Filtros : "EQUAÇÕES DIFERENCIAIS FUNCIONAIS" "Indexado no MathSciNet" Removido: "Nonlinear Analysis: Theory, Methods Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, TEORIA DO ÍNDICE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Partial functional differential equations and Conley index. Journal of Differential Equations, v. 366, p. Se 2023, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.04.015. Acesso em: 27 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2023). Partial functional differential equations and Conley index. Journal of Differential Equations, 366, Se 2023. doi:10.1016/j.jde.2023.04.015
    • NLM

      Carbinatto M do C, Rybakowski KP. Partial functional differential equations and Conley index [Internet]. Journal of Differential Equations. 2023 ; 366 Se 2023.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2023.04.015
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Partial functional differential equations and Conley index [Internet]. Journal of Differential Equations. 2023 ; 366 Se 2023.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2023.04.015
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SOLUÇÕES PERIÓDICAS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, Suzete Maria Silva e BONOTTO, Everaldo de Mello e SILVA, Márcia Richtielle da. Periodic solutions of neutral functional differential equations. Journal of Differential Equations, v. 350, p. 89-123, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2022.12.014. Acesso em: 27 nov. 2025.
    • APA

      Afonso, S. M. S., Bonotto, E. de M., & Silva, M. R. da. (2023). Periodic solutions of neutral functional differential equations. Journal of Differential Equations, 350, 89-123. doi:10.1016/j.jde.2022.12.014
    • NLM

      Afonso SMS, Bonotto E de M, Silva MR da. Periodic solutions of neutral functional differential equations [Internet]. Journal of Differential Equations. 2023 ; 350 89-123.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2022.12.014
    • Vancouver

      Afonso SMS, Bonotto E de M, Silva MR da. Periodic solutions of neutral functional differential equations [Internet]. Journal of Differential Equations. 2023 ; 350 89-123.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2022.12.014
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEORIA ASSINTÓTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da e FEDERSON, Marcia e TOON, Eduard. Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, v. 307, n. Ja 2022, p. 160-210, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.10.044. Acesso em: 27 nov. 2025.
    • APA

      Silva, F. A. da, Federson, M., & Toon, E. (2022). Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, 307( Ja 2022), 160-210. doi:10.1016/j.jde.2021.10.044
    • NLM

      Silva FA da, Federson M, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.10.044
    • Vancouver

      Silva FA da, Federson M, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.10.044
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES INTEGRAIS, SOLUÇÕES PERIÓDICAS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, v. 35, n. 6, p. 3118-3159, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac6370. Acesso em: 27 nov. 2025.
    • APA

      Federson, M., Grau, R., Mesquita, J. G., & Toon, E. (2022). Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, 35( 6), 3118-3159. doi:10.1088/1361-6544/ac6370
    • NLM

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
    • Vancouver

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, OPERADORES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YANCHUK, Serhiy et al. Absolute stability and absolute hyperbolicity in systems with discrete time-delays. Journal of Differential Equations, v. 318, p. 323-343, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2022.02.026. Acesso em: 27 nov. 2025.
    • APA

      Yanchuk, S., Wolfrum, M., Pereira, T., & Turaev, D. (2022). Absolute stability and absolute hyperbolicity in systems with discrete time-delays. Journal of Differential Equations, 318, 323-343. doi:10.1016/j.jde.2022.02.026
    • NLM

      Yanchuk S, Wolfrum M, Pereira T, Turaev D. Absolute stability and absolute hyperbolicity in systems with discrete time-delays [Internet]. Journal of Differential Equations. 2022 ; 318 323-343.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2022.02.026
    • Vancouver

      Yanchuk S, Wolfrum M, Pereira T, Turaev D. Absolute stability and absolute hyperbolicity in systems with discrete time-delays [Internet]. Journal of Differential Equations. 2022 ; 318 323-343.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2022.02.026
  • Source: Proceedings of the Royal Society of Edinburgh. Unidade: ICMC

