On exponential stability of functional differential equations with variable impulse perturbations (2014)
- Authors:
- USP affiliated authors: BONOTTO, EVERALDO DE MELLO - ICMC ; FEDERSON, MÁRCIA CRISTINA ANDERSON BRAZ - ICMC
- Unidade: ICMC
- Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS; EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; EQUAÇÕES INTEGRAIS
- Language: Inglês
- Imprenta:
- Source:
- Título: Differential and Integral Equations
- ISSN: 0893-4983
- Volume/Número/Paginação/Ano: v. 27, n. 7-8, p. 721-742, 2014
-
ABNT
AFONSO, S. M e BONOTTO, Everaldo de Mello e FEDERSON, Marcia. On exponential stability of functional differential equations with variable impulse perturbations. Differential and Integral Equations, v. 27, n. 7-8, p. 721-742, 2014Tradução . . Disponível em: http://projecteuclid.org/euclid.die/1399395750. Acesso em: 10 fev. 2026. -
APA
Afonso, S. M., Bonotto, E. de M., & Federson, M. (2014). On exponential stability of functional differential equations with variable impulse perturbations. Differential and Integral Equations, 27( 7-8), 721-742. Recuperado de http://projecteuclid.org/euclid.die/1399395750 -
NLM
Afonso SM, Bonotto E de M, Federson M. On exponential stability of functional differential equations with variable impulse perturbations [Internet]. Differential and Integral Equations. 2014 ; 27( 7-8): 721-742.[citado 2026 fev. 10 ] Available from: http://projecteuclid.org/euclid.die/1399395750 -
Vancouver
Afonso SM, Bonotto E de M, Federson M. On exponential stability of functional differential equations with variable impulse perturbations [Internet]. Differential and Integral Equations. 2014 ; 27( 7-8): 721-742.[citado 2026 fev. 10 ] Available from: http://projecteuclid.org/euclid.die/1399395750 - Poisson stability for impulse semidynamical systems
- Oscillation theory on generalized ODEs
- Boundedness of solutions of retarded functional differential equations with variable impulses via generalized ordinary differential equations
- Dichotomies for generalized ordinary differential equations and applications
- Uniform asymptotic stability of a discontinuous predator-prey model under control via non-autonomous systems theory
- Oscillation for a second-order neutral differential equation with impulses
- A Feynman-Kac solution to a random impulsive equation of Schrödinger type
- Zhukovskij stability on generalized ordinary differential equations
- Stability of functional differential equations with variable impulsive perturbations via generalized ordinary differential equations
- Oscillation theory for linear evolution processes
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
