5): 1-25.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12215-025-01256-y
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: ESPAÇOS DE BESOV, OPERADORES, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TEOREMAS LIMITES, ANÁLISE HARMÔNICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids. Nonlinearity, v. 38, n. 8, p. 082001-1-082001-40, 2025Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/adf0dd. Acesso em: 08 out. 2025.
    • APA

      Smania, D. (2025). A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids. Nonlinearity, 38( 8), 082001-1-082001-40. doi:10.1088/1361-6544/adf0dd
    • NLM

      Smania D. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids [Internet]. Nonlinearity. 2025 ; 38( 8): 082001-1-082001-40.[citado 2025 out. 08 ] Available from: https://doi.org/10.1088/1361-6544/adf0dd
    • Vancouver

      Smania D. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids [Internet]. Nonlinearity. 2025 ; 38( 8): 082001-1-082001-40.[citado 2025 out. 08 ] Available from: https://doi.org/10.1088/1361-6544/adf0dd
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, José Santana Campos e TAHZIBI, Ali. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, v. 45, n. 5, p. 1444-1460, 2025Tradução . . Disponível em: https://doi.org/10.1017/etds.2024.59. Acesso em: 08 out. 2025.
    • APA

      Costa, J. S. C., & Tahzibi, A. (2025). Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, 45( 5), 1444-1460. doi:10.1017/etds.2024.59
    • NLM

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2025 ; 45( 5): 1444-1460.[citado 2025 out. 08 ] Available from: https://doi.org/10.1017/etds.2024.59
    • Vancouver

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2025 ; 45( 5): 1444-1460.[citado 2025 out. 08 ] Available from: https://doi.org/10.1017/etds.2024.59
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALCEDO, Graccyela. Equivalence of classical properties for strongly irreducible linear cocycles. Bulletin of the Brazilian Mathematical Society : New Series, v. 56, n. 3, p. 1-31, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00574-025-00461-8. Acesso em: 08 out. 2025.
    • APA

      Salcedo, G. (2025). Equivalence of classical properties for strongly irreducible linear cocycles. Bulletin of the Brazilian Mathematical Society : New Series, 56( 3), 1-31. doi:10.1007/s00574-025-00461-8
    • NLM

      Salcedo G. Equivalence of classical properties for strongly irreducible linear cocycles [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2025 ; 56( 3): 1-31.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00574-025-00461-8
    • Vancouver

      Salcedo G. Equivalence of classical properties for strongly irreducible linear cocycles [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2025 ; 56( 3): 1-31.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00574-025-00461-8
  • Source: International Journal of Robust and Nonlinear Control. Unidade: EESC

    Subjects: PROCESSOS DE MARKOV, SISTEMAS DINÂMICOS, SISTEMAS DISCRETOS, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ODORICO, Elizandra Karla e TERRA, Marco Henrique. Robust regulation of markovian jump linear systems subject to state time delay and uncertain transition probabilities. International Journal of Robust and Nonlinear Control, p. 1-13, 2025Tradução . . Disponível em: https://dx.doi.org/10.1002/rnc.70070. Acesso em: 08 out. 2025.
    • APA

      Odorico, E. K., & Terra, M. H. (2025). Robust regulation of markovian jump linear systems subject to state time delay and uncertain transition probabilities. International Journal of Robust and Nonlinear Control, 1-13. doi:10.1002/rnc.70070
    • NLM

      Odorico EK, Terra MH. Robust regulation of markovian jump linear systems subject to state time delay and uncertain transition probabilities [Internet]. International Journal of Robust and Nonlinear Control. 2025 ; 1-13.[citado 2025 out. 08 ] Available from: https://dx.doi.org/10.1002/rnc.70070
    • Vancouver

      Odorico EK, Terra MH. Robust regulation of markovian jump linear systems subject to state time delay and uncertain transition probabilities [Internet]. International Journal of Robust and Nonlinear Control. 2025 ; 1-13.[citado 2025 out. 08 ] Available from: https://dx.doi.org/10.1002/rnc.70070
  • Source: Journal of Modern Dynamics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS, ANÁLISE FUNCIONAL, ANÁLISE REAL