    Subjects: TEORIA DO ÍNDICE, SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index for manifold-valued retarded functional differential equations without uniqueness of solutions. Proceedings of the Royal Society of Edinburgh, v. 152, n. 2, p. 428-449, 2022Tradução . . Disponível em: https://doi.org/10.1017/prm.2021.15. Acesso em: 27 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2022). Conley index for manifold-valued retarded functional differential equations without uniqueness of solutions. Proceedings of the Royal Society of Edinburgh, 152( 2), 428-449. doi:10.1017/prm.2021.15
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index for manifold-valued retarded functional differential equations without uniqueness of solutions [Internet]. Proceedings of the Royal Society of Edinburgh. 2022 ; 152( 2): 428-449.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/prm.2021.15
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index for manifold-valued retarded functional differential equations without uniqueness of solutions [Internet]. Proceedings of the Royal Society of Edinburgh. 2022 ; 152( 2): 428-449.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/prm.2021.15
  • Source: Journal of Differential Equations. Unidades: FFCLRP, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SEMIGRUPOS DE OPERADORES LINEARES, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e FERNANDES, Denis e WU, Jianhong. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, v. No 2021, p. 753-806, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.09.014. Acesso em: 27 nov. 2025.
    • APA

      Hernandez, E., Fernandes, D., & Wu, J. (2021). Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, No 2021, 753-806. doi:10.1016/j.jde.2021.09.014
    • NLM

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
    • Vancouver

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, DINÂMICA TOPOLÓGICA, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da et al. Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, v. 286, p. 1-46, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.02.060. Acesso em: 27 nov. 2025.
    • APA

      Silva, F. A. da, Federson, M., Grau, R., & Toon, E. (2021). Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, 286, 1-46. doi:10.1016/j.jde.2021.02.060
    • NLM

      Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060
    • Vancouver

      Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060
  • Source: Journal of Fixed Point Theory and Applications. Unidades: FFCLRP, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, PROBLEMAS DE VALORES INICIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo et al. Existence and uniqueness of solution for neutral differential equations with state-dependent delay. Journal of Fixed Point Theory and Applications, v. No 2021, n. 4, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11784-021-00901-0. Acesso em: 27 nov. 2025.
    • APA

      Hernandez, E., Pierri, M., Fernandes, D., & Lisboa, L. (2021). Existence and uniqueness of solution for neutral differential equations with state-dependent delay. Journal of Fixed Point Theory and Applications, No 2021( 4), 1-14. doi:10.1007/s11784-021-00901-0
    • NLM

      Hernandez E, Pierri M, Fernandes D, Lisboa L. Existence and uniqueness of solution for neutral differential equations with state-dependent delay [Internet]. Journal of Fixed Point Theory and Applications. 2021 ; No 2021( 4): 1-14.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s11784-021-00901-0
    • Vancouver

      Hernandez E, Pierri M, Fernandes D, Lisboa L. Existence and uniqueness of solution for neutral differential equations with state-dependent delay [Internet]. Journal of Fixed Point Theory and Applications. 2021 ; No 2021( 4): 1-14.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s11784-021-00901-0
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, TOPOLOGIA, SISTEMAS DISCRETOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e DEMUNER, D. P. e SOUTO, G. M. Weak topological conjugacy via character of recurrence on impulsive dynamical systems. Bulletin of the Brazilian Mathematical Society : New Series, v. 50, n. Ju 2019, p. 399-417, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00574-018-0104-x. Acesso em: 27 nov. 2025.
    • APA

      Bonotto, E. de M., Demuner, D. P., & Souto, G. M. (2019). Weak topological conjugacy via character of recurrence on impulsive dynamical systems. Bulletin of the Brazilian Mathematical Society : New Series, 50( Ju 2019), 399-417. doi:10.1007/s00574-018-0104-x
    • NLM

      Bonotto E de M, Demuner DP, Souto GM. Weak topological conjugacy via character of recurrence on impulsive dynamical systems [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2019 ; 50( Ju 2019): 399-417.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00574-018-0104-x
    • Vancouver

      Bonotto E de M, Demuner DP, Souto GM. Weak topological conjugacy via character of recurrence on impulsive dynamical systems [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2019 ; 50( Ju 2019): 399-417.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00574-018-0104-x
  • Source: Physica D: Nonlinear Phenomena. Unidades: IME, IF

