A Feynman-Kac solution to a random impulsive equation of Schrödinger type (2011)
- Authors:
- USP affiliated authors: BONOTTO, EVERALDO DE MELLO - ICMC ; FEDERSON, MÁRCIA CRISTINA ANDERSON BRAZ - ICMC
- Unidade: ICMC
- Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS
- Language: Inglês
- Imprenta:
- Publisher place: East Lansing
- Date published: 2011
- Source:
- Título: Real Analysis Exchange
- ISSN: 1930-1219
- Volume/Número/Paginação/Ano: v. 36, n. 1, p. 107-148, 2011
-
ABNT
BONOTTO, Everaldo de Mello e FEDERSON, Marcia e MULDOWNEY, P. A Feynman-Kac solution to a random impulsive equation of Schrödinger type. Real Analysis Exchange, v. 36, n. 1, p. 107-148, 2011Tradução . . Acesso em: 23 jan. 2026. -
APA
Bonotto, E. de M., Federson, M., & Muldowney, P. (2011). A Feynman-Kac solution to a random impulsive equation of Schrödinger type. Real Analysis Exchange, 36( 1), 107-148. -
NLM
Bonotto E de M, Federson M, Muldowney P. A Feynman-Kac solution to a random impulsive equation of Schrödinger type. Real Analysis Exchange. 2011 ; 36( 1): 107-148.[citado 2026 jan. 23 ] -
Vancouver
Bonotto E de M, Federson M, Muldowney P. A Feynman-Kac solution to a random impulsive equation of Schrödinger type. Real Analysis Exchange. 2011 ; 36( 1): 107-148.[citado 2026 jan. 23 ] - Operator-valued stochastic differential equations in the context of Kurzweil-like equations
- Uniform asymptotic stability of a discontinuous predator-prey model under control via non-autonomous systems theory
- On exponential stability of functional differential equations with variable impulse perturbations
- It is well known that the remarkable theory of generalized ordinary differential equations... [Prefácio]
- Robustness of exponential dichotomies for generalized ordinary differential equations
- The Black-Scholes equation with impulses at random times via generalized Riemann integral
- Generalized ordinary differential equations in abstract spaces and applications
- Recursive properties of generalized ordinary differential equations and applications
- Oscillation for a second-order neutral differential equation with impulses
- Poisson stability for impulse semidynamical systems
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