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. Deformation theory of one-dimensional systems. Journal of Modern Dynamics, v. 21, p. 1-20, 2025Tradução . . Disponível em: https://doi.org/10.3934/jmd.2025001. Acesso em: 08 out. 2025.
    • APA

      Smania, D. (2025). Deformation theory of one-dimensional systems. Journal of Modern Dynamics, 21, 1-20. doi:10.3934/jmd.2025001
    • NLM

      Smania D. Deformation theory of one-dimensional systems [Internet]. Journal of Modern Dynamics. 2025 ; 21 1-20.[citado 2025 out. 08 ] Available from: https://doi.org/10.3934/jmd.2025001
    • Vancouver

      Smania D. Deformation theory of one-dimensional systems [Internet]. Journal of Modern Dynamics. 2025 ; 21 1-20.[citado 2025 out. 08 ] Available from: https://doi.org/10.3934/jmd.2025001
  • Source: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Subjects: ATRATORES, PROBLEMAS DE CONTORNO, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity. Mathematical Methods in the Applied Sciences, v. 48, n. 14, p. 13456-13474, 2025Tradução . . Disponível em: https://doi.org/10.1002/mma.11115. Acesso em: 08 out. 2025.
    • APA

      Bortolan, M. C., Pecorari Neto, C., López-Lázaro, H., & Seminario-Huertas, P. N. (2025). Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity. Mathematical Methods in the Applied Sciences, 48( 14), 13456-13474. doi:10.1002/mma.11115
    • NLM

      Bortolan MC, Pecorari Neto C, López-Lázaro H, Seminario-Huertas PN. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity [Internet]. Mathematical Methods in the Applied Sciences. 2025 ; 48( 14): 13456-13474.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.11115
    • Vancouver

      Bortolan MC, Pecorari Neto C, López-Lázaro H, Seminario-Huertas PN. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity [Internet]. Mathematical Methods in the Applied Sciences. 2025 ; 48( 14): 13456-13474.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.11115
  • Source: Studies in Applied Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCÍA, Isaac A e GINÉ, Jaume e RODERO, Ana Livia. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities. Studies in Applied Mathematics, v. 153, n. 2, p. 1-27, 2024Tradução . . Disponível em: https://doi.org/10.1111/sapm.12724. Acesso em: 08 out. 2025.
    • APA

      García, I. A., Giné, J., & Rodero, A. L. (2024). Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities. Studies in Applied Mathematics, 153( 2), 1-27. doi:10.1111/sapm.12724
    • NLM

      García IA, Giné J, Rodero AL. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities [Internet]. Studies in Applied Mathematics. 2024 ; 153( 2): 1-27.[citado 2025 out. 08 ] Available from: https://doi.org/10.1111/sapm.12724
    • Vancouver

      García IA, Giné J, Rodero AL. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities [Internet]. Studies in Applied Mathematics. 2024 ; 153( 2): 1-27.[citado 2025 out. 08 ] Available from: https://doi.org/10.1111/sapm.12724
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, PROBLEMAS DE CONTORNO, SISTEMAS DINÂMICOS

    Disponível em 2026-07-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio et al. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, v. 393, p. 58-101, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.02.005. Acesso em: 08 out. 2025.
    • APA

      López-Lázaro, H., Nascimento, M. J. D., Takaessu Junior, C. R., & Azevedo, V. T. (2024). Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, 393, 58-101. doi:10.1016/j.jde.2024.02.005
    • NLM

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
    • Vancouver

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS, SIMETRIA, MECÂNICA ESTATÍSTICA, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMORIM, Tiago de Albuquerque e MANOEL, Miriam Garcia. The realisation of admissible graphs for coupled vector fields. Nonlinearity, v. 37, n. Ja 2024, p. 1-26, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad0ca4. Acesso em: 08 out. 2025.
    • APA