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PELLEGRIN, Xavier et al. Metastable periodic patterns in singularly perturbed state-dependent delayed equations. Physica D: Nonlinear Phenomena, v. 271, p. 48-63, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.physd.2013.11.012. Acesso em: 27 nov. 2025.
    • APA

      Pellegrin, X., Ragazzo, C. G., Malta, C. P., & Pakdaman, K. (2014). Metastable periodic patterns in singularly perturbed state-dependent delayed equations. Physica D: Nonlinear Phenomena, 271, 48-63. doi:10.1016/j.physd.2013.11.012
    • NLM

      Pellegrin X, Ragazzo CG, Malta CP, Pakdaman K. Metastable periodic patterns in singularly perturbed state-dependent delayed equations [Internet]. Physica D: Nonlinear Phenomena. 2014 ; 271 48-63.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.physd.2013.11.012
    • Vancouver

      Pellegrin X, Ragazzo CG, Malta CP, Pakdaman K. Metastable periodic patterns in singularly perturbed state-dependent delayed equations [Internet]. Physica D: Nonlinear Phenomena. 2014 ; 271 48-63.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.physd.2013.11.012
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS CE550.24.3

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Severino Horácio e PEREIRA, Antônio Luiz. Exponential trichotomies and continuity of invariant manifolds. São Paulo Journal of Mathematical Sciences, v. 5, n. 2, p. 111-134, 2011Tradução . . Disponível em: https://doi.org/10.11606%2Fissn.2316-9028.v5i2p. Acesso em: 27 nov. 2025.
    • APA

      Silva, S. H., & Pereira, A. L. (2011). Exponential trichotomies and continuity of invariant manifolds. São Paulo Journal of Mathematical Sciences, 5( 2), 111-134. doi:10.11606%2Fissn.2316-9028.v5i2p
    • NLM

      Silva SH, Pereira AL. Exponential trichotomies and continuity of invariant manifolds [Internet]. São Paulo Journal of Mathematical Sciences. 2011 ; 5( 2): 111-134.[citado 2025 nov. 27 ] Available from: https://doi.org/10.11606%2Fissn.2316-9028.v5i2p
    • Vancouver

      Silva SH, Pereira AL. Exponential trichotomies and continuity of invariant manifolds [Internet]. São Paulo Journal of Mathematical Sciences. 2011 ; 5( 2): 111-134.[citado 2025 nov. 27 ] Available from: https://doi.org/10.11606%2Fissn.2316-9028.v5i2p
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis et al. Stability of gradient semigroups under perturbations. Nonlinearity, v. 24, n. 7, p. 2099-2117, 2011Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/24/7/010. Acesso em: 27 nov. 2025.
    • APA

      Aragão-Costa, É. R., Caraballo, T., Carvalho, A. N. de, & Langa, J. A. (2011). Stability of gradient semigroups under perturbations. Nonlinearity, 24( 7), 2099-2117. doi:10.1088/0951-7715/24/7/010
    • NLM

      Aragão-Costa ÉR, Caraballo T, Carvalho AN de, Langa JA. Stability of gradient semigroups under perturbations [Internet]. Nonlinearity. 2011 ; 24( 7): 2099-2117.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/0951-7715/24/7/010
    • Vancouver

      Aragão-Costa ÉR, Caraballo T, Carvalho AN de, Langa JA. Stability of gradient semigroups under perturbations [Internet]. Nonlinearity. 2011 ; 24( 7): 2099-2117.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/0951-7715/24/7/010
  • Source: Real Analysis Exchange. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia e MULDOWNEY, P. A Feynman-Kac solution to a random impulsive equation of Schrödinger type. Real Analysis Exchange, v. 36, n. 1, p. 107-148, 2011Tradução . . Acesso em: 27 nov. 2025.
    • APA

      Bonotto, E. de M., Federson, M., & Muldowney, P. (2011). A Feynman-Kac solution to a random impulsive equation of Schrödinger type. Real Analysis Exchange, 36( 1), 107-148.
    • NLM

      Bonotto E de M, Federson M, Muldowney P. A Feynman-Kac solution to a random impulsive equation of Schrödinger type. Real Analysis Exchange. 2011 ; 36( 1): 107-148.[citado 2025 nov. 27 ]
    • Vancouver

      Bonotto E de M, Federson M, Muldowney P. A Feynman-Kac solution to a random impulsive equation of Schrödinger type. Real Analysis Exchange. 2011 ; 36( 1): 107-148.[citado 2025 nov. 27 ]
  • Source: Computers and Mathematics with Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUEVAS, Cláudio e MORALES, Eduardo Alex Hernandez e RABELO, Marcos. The existence of solutions for impulsive neutral functional differential equations. Computers and Mathematics with Applications, v. 58, n. 4, p. 744-757, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.camwa.2009.04.008. Acesso em: 27 nov. 2025.
    • APA

      Cuevas, C., Morales, E. A. H., & Rabelo, M. (2009). The existence of solutions for impulsive neutral functional differential equations. Computers and Mathematics with Applications, 58( 4), 744-757. doi:10.1016/j.camwa.2009.04.008
    • NLM

      Cuevas C, Morales EAH, Rabelo M. The existence of solutions for impulsive neutral functional differential equations [Internet]. Computers and Mathematics with Applications. 2009 ; 58( 4): 744-757.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.camwa.2009.04.008
    • Vancouver

      Cuevas C, Morales EAH, Rabelo M. The existence of solutions for impulsive neutral functional differential equations [Internet]. Computers and Mathematics with Applications. 2009 ; 58( 4): 744-757.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.camwa.2009.04.008
  • Source: Funkcialaj Ekvacioj. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernández e HENRIQUEZ, Hernán R. Existence results for second order differential equations with nonlocal conditions in Banach spaces. Funkcialaj Ekvacioj, v. 52, p. 113-137, 2009Tradução . . Disponível em: http://fe.math.kobe-u.ac.jp/FE/FullPapers/52-1/52_113.pdf. Acesso em: 27 nov. 2025.
    • APA

      Morales, E. A. H., & Henriquez, H. R. (2009). Existence results for second order differential equations with nonlocal conditions in Banach spaces. Funkcialaj Ekvacioj, 52, 113-137. Recuperado de http://fe.math.kobe-u.ac.jp/FE/FullPapers/52-1/52_113.pdf
    • NLM

      Morales EAH, Henriquez HR. Existence results for second order differential equations with nonlocal conditions in Banach spaces [Internet]. Funkcialaj Ekvacioj. 2009 ; 52 113-137.[citado 2025 nov. 27 ] Available from: http://fe.math.kobe-u.ac.jp/FE/FullPapers/52-1/52_113.pdf
    • Vancouver

      Morales EAH, Henriquez HR. Existence results for second order differential equations with nonlocal conditions in Banach spaces [Internet]. Funkcialaj Ekvacioj. 2009 ; 52 113-137.[citado 2025 nov. 27 ] Available from: http://fe.math.kobe-u.ac.jp/FE/FullPapers/52-1/52_113.pdf
  • Source: Transactions of the American Mathematical Society. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e CHOLEWA, J W. Local well posedness, asymptotic behavoir and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time. Transactions of the American Mathematical Society, v. 361, n. 5, p. 2567-2586, 2009Tradução . . Disponível em: https://doi.org/10.1090/s0002-9947-08-04789-2. Acesso em: 27 nov. 2025.
    • APA

      Carvalho, A. N. de, & Cholewa, J. W. (2009). Local well posedness, asymptotic behavoir and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time. Transactions of the American Mathematical Society, 361( 5), 2567-2586. doi:10.1090/s0002-9947-08-04789-2
    • NLM

      Carvalho AN de, Cholewa JW. Local well posedness, asymptotic behavoir and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time [Internet]. Transactions of the American Mathematical Society. 2009 ; 361( 5): 2567-2586.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1090/s0002-9947-08-04789-2
    • Vancouver