      Amorim, T. de A., & Manoel, M. G. (2024). The realisation of admissible graphs for coupled vector fields. Nonlinearity, 37( Ja 2024), 1-26. doi:10.1088/1361-6544/ad0ca4
    • NLM

      Amorim T de A, Manoel MG. The realisation of admissible graphs for coupled vector fields [Internet]. Nonlinearity. 2024 ; 37( Ja 2024): 1-26.[citado 2025 out. 08 ] Available from: https://doi.org/10.1088/1361-6544/ad0ca4
    • Vancouver

      Amorim T de A, Manoel MG. The realisation of admissible graphs for coupled vector fields [Internet]. Nonlinearity. 2024 ; 37( Ja 2024): 1-26.[citado 2025 out. 08 ] Available from: https://doi.org/10.1088/1361-6544/ad0ca4
  • Source: Stochastic Processes and their Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS, EQUAÇÕES INTEGRAIS, CONTROLE (TEORIA DE SISTEMAS E CONTROLE)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da e BONOTTO, Everaldo de Mello e FEDERSON, Marcia. Stability for generalized stochastic equations. Stochastic Processes and their Applications, v. 173, p. 1-14, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2024.104358. Acesso em: 08 out. 2025.
    • APA

      Silva, F. A. da, Bonotto, E. de M., & Federson, M. (2024). Stability for generalized stochastic equations. Stochastic Processes and their Applications, 173, 1-14. doi:10.1016/j.spa.2024.104358
    • NLM

      Silva FA da, Bonotto E de M, Federson M. Stability for generalized stochastic equations [Internet]. Stochastic Processes and their Applications. 2024 ; 173 1-14.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.spa.2024.104358
    • Vancouver

      Silva FA da, Bonotto E de M, Federson M. Stability for generalized stochastic equations [Internet]. Stochastic Processes and their Applications. 2024 ; 173 1-14.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.spa.2024.104358
  • Source: Differential Equations and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALDISSERA, Maíra Duran e LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, v. 32, n. 3, p. 933-941, 2024Tradução . . Disponível em: https://doi.org/10.1007/s12591-022-00604-z. Acesso em: 08 out. 2025.
    • APA

      Baldissera, M. D., Llibre, J., & Oliveira, R. D. dos S. (2024). Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, 32( 3), 933-941. doi:10.1007/s12591-022-00604-z
    • NLM

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2024 ; 32( 3): 933-941.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
    • Vancouver

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2024 ; 32( 3): 933-941.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUZZI, Claudio Aguinaldo e RODERO, Ana Livia e TORREGROSA, Joan. 3-dimensional piecewise linear and quadratic vector fields with invariant spheres. Electronic Journal of Qualitative Theory of Differential Equations, v. 2024, n. 43, p. 1-27, 2024Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2024.1.43. Acesso em: 08 out. 2025.
    • APA

      Buzzi, C. A., Rodero, A. L., & Torregrosa, J. (2024). 3-dimensional piecewise linear and quadratic vector fields with invariant spheres. Electronic Journal of Qualitative Theory of Differential Equations, 2024( 43), 1-27. doi:10.14232/ejqtde.2024.1.43
    • NLM

      Buzzi CA, Rodero AL, Torregrosa J. 3-dimensional piecewise linear and quadratic vector fields with invariant spheres [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2024 ; 2024( 43): 1-27.[citado 2025 out. 08 ] Available from: https://doi.org/10.14232/ejqtde.2024.1.43
    • Vancouver

      Buzzi CA, Rodero AL, Torregrosa J. 3-dimensional piecewise linear and quadratic vector fields with invariant spheres [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2024 ; 2024( 43): 1-27.[citado 2025 out. 08 ] Available from: https://doi.org/10.14232/ejqtde.2024.1.43
  • Source: Nonlinear analysis : real world applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, SOLUÇÕES PERIÓDICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAUN, Francisco e CRUZ, Leonardo Pereira Costa da e TORREGROSA, Joan. On the number of limit cycles in piecewise planar quadratic differential systems. Nonlinear analysis : real world applications, v. 79, p. 1-15, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2024.104124. Acesso em: 08 out. 2025.
    • APA

      Braun, F., Cruz, L. P. C. da, & Torregrosa, J. (2024). On the number of limit cycles in piecewise planar quadratic differential systems. Nonlinear analysis : real world applications, 79, 1-15. doi:10.1016/j.nonrwa.2024.104124
    • NLM

      Braun F, Cruz LPC da, Torregrosa J. On the number of limit cycles in piecewise planar quadratic differential systems [Internet]. Nonlinear analysis : real world applications. 2024 ; 79 1-15.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.nonrwa.2024.104124
    • Vancouver

      Braun F, Cruz LPC da, Torregrosa J. On the number of limit cycles in piecewise planar quadratic differential systems [Internet]. Nonlinear analysis : real world applications. 2024 ; 79 1-15.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.nonrwa.2024.104124
  • Source: Mathematische Annalen. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, SISTEMAS DINÂMICOS, MÉTODOS VARIACIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo e BEATRIZ, Ester. An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension. Mathematische Annalen, v. 389, n. 4, p. 4125-4147, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00208-023-02740-5. Acesso em: 08 out. 2025.
    • APA

      Lappicy, P., & Beatriz, E. (2024). An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension. Mathematische Annalen, 389( 4), 4125-4147. doi:10.1007/s00208-023-02740-5
    • NLM

      Lappicy P, Beatriz E. An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension [Internet]. Mathematische Annalen. 2024 ; 389( 4): 4125-4147.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00208-023-02740-5
    • Vancouver

      Lappicy P, Beatriz E. An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension [Internet]. Mathematische Annalen. 2024 ; 389( 4): 4125-4147.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00208-023-02740-5
  • Source: Journal of Mathematical Physics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS, DINÂMICA DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de e LÓPEZ-LÁZARO, Heraclio. Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids. Journal of Mathematical Physics, v. No 2023, n. 11, p. 112701-1-112701-29, 2023Tradução . . Disponível em: https://doi.org/10.1063/5.0150897. Acesso em: 08 out. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, & López-Lázaro, H. (2023). Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids. Journal of Mathematical Physics, No 2023( 11), 112701-1-112701-29. doi:10.1063/5.0150897
    • NLM

      Caraballo T, Carvalho AN de, López-Lázaro H. Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids [Internet]. Journal of Mathematical Physics. 2023 ; No 2023( 11): 112701-1-112701-29.[citado 2025 out. 08 ] Available from: https://doi.org/10.1063/5.0150897
    • Vancouver

      Caraballo T, Carvalho AN de, López-Lázaro H. Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids [Internet]. Journal of Mathematical Physics. 2023 ; No 2023( 11): 112701-1-112701-29.[citado 2025 out. 08 ] Available from: https://doi.org/10.1063/5.0150897
  • Source: Chaos, Solitons and Fractals. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Yagor Romano e CRUZ, Leonardo Pereira Costa da e GOUVEIA, Luiz Fernando da Silva. New lower bound for the Hilbert number in low degree Kolmogorov systems. Chaos, Solitons and Fractals, v. 175, p. 1-9, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.chaos.2023.113937. Acesso em: 08 out. 2025.
    • APA

      Carvalho, Y. R., Cruz, L. P. C. da, & Gouveia, L. F. da S. (2023). New lower bound for the Hilbert number in low degree Kolmogorov systems. Chaos, Solitons and Fractals, 175, 1-9. doi:10.1016/j.chaos.2023.113937
    • NLM

      Carvalho YR, Cruz LPC da, Gouveia LF da S. New lower bound for the Hilbert number in low degree Kolmogorov systems [Internet]. Chaos, Solitons and Fractals. 2023 ; 175 1-9.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.chaos.2023.113937
    • Vancouver

      Carvalho YR, Cruz LPC da, Gouveia LF da S. New lower bound for the Hilbert number in low degree Kolmogorov systems [Internet]. Chaos, Solitons and Fractals. 2023 ; 175 1-9.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.chaos.2023.113937

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025