      Carvalho AN de, Cholewa JW. Local well posedness, asymptotic behavoir and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time [Internet]. Transactions of the American Mathematical Society. 2009 ; 361( 5): 2567-2586.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1090/s0002-9947-08-04789-2
  • Source: Integral Equations and Operator Theory. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, OPERADORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez e HENRIQUEZ, Hernán R e MCKIBBEN, Mark A. Existence of solutions for second order partial neutral functional differential equations. Integral Equations and Operator Theory, v. 62, n. 2, p. 191-217, 2008Tradução . . Disponível em: https://doi.org/10.1007/s00020-008-1618-1. Acesso em: 27 nov. 2025.
    • APA

      Morales, E. A. H., Henriquez, H. R., & McKibben, M. A. (2008). Existence of solutions for second order partial neutral functional differential equations. Integral Equations and Operator Theory, 62( 2), 191-217. doi:10.1007/s00020-008-1618-1
    • NLM

      Morales EAH, Henriquez HR, McKibben MA. Existence of solutions for second order partial neutral functional differential equations [Internet]. Integral Equations and Operator Theory. 2008 ; 62( 2): 191-217.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00020-008-1618-1
    • Vancouver

      Morales EAH, Henriquez HR, McKibben MA. Existence of solutions for second order partial neutral functional differential equations [Internet]. Integral Equations and Operator Theory. 2008 ; 62( 2): 191-217.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00020-008-1618-1
  • Source: Bulletin of the Australian Mathematical Society. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SOLUÇÕES QUASE PERIÓDICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HENRIQUEZ, Hernán R e PIERRI, Michelle e TABOAS, Placido Zoega. Existence of S-asymptotically 'ômega'-periodic solutions for abstract neutral equations. Bulletin of the Australian Mathematical Society, v. 78, n. 3, p. 365-382, 2008Tradução . . Disponível em: https://doi.org/10.1017/S0004972708000713. Acesso em: 27 nov. 2025.
    • APA

      Henriquez, H. R., Pierri, M., & Taboas, P. Z. (2008). Existence of S-asymptotically 'ômega'-periodic solutions for abstract neutral equations. Bulletin of the Australian Mathematical Society, 78( 3), 365-382. doi:10.1017/S0004972708000713
    • NLM

      Henriquez HR, Pierri M, Taboas PZ. Existence of S-asymptotically 'ômega'-periodic solutions for abstract neutral equations [Internet]. Bulletin of the Australian Mathematical Society. 2008 ; 78( 3): 365-382.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/S0004972708000713
    • Vancouver

      Henriquez HR, Pierri M, Taboas PZ. Existence of S-asymptotically 'ômega'-periodic solutions for abstract neutral equations [Internet]. Bulletin of the Australian Mathematical Society. 2008 ; 78( 3): 365-382.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/S0004972708000713
  • Source: Differential and Integral Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ANÁLISE HARMÔNICA, OPERADORES LINEARES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAGANA, Toka e HENRIQUEZ, Hernán e MORALES, Eduardo Alex Hernandez. Asymptotically almost periodic solutions to some classes of second-order functional differential equations. Differential and Integral Equations, v. 21, n. 5-6, p. 575-600, 2008Tradução . . Disponível em: https://projecteuclid.org/euclid.die/1356038633. Acesso em: 27 nov. 2025.
    • APA

      Diagana, T., Henriquez, H., & Morales, E. A. H. (2008). Asymptotically almost periodic solutions to some classes of second-order functional differential equations. Differential and Integral Equations, 21( 5-6), 575-600. Recuperado de https://projecteuclid.org/euclid.die/1356038633
    • NLM

      Diagana T, Henriquez H, Morales EAH. Asymptotically almost periodic solutions to some classes of second-order functional differential equations [Internet]. Differential and Integral Equations. 2008 ; 21( 5-6): 575-600.[citado 2025 nov. 27 ] Available from: https://projecteuclid.org/euclid.die/1356038633
    • Vancouver

      Diagana T, Henriquez H, Morales EAH. Asymptotically almost periodic solutions to some classes of second-order functional differential equations [Internet]. Differential and Integral Equations. 2008 ; 21( 5-6): 575-600.[citado 2025 nov. 27 ] Available from: https://projecteuclid.org/euclid.die/1356038633

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025